Experimental Study of the Activation Effect of Oxalic Acid on the Dissolution of Rare Earth Elements in the Typical Diagenetic Minerals of Coal Seams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Samples
2.2. Oxalic Acid Leaching Experiment
2.3. Analysis Method
2.3.1. Morphology Observation
2.3.2. Element Analysis
- (1)
- Pretreatment of mineral samples and leachates
- (2)
- Quality control and limit of detection
- (3)
- Normalized patterns
3. Experimental Results
3.1. REE Occurrences in Minerals
3.2. REE Distributions in Oxalic Acid Leaching Solution
3.3. REE Dissolution Capacity
4. Discussion
4.1. REE Dissolution
4.1.1. Occurrence and Dissolution of REEs
4.1.2. Distribution of REEs in the Leaching Solution
4.2. Dissolution Capacity of REEs in Minerals
4.2.1. Crystal Structure of Minerals
4.2.2. Environmental Conditions
4.3. The Inspiration from REE Dissolution in Acidic Natural Waters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, H.; Geng, L.; Qiu, S.; Zou, H.; Liang, M.; Deng, D. Research progress of rare earth composite shielding materials. J. Rare Earths 2023, 41, 32–41. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, S.; Liang, H.; Li, C.; Tan, T.; Yang, G.; Wang, J. Lanthanide ions doped rare earth-based double perovskite single crystals for light-emitting diodes. J. Alloys Compd. 2023, 934, 167952. [Google Scholar] [CrossRef]
- Li, T.; Zhong, Y.; Qu, S.; Zhang, Z. Influences of the characteristics of carbide particles on the rolling contact fatigue life of rare earth modified, highly clean bearing steel. Eng. Fail. Anal. 2023, 143, 106888. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Hu, G.; Feng, Z.; Dong, J.; Meng, X.; Xiao, Y.; Liu, X. Mineral properties and leaching characteristics of volcanic weathered crust elution-deposited rare earth ore. J. Rare Earths 2017, 35, 906–910. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Wang, X.; Cui, L.; Zhao, Z.; Liu, C.; Xu, Z. Weathering stage and topographic control on rare earth element (REE) behavior: New constraints from a deeply weathered granite hill. Chem. Geol. 2022, 610, 121066. [Google Scholar] [CrossRef]
- Fu, W.; Li, X.; Feng, Y.; Feng, M.; Peng, Z.; Yu, H.; Lin, H. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China: Critical control of lithology. Chem. Geol. 2019, 520, 33–51. [Google Scholar] [CrossRef]
- Fan, C.; Xu, C.; Shi, A.; Smith, M.P.; Kynicky, J.; Wei, C. Origin of heavy rare earth elements in highly fractionated peraluminous granites. Geochim. Cosmochim. Acta 2023, 343, 371–383. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the no. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Ji, B.; Li, Q.; Honaker, R.; Zhang, W. Acid leaching recovery and occurrence modes of rare earth elements (REEs) from natural kaolinites. Miner. Eng. 2022, 175, 107278. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Long, Z.; Zongyu, F.; Wang, L. Adsorption ability of rare earth elements on clay minerals and its practical performance. J. Rare Earths 2016, 34, 543–548. [Google Scholar] [CrossRef]
