Mixing in Two Types of Fluids Responsible for Some Carbonate-Hosted Pb–Zn Deposits, SW China: Insights from the Maoping Deposit
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
3.1. Stratigraphy and Lithology
3.2. Structure
3.3. Ore Body Characteristics
3.4. Mineralogy
3.5. Mineral Paragenesis
4. Materials and Methods
4.1. Sampling and Sample Preparation
4.2. Analytical Methods
5. Results
5.1. Fluid-Inclusion Petrography
5.2. Microthermometry
5.3. H–O Isotopic Compositions
5.4. He–Ar Isotopic Compositions
6. Discussion
6.1. Reliability of Fluid-Inclusion Data
6.2. Definition for Two Types of Fluids
6.3. A Genetic Model for the Maoping Deposit
6.4. Implications for Carbonate-Hosted Deposits in the SYGMB
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kesler, S.E. Ore-forming fluids. Elements 2005, 1, 13–18. [Google Scholar] [CrossRef]
- Yardley, B.W.D. Metal concentrations in crustal fluids and their relationship to ore formation. Econ. Geol. 2005, 100, 613–632. [Google Scholar] [CrossRef]
- Liebscher, A.; Heinrich, C.A. Fluid-fluid interactions in Earth’s lithosphere. Rev. Mineral. Geochem. 2007, 65, 1–13. [Google Scholar] [CrossRef]
- Zhang, D.H.; Jin, X.D.; Mao, S.D.; Wang, L.L. The classification of ore-forming fluid and the efficiency of ore formation of magmatic hydrothermal solution. Earth Sci. Front. 2011, 18, 90–102, (In Chinese with English Abstract). [Google Scholar]
- Kucha, H.; Schroll, E.; Raith, J.; Halas, S. Microbial sphalerite formation in carbonate-hosted Zn-Pb ores, Bleiberg, Austria: Micro-to nanotextural and sulfur isotope evidence. Econ. Geol. 2010, 105, 1005–1023. [Google Scholar] [CrossRef]
- Leach, D.L.; Bradley, D.C.; Lewchuk, M.; Symons, D.T.A.; Brannon, J.; Marsily, G. Mississippi Valley-type lead-zinc deposits through geological time: Implications from recent age-dating research. Miner. Depos. 2001, 36, 711–740. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Weiss, D.J.; Mason, T.; Coles, B.J. Zinc isotope variation in hydrothermal systems: Preliminary evidence from the Irish Midlands ore field. Econ. Geol. 2005, 100, 583–590. [Google Scholar] [CrossRef]
- Höll, R.; Kling, M.; Schroll, E. Metallogenesis of germanium—A review. Ore Geol. Rev. 2007, 30, 145–180. [Google Scholar] [CrossRef]
- Han, R.S.; Zhang, Y.; Ren, T.; Qiu, W.L.; Wei, T.P. A summary of research on carbonate-hosted, non-magmatic, epigenetic, hydrothermal type Pb-Zn deposits. J. Kunming Univ. Sci. Technol. (Nat. Sci.) 2020, 45, 29–40, (In Chinese with English Abstract). [Google Scholar]
- Giorno, M.; Barale, L.; Bertok, C.; Frenzel, M.; Looser, N.; Guillong, M.; Bernasconi, S.M.; Martire, L. Sulfide-associated hydrothermal dolomite and calcite reveal a shallow burial depth for Alpine-type Zn-(Pb) deposits. Geology 2022, 50, 853–858. [Google Scholar] [CrossRef]
- Sangster, D.F. Mississippi Valley-type and SEDEX lead-zinc deposits: A comparative examination. Trans. Inst. Min. Metall. 1990, 99, B21–B42. [Google Scholar]
- Leach, D.L.; Sangster, D.F. Mississippi Valley-type lead-zinc deposits. In Mineral Deposit Modelling; Special Paper 40; Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1993; pp. 289–314. [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Walters, S.G. Sediment-host lead-zinc deposits: A global perspective. Econ. Geol. 2005, 100, 561–607. [Google Scholar]
- Kesler, S.E.; Martini, A.M.; Appold, M.S.; Walter, L.M.; Huston, Y.J.; Furman, F.C. Na-CI-Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: Constraints on solute origin and migration paths. Geochim. Cosmochim. Acta 1996, 60, 225–233. [Google Scholar] [CrossRef]
- Liu, H.C.; Lin, W.D. Regularity Research of Lead-Zinc-Silver Deposits in Northeastern Yunnan Province; Yunnan University Press: Kunming, China, 1999; pp. 1–468. (In Chinese) [Google Scholar]
