Tectono-Magmatic Significance of the Lower Devonian Mafic Intrusions in the East Kunlun Orogenic Belt: Keys for the Evolution of Proto-Tethys
Abstract
:1. Introduction
2. Geological Background
3. Petrography
4. Analytical Methods
4.1. LA–ICP–MS Testing
4.2. Geochemical Analyses
5. Results
5.1. Zircon U-Pb Age
5.2. Major and Trace Element Geochemistry
5.2.1. Major Elements
5.2.2. Rare Earth Elements and Trace Elements
6. Discussion
6.1. Petrogenesis
6.2. Geotectonic Setting and Geological Significance
7. Conclusions
- (1)
- The Lichotag mafic intrusion was formed in the Early Devonian, with a zircon U–Pb age of 408.9 ± 2.0 Ma (MSWD = 0.49) for gabbro and a zircon U–Pb age of 411.1 ± 3.1 Ma (MSWD = 0.044) for diabase.
- (2)
- The chondrite-normalized curves of REEs in gabbro and diabase showed similar patterns with enrichment of LREEs and insignificant europium anomaly. The rocks are characterized by low contents of compatible elements Cr and Ni, high Rb and Sr contents, enrichment of large-ion lithophile elements such as Rb, U, Sr, and Nd, and relatively depleted high-field-strength elements such as Nb, Ta, Zr, Hf, Th, etc. The mafic magma originated from the enriched mantle and was assimilated by the upper crust during magma ascent.
- (3)
- The Lichotag mafic intrusions in the EKOB were formed in a post-collisional extensional tectonic regime, indicating that the subduction of the Proto-Tethys ended in the Early Devonian and the East Kunlun region was in a post-collisional extensional tectonic environment.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Z.Q.; Yang, J.S.; Jiang, M.; Li, H.B.; Xue, G.Q.; Yuan, X.C.; Qian, H. Deep structure and lithospheric shear faults in the east Kunlun–Qiangtang region, northern Tibetan Plateau. Sci. China Ser. D Earth Sci. 2001, 44, 1–9. [Google Scholar] [CrossRef]
- Yu, M.; Dick, J.M.; Feng, C.Y.; Li, B.; Wang, H. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model. J. Asian Earth Sci. 2020, 191, 104168. [Google Scholar] [CrossRef]
- Zhang, J.X.; Yu, S.Y.; Mattinson, C.G. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Res. 2017, 41, 267–289. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.P.; He, D.F.; Sun, S.S.; Liu, X.M.; Zhou, X.H.; Zhang, F.F.; Yang, Z.; Cheng, B.; Zhao, G.C.; Li, J.H. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Sci. Rev. 2018, 186, 231–261. [Google Scholar] [CrossRef]
- Dong, Y.P.; Sun, S.S.; Santosh, M.; Zhao, J.; Sun, J.P.; He, D.F.; Shi, X.H.; Hui, B.; Cheng, C.; Zhang, G.W. Central China Orogenic Belt and amalgamation of East Asian continents. Gondwana Res. 2021, 100, 131–194. [Google Scholar] [CrossRef]
- Dong, Y.P.; Hui, B.; Sun, S.S.; Yang, Z.; Zhang, F.F.; He, D.F.; Sun, J.P.; Shi, X.H. Multiple orogeny and geodynamics from Proto–Tethys to Paleo–Tethye of the Central China Orogenic Belt. Acta Geol. Sin. 2022, 96, 3426–3448, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.D.; Mo, X.X.; Luo, Z.H.; Yu, X.H.; Chen, H.W.; Li, S.W.; Zhao, X. Mixing events between the crust- and mantle-derived magmas in Eastern Kunlun: Evidence from zircon SHRIMP II chronology. Chin. Sci. Bull. 2004, 49, 828–834. [Google Scholar] [CrossRef]
- Chen, N.S.; Sun, M.; Wang, Q.Y.; Zhang, K.X.; Wan, Y.S.; Chen, H.H. U-Pb dating of zircon from the central zone of the east Kunlun orogen and its implications for tectonic evolution. Sci. China Ser. D Earth Sci. 2008, 51, 929–938. [Google Scholar] [CrossRef]
