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Abstract: Conceptual bulk ore sorting studies are essential for determining a potential improvement
in mine economics before undertaking on-site sensor trials. Two approaches, block modelling and
drill core compositing, are applied to simulate the bulk ore sorting performance of mining operations.
While one employs the grade data of a block model, the other approach utilizes composited drill
core grades. This study aimed at comparing these two approaches by estimating in-situ grade
heterogeneities and simulating the bulk ore sorting performances of the currently active caves of
the Cadia East panel cave mine. The results show that block modelling tends to smooth the grade
variability that initially exists in the drill core grade data. Particularly in the portions of the deposit
where drilling is sparse or widely spaced compared to the selected block size, block modelling leads
to lower grade heterogeneity and bulk ore sorting performance estimates. However, when the drill
hole data is nonrepresentative of the area of interest, block modelling can predict more realistic bulk
ore sorting performances compared to drill core grades. The assessments performed with the blocks
and drill core composites of various sizes showed that grade heterogeneity was adversely affected by
an increased sorting scale due to averaged metal grades.

Keywords: sensor-based ore sorting; bulk ore sorting; block caving; panel caving; in situ grade
heterogeneity; bulk ore sorting potential; block modelling; drill core compositing

1. Introduction

Two recent trends challenge the mining industry while demand for metals grows:
declining ore grades and the exhaustion of near-surface deposits. Block and panel caving
are gaining attraction as they can be applied to low-grade and deeply situated orebodies.
These methods are utilized primarily to mine low-grade porphyry copper deposits to
produce copper, molybdenum, and significant amounts of gold, silver, and other metals [1].

Despite its many advantages, such as high production rates and low operating costs,
cave mining inherently suffers from a lack of grade selectivity, leading to the extraction
of below-cut-off grade material [2]. Sensor-based ore sorting technologies can potentially
address the limited grade selectivity associated with cave mining methods by discrim-
inating between ore grades or rock types [3]. The preconcentration of run-of-mine ore
by sensor-based ore sorting provides an opportunity to improve mill feed grade, reduce
milling costs, and increase the operation’s overall economics. High throughput rates of
bulk ore sorting, ranging from a few tonnes to several thousand tonnes per hour [4,5], make
the technology suitable for large-scale block and panel caving operations. In addition to
the standard application on production conveyor belts, bulk ore sorting sensors can also be
integrated with mobile equipment such as shovels and loaders to improve the resolution at
which grade control decisions are made.
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Several factors determine the potential of applying bulk ore sorting: grade hetero-
geneity, the sensors’ ability to capture the variability in grade, and sorting system effi-
ciency [4,6,7]. Bulk ore sorting studies usually commence by estimating in situ grade
heterogeneity since the distribution of recovered grades is a function of the spatial grade
variability in an ore deposit [2,4,8,9]. The variability in the grade can then be translated into
an economic evaluation to simulate the performance of bulk ore sorting. Such conceptual
studies are essential for determining the potential improvement in mine economics before
undertaking costly and logistically complicated on-site sensor trials [10].

Two approaches can be taken to simulate the performance of bulk ore sorting of a min-
ing operation differ due to the type of data feeding the simulation. One of the approaches
uses grade data of a block model, which is created using geostatistical interpolation tech-
niques. The other approach, on the contrary, utilizes composited drill core grades as
the source of the bulk ore sorting simulations. The terms block modelling and drill core
compositing are used to refer to these two approaches in this study.

A block model is a simplified representation of an orebody with a stack of blocks.
Block modelling utilizes geostatistical interpolation methods, such as inverse distance
weighting and ordinary kriging, to estimate ore grades using raw or composited drill core
samples obtained by exploration drilling. The grade data obtained by block modelling can
be employed to assess the variability in grade spatially and the bulk ore sorting potential
of an orebody at various selective mining units (SMU) [6,11]. In addition, blocks can be
populated by sorter models to calculate the value associated with each block and evaluate
the change in the mine economics [3]. It can be argued that block modelling smooths the
grade profile of an ore deposit due to the geostatistical interpolation techniques employed
in the process, thereby concealing the true variability in the grade [10,12–14].

As an alternative, drill core grades can also be utilized for simulating the bulk ore
sorting performance [13,15]. This approach estimates the grade variability and bulk ore
sorting potential using drill core grade data composited at different aggregation lengths
representing various mining and sorting scales [16]. A notable shortcoming of this approach
is its inability to assess the bulk ore sorting performance at unsampled portions of an
orebody. In addition, drill core samples can represent variability only in one direction.

This study presented a comparison between block modelling and drill core composit-
ing approaches in simulating bulk ore sorting potential at the Cadia East panel cave mine.
The grade data sets required for the study were generated by the block modelling of the
deposit at various SMUs and compositing the drill core samples at different length intervals.
The grade heterogeneities of the active panel caves of the mine were estimated. The bulk ore
sorting performances of the panel caves were simulated through an economic evaluation.
The results reveal the limitations of the approaches and can aid in approach selection for
similar types of mines, exploring the application of bulk ore sorting.