- Huang, Z.L.; Chen, J.; Han, R.S.; Li, W.B.; Liu, C.Q.; Zhang, Z.L.; Ma, D.Y.; Gao, D.R.; Yang, H.L. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China: Discussion on the Relationship between the Emeishan Flood Basalts and Lead–Zinc Mineralization; Geological Publishing House: Beijing, China, 2004; pp. 1–214. (In Chinese) [Google Scholar]
- Zhou, J.X.; Huang, Z.L.; Gao, J.G.; Yan, Z.F. Geological and C-O-S-Pb-Sr isotopic constraints on the origin of the Qingshan carbonate-hosted Pb-Zn deposit, Southwest China. Int. Geol. Rev. 2013, 55, 904–916. [Google Scholar] [CrossRef]
- Zhou, J.X.; Xiang, Z.Z.; Zhou, M.F.; Feng, Y.X.; Luo, K.; Huang, Z.L.; Wu, T. The giant Upper Yangtze Pb–Zn province in SW China: Reviews, new advances and a new genetic model. J. Asian Earth Sci. 2018, 154, 280–315. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, R.S.; Ding, X.; Wang, Y.R.; Wei, T.P. Experimental study on fluid migration mechanism related to Pb-Zn super-enrichment: Implications for mineralisation mechanisms of the Pb-Zn deposits in the Sichuan-Yunnan-Guizhou, SW China. Ore Geol. Rev. 2019, 114, 103110. [Google Scholar] [CrossRef]
- Han, R.S.; Zhang, Y.; Wang, F.; Wu, P.; Qiu, W.L.; Li, W.Y. Metallogenic Mechanism of Germanium Rich Lead-Zinc Deposits and Prediction of Concealed Ore Location in Northeast Yunnan; Science Press: Beijing, China, 2019; pp. 1–501, (In Chinese with English Abstract). [Google Scholar]
- Han, R.S.; Wu, P.; Zhang, Y.; Huang, Z.L.; Wang, F.; Jin, Z.G.; Zhou, G.M.; Shi, Z.L.; Zhang, C.Q. New research progresses of metallogenic theory for rich Zn-Pb-(Ag-Ge) deposits in the Sichuang-Yunnan-Guizhou Triangle (SYGT) area, southwestern Tethys. Acta Geol. Sin. 2022, 96, 554–573, (In Chinese with English Abstract). [Google Scholar]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Liu, Y.P.; Zhang, Q.; Liu, T.G.; Wei, G.; Yang, Y.L.; Danyushevskiy, L. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Xu, J.J.; Mao, J.W.; Rui, Z.Y. Advances in the study of Mississippi Valley-type deposits. Miner. Depos. 2009, 28, 195–210, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.Q.; Wu, Y.; Hou, L.; Mao, J.W. Geodynamic setting of mineralization of Mississippi Valley-type deposits in world-class Sichuan-Yunnan-Guizhou Zn-Pb triangle, southwest China: Implications from age-dating studies in the past decade and the Sm-Nd age of the Jinshachang deposit. J. Asian Earth Sci. 2015, 103, 103–114. [Google Scholar] [CrossRef]
- Leach, D.L.; Song, Y.C. Sediment-hosted zinc-lead copper deposits in China. In Mineral Deposits of China; Special Publication Number, 22; Chang, Z., Goldfarb, R.J., Eds.; Society of Economic Geologist, Inc.: Lawrence, KS, USA, 2019; pp. 325–409. [Google Scholar]
- Han, R.S.; Hu, Y.Z.; Wang, X.K.; Hou, B.H.; Huang, Z.L.; Chen, J.; Wang, F.; Wu, P.; Li, B.; Wang, H.J.; et al. Mineralization model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in northeastern Yunnan, China. Acta Geol. Sin. 2012, 86, 280–294, (In Chinese with English Abstract). [Google Scholar]
- Han, R.S.; Wang, F.; Hu, Y.Z.; Wang, X.K.; Ren, T.; Qiu, W.L.; Zhong, K.H. Metallogenic tectonic dynamics and chronology constrains on the Huize-type (HZT) germanium-rich silver-zinc-lead deposits. Geotecton. Metallog. 2014, 38, 759–771, (In Chinese with English Abstract). [Google Scholar]
- Han, R.S.; Chen, J.; Wang, F.; Wang, X.K.; Li, Y. Analysis of metal-element association halos within fault zones for the exploration of concealed ore-bodies—A case study of the Qilinchang Zn-Pb-(Ag-Ge) deposit in the Huize mine district, northeastern Yunnan, China. J. Geochem. Explor. 2015, 159, 62–78. [Google Scholar] [CrossRef]
- Han, R.S.; Zhang, Y.; Qiu, W.L.; Ding, T.Z.; Wang, M.Z.; Wang, F. Geology and geochemistry of Zn-Pb(-Ge-Ag) deposits in the Sichuan-Yunnan-Guizhou Triangle area, China: A review and a new type. Front. Earth Sci. 2023, 11, 1136397. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Yan, Z.F. The origin of the Maozu carbonate-hosted Pb-Zn deposits, southwest China: Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age. J. Asian Earth Sci. 2013, 73, 39–47. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Z.L.; Zhu, D.; Luo, T.Y. Origin of hydrothermal deposits related to the Emeishan magmatism. Ore Geol. Rev. 2014, 63, 1–8. [Google Scholar] [CrossRef]