- Coppin, F.; Berger, G.; Bauer, A.; Castet, S.; Loubet, M. Sorption of lanthanides on smectite and kaolinite. Chem. Geol. 2002, 182, 57–68. [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Liu, X.; Sang, S.; Ma, M.; Zhang, W. Differentiation of rare earth elements and yttrium in different size and density fractions of the Reshuihe coal, Yunnan Province, China. Int. J. Coal Geol. 2019, 207, 1–11. [Google Scholar] [CrossRef]
- Yang, M.; Liang, X.; Ma, L.; Huang, J.; He, H.; Zhu, J. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chem. Geol. 2019, 525, 210–217. [Google Scholar] [CrossRef]
- Jones, D.L. Organic acids in the rhizosphere-a critical review. Plant Soil 1998, 205, 25–44. [Google Scholar] [CrossRef]
- Gadd, G.M. Heterotrophic solubilization of metal-bearing minerals by fungi. Environ. Mineral. 2000, 9, 57–75. [Google Scholar]
- Reichard, P.U.; Kretzschmar, R.; Kraemer, S.M. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim. Cosmochim. Acta 2007, 71, 5635–5650. [Google Scholar] [CrossRef]
- Sun, J.; Bostick, B.C.; Mailloux, B.J.; Jamieson, J.; Yan, B.; Pitiranggon, M.; Chillrud, S.N. Arsenic mobilization from iron oxides in the presence of oxalic acid under hydrodynamic conditions. Chemosphere 2018, 212, 219–227. [Google Scholar] [CrossRef]
- Flynn, E.D.; Catalano, J.G. Competitive and Cooperative Effects during Nickel Adsorption to Iron Oxides in the Presence of Oxalate. Environ. Sci. Technol. 2017, 51, 9792–9799. [Google Scholar] [CrossRef]
- Ren, H.; Ji, Z.; Wu, S.; Han, X.; Liu, Z.; Jia, S. Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V). Chemosphere 2018, 208, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Lazo, D.E.; Dyer, L.G.; Alorro, R.D.; Browner, R. Treatment of monazite by organic acids I: Solution conversion of rare earths. Hydrometallurgy 2017, 174, 202–209. [Google Scholar] [CrossRef]
- Chen, B.; Wu, F.; Liu, F. Experimental study on the effects of organic acids on the dissolution of REE in the weathering crust of granite. Chin. J. Geochem. 2001, 20, 144–151. [Google Scholar] [CrossRef]
- Ji, B.; Li, Q.; Zhang, W. Leaching recovery of rare earth elements from the calcination product of a coal coarse refuse using organic acids. J. Rare Earths 2022, 40, 318–327. [Google Scholar] [CrossRef]
- Karan, R.; Sreenivas, T.; Kumar, M.A.; Singh, D.K. Recovery of rare earth elements from coal flyash using deep eutectic solvents as leachants and precipitating as oxalate or fluoride. Hydrometallurgy 2022, 214, 105952. [Google Scholar] [CrossRef]
- Josso, P.; Roberts, S.; Teagle, D.A.; Pourret, O.; Herrington, R.; de Leon Albarran, C.P. Extraction and separation of rare earth elements from hydrothermal metalliferous sediments. Miner. Eng. 2018, 118, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Sá, R.D.; Santana, A.S.C.D.; Padilha, R.J.R.; Alves, L.C.; Randau, K.P. Oxalic acid content and pharmacobotany study of the leaf blades of two species of Annona (Annonaceae). Flora 2019, 253, 10–16. [Google Scholar] [CrossRef]
- Yan, X.; Dai, S.; Graham, I.T.; He, X.; Shan, K.; Liu, X. Determination of Eu concentrations in coal, fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2018, 191, 152–156. [Google Scholar] [CrossRef]