- Li, Z.C.; Pei, X.Z.; Li, R.B.; Pei, L.; Liu, C.J.; Chen, Y.X.; Liu, Z.Q.; Chen, G.C.; Xu, T.; Yang, J.; et al. Geochronology, Geochemistry and Tectonic Setting of the Bairiqiete Granodiorite Intrusion (Rock Mass) from the Buqingshan Tectonic Melange Belt in the Southern Margin of East Kunlun. Acta Geol. Sin. 2014, 88, 584–597. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Jiang, H.A.; Liu, B.; Huang, J. Geochronology and geochemistry of middle Devonian mafic dykes in the East Kunlun orogenic belt, northern Tibet Plateau: Implications for the transition from Prototethys to Paleotethys orogeny. Geochemistry 2014, 74, 225–235. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Wu, L.; Jiang, H.A.; Liu, B. Geochemistry, zircon U-Pb ages and Sr-Nd-Hf isotopes of an Ordovician appinitic pluton in the East Kunlun orogen: New evidence for Proto–Tethyan subduction. J. Asian Earth Sci. 2015, 111, 681–697. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, L.B.; Wei, J.H.; Bagas, L.; Santosh, M.; Liu, Y.; Zhang, D.H.; Zhou, H.Z. Late Permian back-arc extension of the eastern Paleo–Tethys Ocean: Evidence from the East Kunlun Orogen, Northern Tibetan Plateau. Lithos 2019, 340–341, 34–48. [Google Scholar] [CrossRef]
- Chen, J.J.; Fu, L.B.; Wei, J.H.; Selby, D.; Zhang, D.H.; Zhou, H.Z.; Zhao, X.; Liu, Y. Proto–Tethys magmatic evolution along northern Gondwana: Insights from Late Silurian–Middle Devonian A–type magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos 2020, 356–357, 105304. [Google Scholar] [CrossRef]
- Kong, J.J.; Niu, Y.L.; Hu, Y.; Zhang, Y.; Shao, F.L. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos 2020, 364–365, 105513. [Google Scholar] [CrossRef]
- Zhou, H.Z.; Zhang, D.H.; Wei, J.H.; Wang, D.Z.; Santosh, M.; Shi, W.J.; Chen, J.J.; Zhao, X. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling. Gondwana Res. 2020, 84, 52–70. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, Y.X.; Liu, C.J.; Chen, G.C.; Feng, K. Geochemistry and tectonic setting of Middle Ordovician MORB-like basalts in the Kunlun Orogen: Implications for a back-arc environment. Arab. J. Geosci. 2021, 14, 395. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Chen, Y.X.; Liu, C.J.; Pei, L. Multiple sources of Indosinian granites and constraints on the tectonic evolution of the Paleo–Tethys Ocean in East Kunlun Orogen. Minerals 2022, 12, 1604. [Google Scholar] [CrossRef]
- Li, Z.C.; Pei, X.Z.; Bons, P.D.; Li, R.B.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, M.; Zhao, S.W.; et al. Petrogenesis and tectonic setting of the early-middle Triassic subduction-related granite in the eastern segment of East Kunlun: Evidences from petrology, geochemistry, and zircon U-Pb-Hf isotopes. Int. Geol. Rev. 2022, 64, 698–721. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Zhou, R.J.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J. Magmatic response to the closure of the Proto–Tethys Ocean: A case study from the middle Paleozoic granitoids in the Kunlun Orogen, western China. J. Asian Earth Sci. 2023, 242, 105513. [Google Scholar] [CrossRef]
- Mo, X.X.; Luo, Z.H.; Deng, J.F.; Yu, X.H.; Liu, C.D.; Chen, H.W.; Yuan, W.M.; Liu, Y.H. Granitoids and crustal growth in the East–Kunlun orogenic belt. Geol. J. China Univ. 2007, 13, 403–414, (In Chinese with English Abstract). [Google Scholar]