- Qiu, Y.M.; Gao, S.; McNaughton, N.J.; Groves, D.I.; Ling, W.L. First evidence of > 3.2Ga continental crust in the Yangtze craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 2000, 28, 11–14. [Google Scholar] [CrossRef]
- Gao, S.; Yang, J.; Zhou, L.; Li, M.; Hu, Z.; Guo, J.; Yuan, H.; Gong, H.; Xiao, G.; Wei, J. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. Am. J. Sci. 2011, 311, 153–182. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhou, M.F.; Li, J.W.; Sun, M.; Gao, J.F.; Sun, W.H.; Yang, J.H. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Res. 2010, 182, 57–69. [Google Scholar] [CrossRef]
- Sun, W.H.; Zhou, M.F.; Yan, D.P.; Li, J.W.; Ma, Y.X. Provenance and tectonic setting of the Neoproterozoic Yanbian group, western Yangtze block (SW China). Precambrian Res. 2008, 167, 213–236. [Google Scholar] [CrossRef]
- Wang, L.J.; Yu, J.H.; Griffin, W.L.; O’Reilly, S.Y. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Res. 2012, 222, 368–385. [Google Scholar] [CrossRef]
- Zhou, M.F.; Malpas, J.; Song, X.Y.; Robinsin, P.T.; Sun, M.; Kennedy, K.K.; Leaher, C.M.; Keays, R.R. At temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 2002, 196, 113–122. [Google Scholar] [CrossRef]
- Luo, K.; Zhou, J.X.; Huang, Z.L.; Wang, X.K.; Wilde, S.A.; Zhou, W.; Tian, L.Y. New insights into the origin of early Cambrian carbonate-hosted Pb-Zn deposits in South China: A case study of the Maliping Pb-Zn deposit. Gondwana Res. 2019, 70, 88–103. [Google Scholar] [CrossRef]
- Wang, Q.F.; Yang, L.; Xu, X.J.; Santosh, M.; Wang, Y.N.; Wang, T.Y.; Chen, F.G.; Wang, R.X.; Gao, L.; Liu, X.F.; et al. Multi-stage tectonics and metallogeny associated with Phanerozoic evolution of the South China Block: A holistic perspective from the Youjiang Basin. Earth-Sci. Rev. 2020, 211, 103405. [Google Scholar] [CrossRef]
- Luo, K.; Zhou, J.X.; Ju, Y.W. A shift from BSR to TSR caused the formation of the Chipu Pb-Zn deposit, South China. Ore Geol. Rev. 2022, 144, 104845. [Google Scholar] [CrossRef]
- Zhou, J.X.; Bai, J.H.; Huang, Z.L.; Zhu, D.; Yan, Z.F.; Lv, Z.C. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, southwest China. J. Asian Earth Sci. 2015, 98, 272–284. [Google Scholar] [CrossRef]
- Ren, T.; Zhou, J.X.; Wang, D.; Yang, G.S.; Lv, C.L. Trace elemental and S-Pb isotopic geochemistry of the Fule Pb-Zn deposit, NE Yunnan Province. Acta Petrol. Sin. 2019, 35, 3493–3505, (In Chinese with English Abstract). [Google Scholar]
- Li, Z.L.; Ye, L.; Hu, Y.S.; Wei, C.; Huang, Z.L.; Yang, Y.L.; Danyushevsky, L. Trace elements in sulfides from the Maozu Pb-Zn deposit, Yunnan Province, China: Implications for trace-element incorporation mechanisms and ore genesis. Am. Mineral. 2020, 105, 1734–1751. [Google Scholar] [CrossRef]
- Zhao, D.; Han, R.; Wang, L.; Ren, T.; Wang, J.S.; Zhang, X.P. Genesis of the Lehong large zinc–lead deposit in northeastern Yunnan, China: Evidences from geological characteristics and C-H-O-S-Pb isotopic compositions. Ore Geol. Rev. 2021, 135, 104219. [Google Scholar] [CrossRef]
- Wei, A.Y.; Xue, C.D.; Xiang, K.; Li, J.; Liao, C.; Akhter, Q.J. The ore-forming process of the Maoping Pb-Zn deposit, northeastern Yunnan, China: Constraints from cathodoluminescence (CL) petrography of hydrothermal dolomite. Ore Geol. Rev. 2015, 70, 562–577. [Google Scholar] [CrossRef]
- Xiang, Z.Z.; Zhou, J.X.; Luo, K. New insights into the multi-layer metallogenesis of carbonated-hosted epigenetic Pb-Zn deposits: A case study of the Maoping Pb-Zn deposit, South China. Ore Geol. Rev. 2020, 122, 103538. [Google Scholar] [CrossRef]