- Rojano, W.J.S.; Dos Anjos, T.; Duyck, C.B.; Saint′;Pierre, T.D. Determination of rare earth elements in environmental samples with high concentrations of barium by quadrupole inductively coupled plasma mass spectrometry. Microchem J. 2019, 149, 104026. [Google Scholar] [CrossRef]
- Haskin, L.A.; Haskin, M.A.; Frey, F.A.; Wildeman, T.R. Relative and absolute terrestrial abundances of the rare earths. In Origin & Distribution of the Elements; Pergamon Press Ltd.: Pergamon, 1968; pp. 889–912. [Google Scholar]
- Taylor, S.R.; Mclennan, S.M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Stanford University: Stanford, CA, USA, 1985; pp. 57–72. [Google Scholar]
- Sun, S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Wang, X.X.; Li, Q.M.; Hu, H.F.; Zhang, T.L.; Zhou, Y.Y. Dissolution of kaolinite induced by citric, oxalic, and malic acids. J. Colloid Interface Sci. 2005, 290, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 1999, 63, 67–77. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, H.; Liu, D.; Yuan, P.; Bu, H.; Du, P.; Fan, W.; Li, M. Sorption/desorption of Eu (III) on halloysite and kaolinite. Appl. Clay Sci. 2022, 216, 106356. [Google Scholar] [CrossRef]
- Bentouhami, E.; Bouet, G.M.; Meullemeestre, J.; Vierling, F.; Khan, M.A. Physicochemical study of the hydrolysis of rare-earth elements (III) and thorium (IV). C. R. Chim. 2004, 7, 537–545. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, G.; Zhou, B. Studies on the Solubility of Lantkanide Oxalates in Different Conditions. Chin. Rare Earths 1995, 3, 12–16. [Google Scholar]
- Jorjani, E.; Shahbazi, M. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid. Arab. J. Chem. 2016, 9, S1532–S1539. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare earth elements: Minerals, mines, magnets (and more). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Tian, J.; Chi, R.; Yin, J. Leaching process of rare earths from weathered crust elution-deposited rare earth ore. Trans. Nonferrous Met. Soc. China 2010, 20, 892–896. [Google Scholar] [CrossRef]
- Mer, A.; Rivenet, M.; De Almeida, L.; Grandjean, S.; Abraham, F. Structural diversity of the lanthanide oxalates: Condensation of neodymium oxygen polyhedra under hydrothermal conditions. Inorg. Chem. Commun. 2013, 31, 90–95. [Google Scholar] [CrossRef]
- Peng, C.; Zhong, Y.; Wang, G.; Min, F.; Qin, L. Atomic-level insights into the adsorption of rare earth Y (OH) 3-nn+ (n = 1–3) ions on kaolinite surface. Appl. Surf. Sci. 2019, 469, 357–367. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Honda, T.; Tanaka, M.; Tanaka, K.; Takahashi, Y. Discovery of ion-adsorption type deposits of rare earth elements (REE) in Southwest Japan with speciation of REE by extended X-ray absorption fine structure spectroscopy. Geochem. J. 2018, 52, 415–425. [Google Scholar] [CrossRef]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-De-Benavent, C.; Nason, P.; Marquis, E.; Horsburgh, N.J.; Goodenough, K.M.; Xu, C.; et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pente, A.S.; Bajpai, R.K.; Kaushik, C.P.; Tomar, B.S. Americium sorption on smectite-rich natural clay from granitic ground water. Appl. Geochem. 2013, 35, 28–34. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Xin, C.; Zhu, J.; Xinghu, W.; Zhu, R.; Wang, H. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy 2019, 185, 149–161. [Google Scholar] [CrossRef]