- Yang, J.S.; Robinson, P.T.; Jiang, C.F.; Xu, Z.Q. Ophiolites of the Kunlun mountains, China and their tectonic implications. Tectonophysics 1996, 258, 215–231. [Google Scholar] [CrossRef]
- Bian, Q.T.; Li, D.H.; Pospelov, L.; Yin, L.; Zhao, D.; Chang, D.; Luo, X.; Gao, S.; Astrakhantsev, O. Age, geochemistry and tectonic setting of Buqingshan Ophiolites, North Qinghai–Tibet plateau, China. J. Asian Earth Sci. 2004, 23, 577–596. [Google Scholar] [CrossRef]
- Du, W.; Jiang, C.Y.; Xia, M.Z.; Xia, Z.D.; Zhou, W.; Ling, J.L.; Wang, B.Y. A newly discovered Early Paleozoic ophiolite in Dagele, Eastern Kunlun, China, and its geological significance. Geol. J. 2017, 52, 425–435. [Google Scholar] [CrossRef]
- Peng, Y.B.; Yu, S.Y.; Li, S.Z.; Zhang, J.X.; Liu, Y.J.; Li, Y.S.; Santosh, M. Early Neoproterozoic magmatic imprints in the Altun–Qilian–Kunlun region of the Qinghai–Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent. Earth-Sci. Rev. 2019, 199, 102954. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Wei, B.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J. Middle Cambrian–Early Ordovician ophiolites in the central fault of the East Kunlun Orogen: Implications for an epicontinental setting related to Proto–Tethyan Ocean subduction. Gondwana Res. 2021, 94, 243–258. [Google Scholar] [CrossRef]
- Li, Z.C.; Pei, X.Z.; Li, R.B.; Bons, P.D.; Pei, L.; Chen, Y.X.; Liu, C.J.; Wang, M.; Zhao, S.W.; Chen, G.C.; et al. Petrogenesis and tectonic setting of Early Silurian island-arc-type quartz diorite at the southern margin of the East Kunlun orogenic belt: Analysis of the evolution of the Proto–Tethyan Ocean. Int. J. Earth Sci. 2022, 111, 2317–2335. [Google Scholar] [CrossRef]
- Chen, Y.X.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Liu, C.J.; Wang, M. Magmatic events recorded in granitic gneisses from the Hatu area, eastern East Kunlun Orogen: Response to the assembly of Rodinia. Geol. J. 2017, 52, 403–418. [Google Scholar] [CrossRef]
- Du, W.; Jiang, C.Y.; Tang, Z.l.; Xia, M.Z.; Xia, Z.D.; Ling, J.L.; Zhou, W.; Wang, B.Y. Discovery and zircon SHRIMP U-Pb ages of the Dagele eclogite from East Kunlun, Western China and the new constrains on the Central Kunlun suture zone. Acta Geol. Sin. 2017, 91, 1153–1154. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Wei, B.; Li, Z.C.; Pei, L.; Chen, Y.X.; Liu, C.J.; Cheng, G.C.; Wang, M.; Feng, K. Constraints of late Cambrian mafic rocks from the Qushi’ang ophiolite on a back-arc system in a continental margin, East Kunlun Orogen, Western China. J. Asian Earth Sci. 2019, 169, 117–129. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Sun, Y.; Feng, J.Y.; Pei, L.; Chen, G.C.; Liu, C.J.; Chen, Y.X. Geochemical features, age, and tectonic significance of the Kekekete mafic-ultramafic rocks, East Kunlun Orogen, China. Acta Geol. Sin. 2013, 87, 1319–1333. [Google Scholar]
- Chen, N.S.; Sun, M.; He, L.; Zhang, K.X.; Wang, G.C. Precise timing of the Early Paleozoic metamorphism and thrust deformation in the Eastern Kunlun Orogen. Chin. Sci. Bull. 2002, 47, 1130–1133. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Lin, Q.X.; Jia, C.X.; Wang, G.C. SHRIMP zircon U-Pb age and significance of early Paleozoic volcanic rocks in East Kunlun orogenic belt, Qinghai province, China. Sci. China Ser. D Earth Sci. 2006, 49, 88–96. [Google Scholar] [CrossRef]