- Han, R.S.; Wu, P.; Wang, F.; Zhou, G.M.; Li, W.Y.; Qiu, W.L. ‘Four Steps Type’ ore-prospecting method for deeply concealed hydrothermal ore deposits—A case study of the Maoping Zn-Pb-(Ag-Ge) deposit in Southwestern China. Geotecton. Metallog. 2019, 43, 246–257, (In Chinese with English Abstract). [Google Scholar]
- Yang, Q.; Liu, W.H.; Zhang, J.; Wang, J.; Zhang, X.J. Formation of Pb-Zn dposits in the Sichuan-Yunnan-Guizhou triangle linked to the Youjiang foreland basin: Evidence from Rb-Sr age and in situ sulfur isotope analysis of the Maoping Pb-Zn deposit in northeastern Yunnan Province, southeast China. Ore Geol. Rev. 2019, 107, 780–800. [Google Scholar] [CrossRef]
- Tan, S.C.; Zhou, J.X.; Luo, K.; Xiang, Z.Z.; He, X.H.; Zhang, Y.H. The sources of ore-forming elements of the Maoping large-scale Pb-Zn deposit, Yunnan Province: Constrains from in-situ S and Pb isotopes. Acta Petrol. Sin. 2019, 35, 3461–3476, (In Chinese with English Abstract). [Google Scholar]
- Hu, X.Y.; Chen, Y.H.; Liu, G.X.; Yang, H.; Luo, J.H.; Ren, K.Y.; Yang, Y.G. Numerical modeling of formation of the Maoping Pb-Zn deposit within the Sichuan-Yunnan-Guizhou Metallogenic Province, Southwestern China: Implications for the spatial distribution of concealed Pb mineralization and its controlling factors. Ore Geol. Rev. 2022, 140, 104573. [Google Scholar] [CrossRef]
- Wang, L.; Han, R.S.; Zhang, Y.; Zhou, G.M.; Zhong, H.; Zuo, J.G.; Deng, P. Spatial structure orebodies and prediction of deep orebodies of Maoping lead-zinc deposit, northeastern Yunnan Province. Miner. Depos. 2022, 41, 207–224, (In Chinese with English Abstract). [Google Scholar]
- Wei, C.; Ye, L.; Hu, Y.S.; Huang, Z.L.; Danyushevshy, L.; Wang, H.Y. LA-ICP-MS analyses of trace elements in base metal sulfides from carbonate-hosted Zn-Pb deposits, South China: A case study of the Maoping deposit. Ore Geol. Rev. 2021, 130, 103945. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar]
- Lu, H.Z.; Fan, H.R.; Ni, P.; Ou, G.X.; Shen, K.; Zhang, W.H. Fluid Inclusions; Science Press: Beijing, China, 2004; pp. 1–487. (In Chinese) [Google Scholar]
- Bauer, M.E.; Burisch, M.; Ostendorf, J.; Krause, J.; Frenzel, M.; Seifert, T.; Gutzmer, J. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Miner. Depos. 2019, 54, 237–262. [Google Scholar]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Matsuda, J.; Matsumoto, T.; Sumino, H.; Nagao, K.; Yamamoto, J.; Miura, Y.; Kaneoka, I.; Takahata, N.; Sano, Y. The 3He/4He ratio of the new internal He standard of Japan (HESJ). Geochem. J. 2002, 36, 191–195. [Google Scholar] [CrossRef]
- He, H.Y.; Zhu, R.X.; Saxton, J. Noble gas isotopes in corundum and peridotite xenoliths from the eastern North China Craton: Implication for comprehensive refertilization of lithospheric mantle. Phys. Earth Planet Inter. 2011, 189, 185–191. [Google Scholar] [CrossRef]
- Zhang, P.; Kou, L.L.; Zhao, Y.; Sha, D.M. Genesis of the Maoling gold deposit in the Liaodong Peninsula: Constraints from a combined fluid inclusion, C-H-O-S-Pb-He-Ar isotopic and geochronological studies. Geosci. Front. 2022, 13, 101379. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Stuart, F.M.; Burnard, P.G.; Taylor, R.P.; Turner, G. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralization, South Korea. Geochim. Cosmochim. Acta 1995, 59, 4663–4673. [Google Scholar] [CrossRef]
- Burnard, P.G.; Hu, R.; Turner, G.; Bi, X.W. Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China. Geochim. Et Cosmochim. Acta 1999, 63, 1595–1604. [Google Scholar] [CrossRef]
- Liu, J.C.; Wang, Y.T.; Hu, Q.Q.; Wei, R.; Huang, S.K.; Sun, Z.H.; Hao, J.L. Ore genesis of the Fancha gold deposit, Xiaoqinling goldfield, southern margin of the North China Craton: Constraints from pyrite Re-Os geochronology and He-Ar, in-situ S-Pb isotopes. Ore Geol. Rev. 2020, 119, 103373. [Google Scholar] [CrossRef]