- Schnurr, A.; Marsac, R.; Rabung, T.; Lützenkirchen, J.; Geckeis, H. Sorption of Cm (III) and Eu (III) onto clay minerals under saline conditions: Batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim. Cosmochim. Acta 2015, 151, 192–202. [Google Scholar] [CrossRef]
- Bradbury, M.H.; Baeyens, B. Sorption of Eu on Na-and Ca-montmorillonites: Experimental investigations and modelling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 2002, 66, 2325–2334. [Google Scholar] [CrossRef]
- Bradbury, M.H.; Baeyens, B. Experimental measurements and modeling of sorption competition on montmorillonite. Geochim. Cosmochim. Acta 2005, 69, 4187–4197. [Google Scholar] [CrossRef]
- Wu, M.X.; Li, X.H.; Liu, Y.; Wei, K.Q. Rare earth elements in groundwaters from Fogang granitoid weathering crust of Baisha, Yingde, Guangdong Province, China. Geochimica 2003, 32, 335–342. [Google Scholar] [CrossRef]
- Bao, Z.; Zhao, Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Bozau, E.; Leblanc, M.; Seidel, J.L.; Stärk, H. Light rare earth elements enrichment in an acidic mine lake (Lusatia, Germany). Appl. Geochem. 2004, 19, 261–271. [Google Scholar] [CrossRef]
- Bozau, E.; Göttlicher, J.; Stärk, H. Rare earth element fractionation during the precipitation and crystallisation of hydrous ferric oxides from anoxic lake water. Appl. Geochem. 2008, 23, 3473–3486. [Google Scholar] [CrossRef]
- Ma, L.; Jin, L.; Brantley, S.L. How mineralogy and slope aspect affect REE release and fractionation during shale weathering in the Susquehanna/Shale Hills Critical Zone Observatory. Chem. Geol. 2011, 290, 31–49. [Google Scholar] [CrossRef]
- Chevis, D.A.; Johannesson, K.H.; Burdige, D.J.; Cable, J.E.; Martin, J.B.; Roy, M. Rare earth element cycling in a sandy subterranean estuary in Florida, USA. Mar. Chem. 2015, 176, 34–50. [Google Scholar] [CrossRef]
Element | Mean (μg/g) | Content (μg/g) | Standard Value (μg/g) | Recovery Rate (%) | RSD (%) |
---|---|---|---|---|---|
La | 54.680 | 54.475 ± 0.618 | 54.000 | 1.013 | 1.1 |
Ce | 103.118 | 103.214 ± 0.648 | 108.000 | 0.955 | 0.6 |
Pr | 12.378 | 12.372 ± 0.687 | 12.700 | 0.975 | 5.6 |
Nd | 42.946 | 42.994 ± 0.237 | 47.000 | 0.914 | 0.5 |
Sm | 9.447 | 9.449 ± 0.013 | 9.700 | 0.974 | 0.1 |
Eu | 0.749 | 0.749 ± 0.005 | 0.850 | 0.881 | 0.7 |
Gd | 9.193 | 9.123 ± 0.213 | 9.300 | 0.989 | 2.3 |
Tb | 1.773 | 1.769 ± 0.037 | 1.650 | 1.075 | 2.1 |
Dy | 9.897 | 9.889 ± 0.041 | 10.200 | 0.970 | 0.4 |
Ho | 1.946 | 1.931 ± 0.048 | 2.050 | 0.949 | 2.5 |
Er | 6.767 | 6.709 ± 0.294 | 6.500 | 1.041 | 4.3 |
Tm | 0.980 | 0.97 ± 0.044 | 1.060 | 0.925 | 5.6 |
Yb | 6.009 | 5.992 ± 0.074 | 7.400 | 0.812 | 1.3 |
Lu | 0.951 | 0.95 ± 0.077 | 1.150 | 0.827 | 9.1 |