- Liu, B.; Ma, C.Q.; Huang, J.; Wang, L.X.; Zhao, S.Q.; Yan, R.; Sun, Y.; Xiong, F.H. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau. Lithos 2017, 284–285, 766–778. [Google Scholar] [CrossRef]
- Pei, X.Z.; Li, R.B.; Li, Z.C.; Chen, Y.X.; Pei, L.; Liu, Z.Q.; Chen, G.C.; Li, X.B.; Wang, M. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of East Kunlun Oragen. Earth Sci. 2018, 43, 4498–4520, (In Chinese with English Abstract). [Google Scholar]
- Chen, N.S.; Sun, M.; Wang, Q.Y.; Zhao, G.C.; Chen, Q.; Shu, G.M. EMP chemical ages of monazites from central zone of the eastern Kunlun orogen: Records of multi-tectonometamorphic events. Chin. Sci. Bull. 2007, 52, 2252–2263. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Sun, Y.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wei, F.H. Regional tectonic transformation in East Kunlun orogenic belt in early Paleozoic: Constraints from the geochronology and geochemistry of Helegangnaren alkali-feldspar granite. Acta Geol. Sin. 2013, 87, 333–345. [Google Scholar]
- Meng, F.C.; Zhang, J.X.; Cui, M.H. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance. Gondwana Res. 2013, 23, 825–836. [Google Scholar] [CrossRef]
- Li, Z.C.; Pei, X.Z.; Li, R.B.; Pei, L.; Liu, C.J.; Chen, Y.X.; Zhang, Y.M.; Wang, M.; Xu, T. Early Ordovician Island-arc-type Manite granodiorite pluton from the Buqingshan Tectonic Mélange Belt in the Southern margin of the East Kunlun: Constraints on subduction of the Proto–Tethyan Ocean. Geol. J. 2017, 52, 510–528. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Patias, D.; Su, Z.G.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J. Late Silurian to Early Devonian volcanics in the East Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto–Tethys Ocean. J. Geodyn. 2020, 140, 101780. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, J.; Zhang, C.L.; Yu, S.Y.; Ye, X.T.; Liu, X.Q. Paleozoic post-collisional magmatism and high-temperature granulite-facies metamorphism coupling with lithospheric delamination of the East Kunlun Orogenic Belt, NW China. Geo. Sci. Front. 2022, 13, 101271. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Chen, F.N.; Yu, J.Y.; Ji, W.H.; Feng, Y.M.; Zhang, X.; Gu, P.Y.; Li, X.M.; Wang, K.; Zhu, X.H.; et al. Tectonic Evolution in Northwest China and Its Adjacent Areas; China University of Geosciences Press: Wuhan, China, 2022; pp. 73–194. (In Chinese) [Google Scholar]
- Ba, J.; Zhang, L.; He, C.; Chen, N.S.; M. Kusky, T.; Wang, Q.Y.; Wan, Y.S.; Liu, X.M. Zircon and monazite ages constraints on Devonian magmatism an granulite-facies metamorphism in the Southern Qaidam block: Implications for evolution of Proto– and Paleo–Tethys in East Asia. J. Earth Sci. 2018, 29, 1132–1150. [Google Scholar] [CrossRef]
- Ding, Q.F.; Song, K.; Zhang, Q.; Yan, W.; Liu, F. Zircon U-Pb geochronology and Hf isotopic constraints on the petrogenesis of the Late Silurian Shidonggou granite from the Wulonggou area in the Eastern Kunlun Orogen, North West China. Int. Geol. Rev. 2019, 61, 1666–1689. [Google Scholar] [CrossRef]