- Yu, D.S.; Xu, D.R.; Wang, Z.L.; Xu, K.; Huang, Q.Y.; Zou, S.H.; Zhao, Z.X.; Deng, T. Trace element geochemistry and O-S-Pb-He-Ar isotopic systematics of the Lishan Pb-Zn-Cu hydrothermal deposit, NE Hunan, South China. Ore Geol. Rev. 2021, 133, 104091. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Li, T.G.; Zhang, D.D.; Yang, Y.C.; Han, S.J.; Ding, Q.F.; Zhang, S. Multiple isotope (He-Ar-Zn-Sr-Nd-Pb) constraints on the genesis of the Jiawula Pb-Zn-Ag deposit, NE China. Ore Geol. Rev. 2021, 134, 104142. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Burgess, R.; Pattrick, R.A.D.; Turner, G. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids. Geochim. Cosmochim. Acta 2001, 65, 2651–2668. [Google Scholar] [CrossRef]
- Wilkinson, J.J. A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits. Econ. Geol. 2010, 105, 417–442. [Google Scholar] [CrossRef]
- Han, R.S.; Li, B.; Ni, P.; Qiu, W.L.; Wang, X.D.; Wang, T.G. Infrared micro-thermometry of fluid inclusions in sphalerite and geological significance of Huize super-lager Zn-Pb-(Ge-Ag) deposit, Yunnan Province. J. Jilin Univ. (Earth Sci. Ed.) 2016, 46, 91–104, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.; Zhang, J.; Zhong, W.B.; Yang, Q.; Li, F.K.; Zhu, Z.K. Sources of ore-forming fluids from Tianbaoshan and Huize Pb-Zn deposits in Yunnan-Sichuan-Guizhou region, Southwest China: Evidence from fluid inclusions and He-Ar isotopes. Earth Sci. 2018, 43, 2076–2099, (In Chinese with English Abstract). [Google Scholar]
- Burruss, R.C. Diagenetic palaeotemperatures from aqueous fluid inclusions: Re-equilibration of inclusions in carbonate cements by burial heating. Mineral. Mag. 1987, 51, 477–481. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Binns, P.R.; Hall, D.L. Synthetic fluid inclusions. VI. Quantitative evaluation of the decrepitation behavior of fluid inclusions in quartz at one atmosphere confining pressure. J. Metamorph. Geol. 1980, 7, 229–242. [Google Scholar] [CrossRef]
- Li, D.F.; Chen, H.Y.; Zhang, L.; Hollings, P.; Chen, Y.J.; Lu, W.J.; Zheng, Y.; Wang, C.M.; Fang, J.; Chen, G.; et al. Ore geology and fluid evolution of the giant Caixiashan carbonate-hosted Zn-Pb deposit in the Eastern Tianshan, NW China. Ore Geol. Rev. 2016, 72, 355–372. [Google Scholar] [CrossRef]
- Nejadhadad, M.; Taghipour, B.; Lentz, D.R. Implications of multiple fluids in the deposition of Pb-Zn-Ba deposits in the Alvand Mountain, Golpayegan, Iran: Evidence from fluid inclusions and O, C, S isotopes. Ore Geol. Rev. 2023, 153, 105300. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Samson, I.M.; Russell, M.J. Genesis of the Silvermines zinc-lead-barite deposit, Ireland: Fluid inclusion and stable isotope evidence. Econ. Geol. 1987, 82, 371–394. [Google Scholar] [CrossRef]
- Kesler, S.E.; Vennemann, T.W.; Frederickson, C.; Breithaupt, A.; Vazquez, R.; Furman, F.C. Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southern Appalachians. Geochim. Cosmochim. Acta 1997, 61, 1513–1523. [Google Scholar] [CrossRef]
- Meinert, L.D.; Hedenquist, J.W.; Satoh, H.; Matsuhisa, Y. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Econ. Geol. 2003, 98, 147–156. [Google Scholar] [CrossRef]
- Xu, R.; Li, W.C.; Deng, M.G.; Zhou, J.X.; Ren, T.; Yu, H.J. Genesis of the superlarge Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit in western Yunnan (SW China): Insights from ore geology and C-H-O-S isotopes. Ore Geol. Rev. 2019, 107, 944–959. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.H.; Xue, C.J.; Liu, J.J.; Zhang, F.F. Fluid inclusions and C-H-O-S-Pb isotope systematics of the Caixiashan sediment-hosted Zn-Pb deposit, eastern Tianshan, northwest China: Implication for ore genesis. Ore Geol. Rev. 2020, 119, 103404. [Google Scholar] [CrossRef]
- Hu, R.Z.; Burnard, P.G.; Bi, X.W.; Zhou, M.F.; Pen, J.T.; Su, W.C.; Wu, K.X. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chem. Geol. 2004, 203, 305–317. [Google Scholar] [CrossRef]