Element | Granite | Kaolinite | Plagioclase | Montmorillonite | Quartz | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Content | Mean | Content | Mean | Content | Mean | Content | Mean | Content | ||
LREE | La | 72.074 | 72.231 ± 1.445 | 22.33 | 22.494 ± 1.0515 | 0.737 | 0.73 ± 0.022 | 40.731 | 40.73 ± 2.93 | 0.17 | 0.153 ± 0.017 |
Ce | 117.833 | 117.356 ± 1.956 | 39.409 | 39.799 ± 3.053 | 1.118 | 1.116 ± 0.036 | 68.61 | 68.148 ± 4.235 | 0.233 | 0.168 ± 0.018 | |
Pr | 11.96 | 11.889 ± 0.243 | 4.842 | 4.809 ± 0.354 | 0.12 | 0.12 ± 0.004 | 8.711 | 8.69 ± 0.414 | 0.022 | 0.021 ± 0.002 | |
Nd | 39.45 | 39.328 ± 0.675 | 16.66 | 16.525 ± 1.297 | 0.342 | 0.341 ± 0.011 | 28.703 | 29 ± 1.607 | 0.069 | 0.052 ± 0.004 | |
Sm | 5.64 | 5.626 ± 0.115 | 3.784 | 3.82 ± 0.261 | 0.114 | 0.114 ± 0.005 | 4.499 | 4.5 ± 0.174 | 0.011 | 0.011 ± 0.001 | |
Eu | 1.179 | 1.187 ± 0.052 | 0.934 | 0.883 ± 0.163 | 0.055 | 0.055 ± 0.001 | 0.536 | 0.54 ± 0.032 | 0.002 | 0.002 ± 0.001 | |
HREE | Gd | 5.465 | 5.5 ± 0.121 | 3.336 | 3.485 ± 0.565 | 0.104 | 0.103 ± 0.004 | 3.736 | 3.7 ± 0.178 | 0.008 | 0.008 ± 0.001 |
Tb | 0.683 | 0.675 ± 0.026 | 0.582 | 0.605 ± 0.101 | 0.019 | 0.019 ± 0.001 | 0.446 | 0.452 ± 0.033 | |||
Dy | 3.642 | 3.526 ± 0.133 | 2.984 | 2.984 ± 0.286 | 0.157 | 0.156 ± 0.007 | 1.866 | 2.005 ± 0.098 | |||
Ho | 0.7 | 0.695 ± 0.016 | 0.425 | 0.434 ± 0.033 | 0.02 | 0.02 ± 0.001 | 0.317 | 0.319 ± 0.012 | |||
Er | 2.139 | 2.12 ± 0.104 | 1.007 | 1.008 ± 0.152 | 0.055 | 0.055 ± 0.001 | 1.058 | 1.06 ± 0.045 | |||
Tm | 0.328 | 0.324 ± 0.02 | 0.12 | 0.116 ± 0.014 | 0.014 | 0.014 ± 0.001 | 0.176 | 0.175 ± 0.005 | |||
Yb | 2.183 | 2.164 ± 0.058 | 0.709 | 0.661 ± 0.145 | 0.111 | 0.11 ± 0.004 | 1.341 | 1.334 ± 0.061 | |||
Lu | 0.319 | 0.318 ± 0.026 | 0.086 | 0.0856 ± 0.001 | 0.02 | 0.02 ± 0.001 | 0.216 | 0.22 ± 0.013 | |||
LREEs/HREEs | 16.051 | 9.51 | 4.972 | 16.578 | |||||||
∑REEs | 263.595 | 97.208 | 2.986 | 160.946 | 0.515 |
Element | Granite | Kaolinite | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxalic Acid Concentration (mol/L) | Oxalic Acid Concentration (mol/L) | ||||||||||||
0 | 0.01 | 0.05 | 0 | 0.01 | 0.05 | ||||||||
Mean | Content | Mean | Content | Mean | Content | Mean | Content | Mean | Content | Mean | Content | ||
LREE | La | 0.274 | 0.276 ± 0.006 | 4.1 | 4.125 ± 0.188 | 0.006 | 0.006 ± 0.001 | 0.107 | 0.105 ± 0.009 | 5.925 | 6.001 ± 0.252 | ||
Ce | 0.387 | 0.387 ± 0.008 | 4.067 | 4.108 ± 0.312 | 0.626 | 0.613 ± 0.05 | 15.22 | 15.307 ± 0.628 | |||||
Pr | 0.03 | 0.03 ± 0.001 | 0.259 | 0.252 ± 0.021 | 0.017 | 0.017 ± 0.001 | 1.493 | 1.5 ± 0.134 | |||||
Nd | 0.095 | 0.094 ± 0.002 | 0.664 | 0.68 ± 0.056 | 0.1 | 0.1 ± 0.006 | 5.524 | 5.194 ± 0.5 | |||||
Sm | 0.005 | 0.005 ± 0.001 | 0.094 | 0.094 ± 0.006 | 0.048 | 0.049 ± 0.002 | 1.492 | 1.5 ± 0.159 | |||||
Eu | 0.002 | 0.002 ± 0.001 | 0.052 | 0.051 ± 0.005 | 0.208 | 0.21 ± 0.006 | 0.063 | 0.061 ± 0.008 | 0.818 | 0.789 ± 0.235 | |||
HREE | Gd | 0.023 | 0.023 ± 0.001 | 0.18 | 0.019 ± 0.003 | 0.008 | 0.008 ± 0.001 | 0.147 | 0.147 ± 0.014 | 2.001 | 2.001 ± 0.15 | ||
Tb | 0.002 | 0.002 | 0.02 | 0.19 ± 0.04 | 0.041 | 0.041 ± 0.003 | 0.336 | 0.336 ± 0.012 | |||||