- Li, L.; Sun, F.Y.; Li, B.L.; Li, S.J.; Chen, G.J.; Wang, W.; Yan, J.M.; Zhao, T.F.; Dong, J.; Zhang, D.X. Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of No. I complex from the Shitoukengde Ni–Cu sulfide deposit in the Eastern Kunlun Orogen, Western China: Implications for the magmatic source, geodynamic setting and genesis. Acta Geol. Sin. 2018, 92, 106–126. [Google Scholar] [CrossRef]
- Song, S.G.; Bi, H.Z.; Qi, S.S.; Yang, L.M.; Allen, M.B.; Niu, Y.L.; Su, L.; Li, W.F. HP–UHP meta⁃morphic belt in the East Kunlun Orogen: Final closure of the Proto–Tethys Ocean and formation of the PanNorth–China continent. J. Petrol. 2018, 59, 2043–2060. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Qian, B.; Liu, Y.G.; Dong, J. Metallogeny and tectonomagmatic setting of Ni–Cu magmatic sulfide mineralization, number Ⅰ Shitoukengde mafic–ultramafic complex, East Kunlun Orogenic Belt, NW China. Ore Geol. Rev. 2018, 96, 236–246. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, Y.J.; Deng, X.H.; Yue, S.W.; Chen, H.J. Origin of the Bashierxi monzogranite, QimanTagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto–Tethys Ocean. Lithos 2018, 296–299, 181–194. [Google Scholar] [CrossRef]
- Xin, W.; Sun, F.Y.; Li, L.; Yan, J.M.; Zhang, Y.T.; Wang, Y.C.; Shen, T.S.; Yang, Y.J. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post collision extension. Lithos 2018, 312–313, 108–127. [Google Scholar] [CrossRef]
- Wang, Y.C.; Sun, F.Y. The Middle-Late Silurian granitoids in the Eastern Kunlun Orogenic Belt, NW China: Petrogenesis and implications for tectonic evolution. Arab. J. Geosci. 2019, 12, 568. [Google Scholar] [CrossRef]
- Tang, Y.J.; Liu, B.; Li, M.J.; Wu, Y.; Sun, Y. Origin of Devonian mafic magmatism in the East Kunlun orogenic belt, northern Tibetan Plateau: Implications for continental exhumation. Geol. Mag. 2020, 157, 1265–1280. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA–ICP–MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Andersen, T. Correlation of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot/Ex, Version 3.00, a Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 1–70. [Google Scholar]
- Li, Y.G.; Wang, S.S.; Liu, M.W.; Meng, E.; Wei, X.Y.; Zhao, H.B.; Jin, M.Q. U-Pb study of baddeleyite by LA–ICP–MS: Technique and application. Acta Geol. Sin. 2015, 89, 2400–2418, (In Chinese with English Abstract). [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–528. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- McKenzie, D.P.; Bickle, M.J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 1988, 29, 625–679. [Google Scholar] [CrossRef]
- Ellam, R.M. Lithospheric thickness as a control on basalt geochemistry. Geology 1992, 20, 153–156. [Google Scholar] [CrossRef]
- Roex, A.; Dick, H.; Erlank, A.J.; Reid, A.M.; Frey, F.A.; Hart, S.R. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest indian ridge between the bouvet triple junction and 11 degrees east. J. Petrol. 1983, 24, 267–318. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A.; Dickin, A.P.; Hendry, G.L. An Assessment of the relative roles of crust and mantle in magma genesis: An elemental approach. Phil. Trans. R. Soc. Lond. 1984, 310, 549–590. [Google Scholar]
- Qian, Q.; Wang, Y. Geochemical characteristics of bimodal volcanic suites from different tectonic settings. Geol.-Geochem. 1999, 27, 29–32. (In Chinese) [Google Scholar]
- Lassiter, J.C.; DePaolo, D.J. Plume /lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. Am. Geophys. Union. 1997, 100, 335–355. [Google Scholar]