- Hu, R.Z.; Bi, X.W.; Jiang, G.H.; Chen, H.W.; Peng, J.T.; Qi, Y.Q.; Wu, L.Y.; Wei, W.F. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, Southeastern China. Miner. Depos. 2012, 47, 623–632. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Burnard, P.G. Noble gases and halogens in fluid inclusions: A journey through the earth’s crust. In The Noble Gases as Geochemical Tracers; Burnard, P.G., Ed.; Springer: Heidelberg, Germany, 2013; pp. 319–369. [Google Scholar]
- Bouabdellah, M.; Niedermann, S.; Velasco, F. The Touissit-Bou Beker Mississippi Valley-Type District of Northeastern Morocco: Relationships to the Messinian salinity crisis, Late Neogene-Quaternary Alkaline magmatism, and buoyancy-driven fluid convection. Econ. Geol. 2015, 110, 1455–1484. [Google Scholar] [CrossRef]
- Mamyin, B.A.; Tolstikhin, I.N. Helium Isotopes in Nature; Elsevier: Amsterdam, The Netherlands, 1984; p. 273. [Google Scholar]
- Yang, J.H.; Cawood, P.A.; Du, Y.S.; Huang, H.; Hu, L.S. Detrital record of Indosinian mountain building in SW China: Provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics 2012, 574, 105–117. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, K.; Han, S.C.; Sun, Z.H. Structural evolution of the Youjiang Basin and its controlling effects on the formation of Carlin-type gold deposits. Geol. J. China Univ. 2015, 21, 1–14, (In Chinese with English Abstract). [Google Scholar]
- Liu, W.H.; Zhang, J.; Wang, J. Sulfur isotope analysis of carbonate-hosted Zn-Pb deposits in Northwestern Guizhou Province, Southwest China: Implications for the source of reduced sulfur. J. Geochem. Explor. 2017, 181, 31–44. [Google Scholar] [CrossRef]
- Luo, H.Z. A regressive correlation between volatility and reflectance of vitrinite in the coal beds in Upper Permian formations in Dian-Qian-Gui region and a discussion on their degree of metamorphism. Pet. Explor. Dev. 1983, 6, 43–50, (In Chinese with English Abstract). [Google Scholar]
- Zhuang, X.G. The paleogeothermal field of northwestern Guangxi: Characteristics and its role in the formation of micro-disseminated gold deposits. Miner. Depos. 1995, 14, 83–89, (In Chinese with English Abstract). [Google Scholar]
- DIPG (Dian-Qian-Gui Institute of Petroleum Geology). Research Report on Oil Potential of the Stratum of Yunnan-Guizhou-Guangxi Border Area. 1983; unpublished. (In Chinese) [Google Scholar]
- Hitzman, M.W.; Beaty, D.W. The Irish Zn-Pb-(Ba) ore field. Soc. Econ. Geol. Spec. Publ. 1996, 4, 112–143. [Google Scholar]
- Reed, C.P.; Wallace, M.W. Diagenetic evidence for an epigenetic origin of the Courtbrown Zn-Pb deposit, Ireland. Miner. Depos. 2001, 36, 428–441. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, Y.Q.; Dong, S.W.; Johnston, S.T. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Sci. Rev. 2014, 134, 98–136. [Google Scholar] [CrossRef]
- Wu, T.; Huang, Z.L.; He, Y.F.; Yang, M.; Fan, H.F.; Wei, C.; Ye, L.; Hu, Y.S.; Xiang, Z.Z.; Lai, C. Metal source and ore-forming process of the Maoping carbonate-hosted Pb-Zn deposit in Yunnan, SW China: Evidence from deposit geology and sphalerite Pb-Zn-Cd isotopes. Ore Geol. Rev. 2021, 135, 104214. [Google Scholar] [CrossRef]
- Wang, C.; Bagas, L.; Lu, Y.; Santosh, M.; Du, B.; McCuaig, T.C. Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping. Earth-Sci. Rev. 2016, 156, 39–65. [Google Scholar] [CrossRef]
- Wu, Y.; Kong, Z.G.; Chen, M.H.; Zhang, C.Q.; Cao, L.; Tang, Y.J.; Yuan, X.; Zhang, P. Trace elements in sphalerites from the Mississippi Valley-type lead-zinc deposits around the margins of Yangtze Block and its geological implications: A LAICPMS study. Acta Petrol. Sin. 2019, 35, 3443–3460, (In Chinese with English Abstract). [Google Scholar]
- Liu, X.K.; Chen, F.C.; Chang, H.; Gao, J.G.; Wu, P.; Tan, J. The mineralization of Daxiao carbonate-hosted Pb-Zn deposit, northeast Yunnan province, SW China: Constraints from Rb-Sr isotopic dating and H-O-S-Pb isotopes. Ore Geol. Rev. 2022, 147, 104956. [Google Scholar] [CrossRef]