Dy | 0.014 | 0.014 ± 0.001 | 0.075 | 0.076 ± 0.007 | 0.378 | 0.378 ± 0.022 | 1.881 | 1.834 ± 0.434 | |||||
Ho | 0.009 | 0.009 ± 0.001 | 0.076 | 0.075 ± 0.008 | 0.323 | 0.319 ± 0.012 | |||||||
Er | 0.01 | 0.01 | 0.06 | 0.058 ± 0.008 | 0.215 | 0.215 ± 0.02 | 0.751 | 0.741 ± 0.051 | |||||
Tm | 0.031 | 0.031 ± 0.02 | 0.091 | 0.09 ± 0.004 | |||||||||
Yb | 0.008 | 0.008 ± 0.001 | 0.052 | 0.054 ± 0.011 | 0.205 | 0.203 ± 0.03 | 0.612 | 0.602 ± 0.067 | |||||
Lu | 0.001 | 0.001 | 0.023 | 0.023 ± 0.002 | 0.071 | 0.067 ± 0.012 | |||||||
LREEs/HREEs | 13.912 | 23.264 | 0.86 | 5.02 | |||||||||
∑REEs | 0.85 | 9.633 | 2.077 | 36.538 | |||||||||
Element | Plagioclase | Montmorillonite | |||||||||||
Oxalic acid concentration | Oxalic acid concentration | ||||||||||||
0 | 0.01 | 0.05 | 0 | 0.01 | 0.05 | ||||||||
mean | content | mean | content | mean | content | mean | Content | mean | content | mean | content | ||
LREE | La | 0.004 | 0.004 ± 0.001 | 0.393 | 0.392 ± 0.0166 | 0.009 | 0.009 ± 0.001 | 0.049 | 0.049 ± 0.002 | ||||
Ce | 0.61 | 0.612 ± 0.019 | 0.054 | 0.054 ± 0.001 | 0 | 0.098 ± 0.005 | |||||||
Pr | 0.066 | 0.066 ± 0.001 | 0.006 | 0.006 ± 0.001 | |||||||||
Nd | 0.005 | 0.005 ± 0.001 | 0.199 | 0.2 ± 0.006 | 0.009 | 0.009 | 0.023 | 0.023 ± 0.001 | |||||
Sm | 0.056 | 0.056 ± 0.002 | 0.004 | 0.004 ± 0.001 | |||||||||
Eu | 0.001 | 0.001 ± 0.000 | 0.024 | 0.025 ± 0.003 | 0.003 | 0.003 ± 0.001 | |||||||
HREE | Gd | 0.082 | 0.082 ± 0.002 | 0.012 | 0.012 | ||||||||
Tb | 0.017 | 0.017 ± 0.001 | |||||||||||
Dy | 0.002 | 0.002 ± 0.001 | 0.103 | 0.103 ± 0.002 | 0.003 | 0.003 ± 0.001 | 0.004 | 0.004 ± 0.001 | |||||
Ho | 0.018 | 0.021 ± 0.001 | |||||||||||
Er | 0.055 | 0.054 ± 0.004 | 0.004 | 0.0041 ± 0.003 | |||||||||
Tm | 0.007 | 0.007 | |||||||||||
Yb | 0.003 | 0.003 ± 0.001 | 0.08 | 0.079 ± 0.003 | |||||||||
Lu | 0.009 | 0.009 ± 0.001 | |||||||||||
LREEs/HREEs | 2 | 3.63 | 6 | 9.1 | |||||||||
∑REEs | 0.015 | 1.719 | 0.021 | 0.202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Wang, W.; Li, J.; Zhang, K.; He, X. Experimental Study of the Activation Effect of Oxalic Acid on the Dissolution of Rare Earth Elements in the Typical Diagenetic Minerals of Coal Seams. Minerals 2023, 13, 525. https://doi.org/10.3390/min13040525
Ma M, Wang W, Li J, Zhang K, He X. Experimental Study of the Activation Effect of Oxalic Acid on the Dissolution of Rare Earth Elements in the Typical Diagenetic Minerals of Coal Seams. Minerals. 2023; 13(4):525. https://doi.org/10.3390/min13040525
Chicago/Turabian StyleMa, Mengya, Wenfeng Wang, Jian Li, Kun Zhang, and Xin He. 2023. "Experimental Study of the Activation Effect of Oxalic Acid on the Dissolution of Rare Earth Elements in the Typical Diagenetic Minerals of Coal Seams" Minerals 13, no. 4: 525. https://doi.org/10.3390/min13040525
APA StyleMa, M., Wang, W., Li, J., Zhang, K., & He, X. (2023). Experimental Study of the Activation Effect of Oxalic Acid on the Dissolution of Rare Earth Elements in the Typical Diagenetic Minerals of Coal Seams. Minerals, 13(4), 525. https://doi.org/10.3390/min13040525