- Henderson, P. Rare Earth Element Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 276–280. [Google Scholar]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Neal, C.R.; Mahoney, J.J.; Chazey, W.J. Mantle Sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen plateau and broken ridge LIP: Results from ODP Leg 183. J. Petrol. 2002, 43, 1177–1205. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. Trace Element Characteristics of Lavas from Destructive Plate Boundaries; John Willey & Sons: Hoboken, NJ, USA; New York, NY, USA, 1982; pp. 525–548. [Google Scholar]
- Wood, D.A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Meschede, M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem. Geol. 1986, 56, 207–218. [Google Scholar] [CrossRef]
- Bian, Q.T.; Yin, L.M.; Sun, S.F.; Luo, X.Q.; Pospelov, I.; Astrakhahtsev, O.; Chamov, N. Discovery of Ordovician acritarchs in Buqingshan ophiolite complex, East Kunlun mountains and its significance. Chin. Sci. Bull. 2001, 46, 341–345. [Google Scholar] [CrossRef]
- Wang, B.Z.; Pan, T.; Ren, H.D.; Wang, T.; Zhao, Z.Y.; Feng, J.P.; Zhang, J.M. Cambrian Qimantagh island arc in the East Kunlun orogen: Evidences from zircon U-Pb ages, lithogeochemistry and Hf isotopes of high-Mg andsite/diorite from the Lalinggaolihe area. Earth Sci. Front. 2021, 28, 318–333, (In Chinese with English Abstract). [Google Scholar]
- Wang, B.Z.; Li, J.Q.; Fu, C.L.; Xu, H.Q.; Li, W.F. Research on formation and evolution of early Paleozoic Bulhanbuda arc in east Kunlun orogen. Earth Sci. 2022, 47, 1253–1270, (In Chinese with English Abstract). [Google Scholar]
- Feng, J.Y.; Pei, X.Z.; Yu, S.L.; Ding, S.P.; Li, R.B.; Sun, Y.; Zhang, Y.F.; Li, Z.C.; Chen, Y.X.; Zhang, X.F.; et al. The discovery of the mafic–ultramafic melange in Kekesha area of Dulan County, East Kunlun Region, and its LA–ICP–MS zircon U-Pb age. Geol. China 2010, 37, 28–38, (In Chinese with English Abstract). [Google Scholar]
- Cui, M.H.; Meng, F.C.; Wu, X.K. Early Ordovician island arc of Qimantag Mountain, eastern Kunlun: Evidences from geochemistry, Sm–Nd isotope and geochronology of intermediate–basic igneous rocks. Acta Petrol. Sin. 2011, 27, 3365–3379, (In Chinese with English Abstract). [Google Scholar]
- Zhu, X.H.; Chen, D.L.; Liu, L.; Li, D. Zircon LA–ICP–MS U-Pb dating of the Wanggaxiu gabbro complex in the Dulan area, northern margin of Qaidam Basin, China and its geological significance. Geol. Bull. China 2010, 29, 227–236, (In Chinese with English Abstract). [Google Scholar]
- Li, T.; Li, M.; Hu, C.B.; Li, Y.; Meng, J.; Gao, X.F.; Zha, X.F. Zircon U-Pb geochronology, geochemistry and its geological implications of intrusions in Aquedun area from Qimantag, East Kunlun, China. Earth Sci. 2018, 43, 4350–4363, (In Chinese with English Abstract). [Google Scholar]
- Li, H.K.; Lu, S.N.; Xiang, Z.Q.; Zhou, H.Y.; Guo, H.; Song, B.; Zheng, J.K.; Gu, Y. SHRIMP U-Pb zircon age of the granulite from the Qingshuiquan area, central Eastern Kunlun Suture Zone. Earth Sci. Front. 2006, 13, 311–321, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.X.; Meng, F.C.; Wang, Y.S.; Yang, J.S.; Dong, G.A. Early Paleozoic tectono-thermal event of the Jinshuikou Group on the southern margin of Qaidam: Zircon U-Pb SHRIMP age evidence. Geol. Bull. China 2003, 22, 397–404, (In Chinese with English Abstract). [Google Scholar]