- Ren, S.L.; Li, Y.H.; Zeng, P.S.; Qiu, W.L.; Fan, C.F.; Hu, G.Y. Effect of sulfate evaporate salt layer in mineralization of the Huize and Maoping lead-zinc deposits in Yunnan: Evidence from sulfur isotope. Acta Geol. Sin. 2018, 92, 1041–1055, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.Q.; Mao, J.W.; Yu, J.J.; Li, H.M. Study on fluid inclusion and the metallogenetic mechanism of Chipu Pb-Zn deposit in Sichuan, China. Acta Petrol. Sin. 2007, 23, 2541–2552, (In Chinese with English Abstract). [Google Scholar]
- Zhao, D.; Han, R.S.; Ren, T.; Wang, J.S.; Wu, H.Z.; Zhang, X.P.; Cui, J.H. Characteristics of fluid inclusions geochemistry of Lehong large-sized Pb-Zn ore deposit, northeastern Yunnan Province. Miner. Depos. 2018, 37, 1018–1036, (In Chinese with English Abstract). [Google Scholar]
- Wang, H. Metallogenic of MVT Lead-Zinc Deposits in Huili-Huidong, Sichuan Province: A Case Study of Daliangzi and Tianbaoshan Pb-Zn Deposits. Ph.D. Dissertation, Kunming University of Science and Technology, Kunming, China, 2019; pp. 1–140, (In Chinese with English Abstract). [Google Scholar]
- Yang, Q. Study on Mineralization of Lead-Zinc Depsits in Northeastern Yunnan and Northwestern Guizhou Province, China. Ph.D. Dissertation, China University of Geosciences, Wuhan, China, 2021; pp. 1–183, (In Chinese with English Abstract). [Google Scholar]
- Wang, H.; Zhu, X.Y.; Wang, J.B.; Jia, D.L.; Shi, Y.; Chen, L.; Xu, Z.F. Sources of metallogenic materials and metallogenic mechanism of Tianbaoshan Pb-Zn deposit in Sichuan Province: Constraints from fluid inclusions and isotopic evidences. Acta Petrol. Sin. 2021, 37, 1830–1846, (In Chinese with English Abstract). [Google Scholar]
- Ding, W.P.; Xie, C.F.; Huang, C.; Zhang, B.; Xin, Z.; Zhan, H.S.; Zheng, L.L.; Kong, F.Q.; Wang, H.B.; Huang, L.F. Sources of Permian lead-zinc ore-forming materials in Sichuan-Yunnan-Guizhou area: C-H-O-S-Pb isotope constraint—An example from Taipingzi lead-zinc deposit in Yunnan Provinces. Geol. China 2022, 49, 1845–1861, (In Chinese with English Abstract). [Google Scholar]
- Wang, G.Z.; Hu, R.Z.; Su, W.C.; Zhu, L.M. Basin fluid flow and mineralization in Youjiang Basin, Yunnan-Guizhou-Guangxi Provinces. Sci. China (Ser. D) 2003, 46, 99–109. [Google Scholar]
- Li, W.B.; Huang, Z.L.; Zhang, G. Sources of the ore metals of the Huize ore field in Yunnan province: Constraints from Pb, S, C, H, O and Sr isotope geochemistry. Acta Petrol. Sin. 2006, 22, 2567–2580, (In Chinese with English Abstract). [Google Scholar]
- Wu, Y.; Zhang, C.Q.; Mao, J.W.; Ouyang, H.G.; Sun, J. The genetic relationship between hydrocarbon systems and Mississppi Valley-type Zn-Pb deposits along the SW margin of Sichuan Basin, China. Int. Geol. Rev. 2012, 55, 941–957. [Google Scholar] [CrossRef]
- Yuan, B.; Mao, J.W.; Yan, X.H.; Wu, Y.; Zhang, F.; Zhao, L.L. Sources of metallogenic materials and metallogenic mechanism of Daliangzi Ore Field in Sichuan Province: Constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite. Acta Petrol. Sin. 2014, 30, 209–220, (In Chinese with English Abstract). [Google Scholar]
- Yang, Q.; Zhang, J.; Wang, J.; Zhong, W.B.; Liu, W.H. Study of ore-forming fluid geochemistry of Maozu large-scale lead-zinc deposit in northeast Yunnan. Miner. Resour. Geol. 2017, 31, 854–863, (In Chinese with English Abstract). [Google Scholar]
- Anderson, G.M. Precipitation of Mississippi Valley-type ores. Econ. Geol. 1975, 70, 937–942. [Google Scholar] [CrossRef]
- Symons, D.A. Genesis of Mississippi Valley-type lead-zinc deposits. Annu. Rev. Earth Planet. Sci. 1986, 14, 177–199. [Google Scholar]
- Barton, P.B. Possible role of organic matter in the precipitation of the Mississippi Valley ores: Genesis of strata-bound lead-zinc-barite-fluorite deposits in carbonate rocks. Econ. Geol. Monogr. 1967, 3, 371–377. [Google Scholar]
- Anderson, G.M. Organic maturation and ore precipitation in Southeast Missouri. Econ. Geol. 1991, 86, 909–926. [Google Scholar] [CrossRef]