- Liu, B.; Ma, C.Q.; Guo, P.; Zhang, J.Y.; Xiong, F.H.; Huang, J.; Jiang, H.A. Discovery of the Middle Devonian A–type granite from the Eastern Kunlun Orogen and its tectonic implications. Earth Sci. 2013, 38, 947–962, (In Chinese with English Abstract). [Google Scholar]
- Ren, J.H.; Liu, Y.Q.; Feng, Q.; Han, W.Z.; Gao, H.; Zhou, D.W. LA–ICP–MS U-Pb zircon dating and geochemical characteristics of diabase-dykes from the Qingshuiqun zrea, eastern Kunlun orogenic belt. Acta Petrol. Sin. 2009, 25, 1135–1145, (In Chinese with English Abstract). [Google Scholar]
- Bi, H.Z.; Song, S.G.; Dong, J.L.; Yang, L.M.; Qi, S.S.; Allen, M.B. First discovery of coesite in eclogite from East Kunlun, northwest China. Chin. Sci. Bul. 2018, 63, 1536–1538. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.Z.; Song, S.G.; Yang, L.M.; Allen, M.B.; Qi, S.S.; Su, L. UHP metamorphism recorded by coesite-bearing metapelite in the East Kunlun Orogen (NW China). Geol. Mag. 2020, 157, 160–172. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, C.Y.; Qian, B.; Li, W.Y. The geochemistry characteristics of Silurian gabbro in East Kunlun Orogenic Belt and its mineralization relationship with magmatic Ni–Cu sulfide deposit. Acta Petrol. Sin. 2018, 34, 2262–2274, (In Chinese with English Abstract). [Google Scholar]
- Cao, S.T.; Liu, X.K.; Ma, Y.S.; Li, J.Y.; Ma, Y.L. Qimantage area Silurian intrusive rocks and its geological significance. Qinghai Sci. Technol. 2011, 18, 26–30, (In Chinese with English Abstract). [Google Scholar]
- Liu, B.; Ma, C.Q.; Jiang, H.A.; Guo, P.; Zhang, J.Y.; Xiong, F.H. Early Paleozoic tectonic transition from ocean subduction to collisional orogeny in the eastern Kunlun Region: Evidence from Huxiaoqin mafic rocks. Acta Petrol. Sin. 2013, 29, 2093–2106, (In Chinese with English Abstract). [Google Scholar]
- Gao, Y.B.; Li, W.Y.; Qian, B.; Li, K.; Li, D.S.; He, S.Y.; Zhang, Z.W.; Zhang, J.W. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China. Acta Petrol. Sin. 2014, 30, 1647–1665, (In Chinese with English Abstract). [Google Scholar]
- Han, Z.H.; Sun, F.Y.; Tian, N.; Gao, H.C.; Li, L.; Zhao, T.F. Zircon UPb geochronology, geochemistry and geological implications of the Early Paleozoic Wulanwuzhuer granites in the Qimantag, East Kunlun, China. Earth Sci. 2021, 46, 13–30, (In Chinese with English Abstract). [Google Scholar]
- Wang, G.; Sun, F.Y.; Li, B.L.; Li, S.J.; Zhao, J.W.; Ao, C.; Yang, Q.A. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu–Ni deposit from East Kunlun, with implications for geodynamic setting. Earth Sci. Front. 2014, 21, 381–401, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, Y.J.; Wei, J.H.; Li, H.; Han, Y.; Zhou, H.Z.; Huang, X.K.; Ke, K.J. Origin of Late Silurian A–type granite in Wulonggou area, East Kunlun Orogen: Zircon U-Pb age, geochemistry, Nd and Hf isotopic constraints. Earth Sci. 2018, 43, 1219–1236, (In Chinese with English Abstract). [Google Scholar]
- Liu, B.; Wu, L.H.; Ma, C.Q.; Xu, Y.; Li, F.L.; Zhang, J.M.; Huang, J.; Sun, Y. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from the East Part of the Eastern Kunlun Orogenic Belt. Available online: https://kns.cnki.net/kcms/detail/42.1874.P.20220530.2100.018.html (accessed on 25 December 2022). (In Chinese with English Abstract).