- Corbella, M.; Ayora, C.; Cardellach, E. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposit. Miner. Depos. 2004, 39, 344–357. [Google Scholar] [CrossRef]
- Anderson, G.M. The mixing hypothesis and the origin of Mississippi Valley-type ore deposits. Econ. Geol. 2008, 103, 1683–1690. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Leach, D.L.; Hofstra, A.H.; Landis, G.P.; Rowan, E.L.; Viets, J.G. Chemical reaction path modeling of ore deposition in Mississippi Valley-type Pb-Zn deposits of the Ozark region, U.S. midcontinent. Econ. Geol. 1994, 89, 1361–1383. [Google Scholar] [CrossRef]
Stage | Host | N | Tm (°C) | Th (°C) | Salinity (wt.% NaCl Eqv.) | |||
---|---|---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | |||
I | Quartz | 34 | −4.8 to −0.1 | −2.3 | 290 to 390 | 329 | 0.2 to 7.6 | 3.8 |
II | Sphalerite | 21 | −10.2 to −2.3 | −5.7 | 217 to 314 | 268 | 3.9 to 14.1 | 8.7 |
II | Calcite | 19 | −9.5 to −3.2 | −6.4 | 217 to 278 | 241 | 5.3 to 13.4 | 9.6 |
III | Calcite | 35 | −18.4 to 5.8 | −10.7 | 135 to 214 | 178 | 8.9 to 21.3 | 14.5 |
Sample No. | Stage | Mineral | δDV-SMOW/‰ | δ18OV-SMOW/‰ | T/°C | δ18OH2O/‰ |
---|---|---|---|---|---|---|
KGR02 | II | Calcite | −50.0 | 21.3 | 241 | 13.7 |
KHr-13 | Calcite | −58.9 | 19.0 | 241 | 11.4 | |
KGr-11-1 | Calcite | −66.4 | 19.4 | 241 | 11.8 | |
KHr-21-1 | Calcite | −70.8 | 21.0 | 241 | 13.4 | |
KHr-21-3 | Calcite | −67.9 | 19.2 | 241 | 11.6 | |
KHr-21-4 | Calcite | −71.9 | 19.7 | 241 | 12.1 | |
KHr-23 | Calcite | −59.6 | 19.5 | 241 | 11.9 | |
KZr-11 | Calcite | −63.9 | 19.3 | 241 | 11.7 | |
KZr-13 | Calcite | −74.1 | 20.1 | 241 | 12.5 | |
KPr-11-2 | Calcite | −67.0 | 19.6 | 241 | 12.0 | |
KHr5-2 | III | Calcite | −64.3 | 19.0 | 178 | 8.2 |
KHr5-3 | Calcite | −72.6 | 19.0 | 178 | 8.2 | |
KPr-2 | Calcite | −69.3 | 19.2 | 178 | 8.4 | |
KPr-504-3 | Calcite | −78.7 | 19.1 | 178 | 8.3 | |
KLR6-3 | Calcite | −73.8 | 19.0 | 178 | 8.2 | |
KLR-7 | Calcite | −74.8 | 19.2 | 178 | 8.4 | |
KHr-11 | Calcite | −70.3 | 18.9 | 178 | 8.1 | |
KHr-12 | Calcite | −77.3 | 18.2 | 178 | 7.4 | |
KZr-12 | Calcite | −70.7 | 19.1 | 178 | 8.3 | |
KZr-13-1 | Calcite | −56.5 | 19.3 | 178 | 8.5 | |
KGR-66-1 | Calcite | −60.8 | 20.7 | 178 | 9.9 | |
KGR-72-2 | Calcite | −61.9 | 20.6 | 178 | 9.8 | |
KG-303 | Calcite | −61.3 | 18.4 | 178 | 7.6 | |
KPr-601 | Calcite | −68.4 | 19.4 | 178 | 8.6 | |
KZ-HX-1r | Calcite | −52.1 | 18.2 | 178 | 7.4 | |
KZ-HX-2r | Calcite | −65.8 | 19.9 | 178 | 9.1 | |
HX-850 | Calcite | −50.3 | 19.9 | 178 | 9.1 |
Sample No. | Host | 4He (10−7) | 3He/4He (Ra) | 40Ar (10−7) | 40Ar*/4He | 40Ar/36Ar | F4He |
---|---|---|---|---|---|---|---|
KHr5-6 | Pyrite-1 | 7.23 | 0.05 | 11.4 | 0.58 | 467.6 | 1790 |
KHr6 | Pyrite-1 | 10.4 | 0.05 | 9.80 | 0.57 | 746.9 | 4797 |
KHr8-1 | Pyrite-1 | 7.50 | 0.05 | 10.1 | 0.53 | 486.8 | 2189 |
KHr8-2 | Pyrite-1 | 2.59 | 0.07 | 26.8 | 0.48 | 309.7 | 181 |
KHr43-3 | Pyrite-1 | 1.33 | 0.08 | 4.12 | 0.96 | 427.7 | 837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Han, R.; Zhang, Y.; Li, X. Mixing in Two Types of Fluids Responsible for Some Carbonate-Hosted Pb–Zn Deposits, SW China: Insights from the Maoping Deposit. Minerals 2023, 13, 600. https://doi.org/10.3390/min13050600
Wang L, Han R, Zhang Y, Li X. Mixing in Two Types of Fluids Responsible for Some Carbonate-Hosted Pb–Zn Deposits, SW China: Insights from the Maoping Deposit. Minerals. 2023; 13(5):600. https://doi.org/10.3390/min13050600
Chicago/Turabian StyleWang, Lei, Runsheng Han, Yan Zhang, and Xiaodong Li. 2023. "Mixing in Two Types of Fluids Responsible for Some Carbonate-Hosted Pb–Zn Deposits, SW China: Insights from the Maoping Deposit" Minerals 13, no. 5: 600. https://doi.org/10.3390/min13050600
APA StyleWang, L., Han, R., Zhang, Y., & Li, X. (2023). Mixing in Two Types of Fluids Responsible for Some Carbonate-Hosted Pb–Zn Deposits, SW China: Insights from the Maoping Deposit. Minerals, 13(5), 600. https://doi.org/10.3390/min13050600