- Wang, P.X.; Guo, F.; Wang, Z.N. Zircon U-Pb geochronology, geochemistry and geological significance of granitoids in the Yazigou, Qimantage Area of East Kunlun Mountains. Geosci 2020, 34, 987–1000, (In Chinese with English Abstract). [Google Scholar]
- Wang, P.X.; Guo, F.; Wang, Z.N.; Feng, N.Q. Zircon U-Pb ages, geochemical features and constraints on regional tectonic evolution of gabbro–diabase in Xiaoyuanshan area, Qimantage of East Kunlun Mountains. Geol. Bull. China 2022, 41, 1169–1183, (In Chinese with English Abstract). [Google Scholar]
- Zhang, L.; Li, B.L.; Liu, L.; Wang, P.X.; Li, L. Geochronology, geochemistry and geological significance of the Early Devonian bimodal intrusive rocks in Wulonggou area, East Kunlun Orogen. Acta Petrol. Sin. 2021, 37, 2007–2028, (In Chinese with English Abstract). [Google Scholar]
- Liu, B.; Ma, C.Q.; Zhang, J.Y.; Xiong, F.H.; Huang, J.; Jiang, H.A. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrol. Sin. 2012, 28, 1785–1807, (In Chinese with English Abstract). [Google Scholar]
- Hao, N.N.; Yuan, W.M.; Zhang, A.K.; Cao, J.H.; Chen, X.N.; Feng, Y.L.; Li, X. Late Silurian to Early Devonian granitoids in the Qimantage area, East Kunlun Mountains: LA–ICP–MS zircon U-Pb ages, geochemical features and geological setting. Geol. Rev. 2014, 60, 201–215, (In Chinese with English Abstract). [Google Scholar]
- Lu, L.; Wu, Z.H.; Hu, D.G.; Barosh, P.J.; Hao, S.; Zhou, C.J. Zricon U-Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the East Kunlun Mountains. Acta Petrol. Sin. 2010, 26, 1150–1158, (In Chinese with English Abstract). [Google Scholar]
- Davies, J.H.; Von Blanckenburg, F. Slab breakoff: A model of Lithosphere Detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett. 1995, 129, 85–102. [Google Scholar] [CrossRef]
- Bonin, B. Do Coeval mafic and felsic magmas in post–collisional to withinplate regimes necessarily imply two contrasting, mantle and crustal, sources? A review—ScienceDirect. Lithos 2004, 7, 1–24. [Google Scholar] [CrossRef]
- Dokuz, A. A slab detachment and delamination model for the generation of Carboniferous high–potassium I–type magmatism in the Eastern Pontides, NE Turkey: The Köse composite pluton. Gondwana Res. 2011, 19, 926–944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Zhang, X.; Li, Z.; Han, Y.; Zhao, H.; Yang, Y.; Xu, X. Tectono-Magmatic Significance of the Lower Devonian Mafic Intrusions in the East Kunlun Orogenic Belt: Keys for the Evolution of Proto-Tethys. Minerals 2023, 13, 478. https://doi.org/10.3390/min13040478
Meng Y, Zhang X, Li Z, Han Y, Zhao H, Yang Y, Xu X. Tectono-Magmatic Significance of the Lower Devonian Mafic Intrusions in the East Kunlun Orogenic Belt: Keys for the Evolution of Proto-Tethys. Minerals. 2023; 13(4):478. https://doi.org/10.3390/min13040478
Chicago/Turabian StyleMeng, Yong, Xin Zhang, Zuochen Li, Yuan Han, Haibo Zhao, Yang Yang, and Xingchen Xu. 2023. "Tectono-Magmatic Significance of the Lower Devonian Mafic Intrusions in the East Kunlun Orogenic Belt: Keys for the Evolution of Proto-Tethys" Minerals 13, no. 4: 478. https://doi.org/10.3390/min13040478
APA StyleMeng, Y., Zhang, X., Li, Z., Han, Y., Zhao, H., Yang, Y., & Xu, X. (2023). Tectono-Magmatic Significance of the Lower Devonian Mafic Intrusions in the East Kunlun Orogenic Belt: Keys for the Evolution of Proto-Tethys. Minerals, 13(4), 478. https://doi.org/10.3390/min13040478