2. Overview of the Cadia East Panel Cave Mine

The Cadia East deposit, located in New South Wales, Australia, is one of the highest-
grade gold-copper alkalic porphyries in the world [17]. The mineralized zone of the deposit
has the following dimensions: 2.5 km in strike length, 600 m in width, and over 1900 m in
vertical extent [18]. Two broad overlapping mineralization zones have been identified in
the deposit. The copper-dominant upper zone has a core zone of disseminated chalcopyrite-
bornite and is capped by chalcopyrite-pyrite mineralization. High molybdenite contents
are usually associated with the upper zone. The deeper zone is gold-rich and localized
around steeply dipping sheeted quartz-calcite-bornite-chalcopyrite-molybdenite-covellite-
magnetite veins. The highest gold grades in this zone are associated with the widest
bornite-bearing veins, which also contain native gold [19].

At the time of this study, three panel caves (PC1, PC2-West, and PC2-East) were in
operation. A series of new caves will be developed to extend mine operations beyond
2060. The mining activities at Cadia East are typical of block caves mines. The caved
ore is removed from the drawpoints located on the extraction levels of panel caves and
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is subsequently tipped into the coarse ore bins at the crushing stations by a load-haul
dump (LHD) fleet. Jaw-gyratory crushers reduce the size of the caved ore. The main
trunk belt transports the crushed ore to the surface at a rate of 4600 tonnes per hour. The
ore is deposited onto a coarse ore stockpile before milling in two separate concentrators
with processing capacities of 23 and 7 million tonnes per annum, respectively. Gravity
concentration and flotation methods are utilized in the concentrators to produce gold doré
and gold-rich copper concentrate [18].

Two sensor technologies, namely prompt gamma neutron activation analysis (PGNAA)
and magnetic resonance (MR), were installed on the main trunk belt at Cadia East to monitor
the quality of the caved ore. The mine also explores using these sensor technologies to
bulk sort the ore. However, information regarding whether the Cadia East panel caves are
amenable to sorting is lacking. As the first step of a comprehensive evaluation, this study
compared the described approaches in estimating the bulk ore sorting performances of the
panel caves for the ideal case.

3. Methodology
3.1. Data Description

An exploration drill hole data set consisting of 277 drill holes (totaling about 253 km
of core samples) provided by the Cadia East metallurgy team was employed in this study.
The data set included the grade, collar, and downhole survey information of the drill cores
sampled at 2 m intervals. Figure 1 presents the locations and gold and copper grades of the
drill holes.
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Figure 1. Cadia East drill holes: (a) Gold grades; (b) Copper grades.

3.2. Compositing Drill Core Samples and Block Modelling

For the drill core compositing approach, the drill core grades were composited down
the hole using an algorithm developed in Python. The algorithm consisted of functions
that could compute the drill hole geometry, aggregate the lengths of drill core samples,
and produce the composited grade data. Composite lengths of 5 m, 10 m, and 20 m were
selected to reveal the grade heterogeneity at various scales.

Block models of the Cadia East ore deposit were built using undisclosed resource
modelling software at various mining scales. The software utilized inverse distance
weighting (IDW) to populate the ore blocks with gold and copper grade estimates. The
block models with block sizes of 5 × 5 × 5 m3, 10 × 10 × 10 m3 and 20 × 20 × 20 m3

were built. Block modelling was carried out using the composited drill core grades. This
was to ensure that the impact of geostatistical interpolation on grade heterogeneity could
be disclosed without a bias in the input data scale. Figure 2 shows a comparison between
the described approaches.
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Figure 2. A schematic of block modelling and drill core compositing approaches.

3.3. Determining Cave Footprints and Locating Data Points

An algorithm called “ConvexHull” in SciPy (an open-source Python library) was used
to locate the data points (blocks and drill core composites) within the footprints of the panel
caves. This algorithm computed the convex hull–the smallest polygon that covers all the
given data points–in n-dimensional space using the “Quickhull” method [20].

The main objectives of creating a convex hull for each cave were to locate the data
points accurately considering the drawpoint coordinates and to exclude the uneconomic
portions of the orebody based on the best height of draw (BHOD) information provided
for the drawpoints. Involving the uneconomical portions of the deposit would otherwise
indicate unrealistic sorting potential estimations.

Figure 3 presents the procedure for creating the convex hulls of the caves and locating
the data points. Table 1 summarizes the number of data points located by the ConvexHull
algorithm and the average gold and copper grades of the caves estimated by the blocks
and drill core composites.
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Table 1. Number of grade data points located and average gold and copper grades of panel caves.

Approach 1: Block Modelling

Block Size Panel Cave Number of Blocks Au Grade (g/t) Cu Grade (%)

5 × 5 × 5 m3
PC1 482,080 0.59 0.32

PC2-West 388,183 0.74 0.27
PC2-East 388,766 0.64 0.33

10 × 10 × 10 m3
PC1 60,424 0.69 0.33

PC2-West 48,691 0.72 0.29
PC2-East 50,320 0.69 0.35

20 × 20 × 20 m3
PC1 7525 0.68 0.33

PC2-West 6078 0.73 0.30
PC2-East 6441 0.69 0.35

Approach 2: Drill Core Compositing

Composite Length Panel Cave Number of Drill Core Composites Au Grade (g/t) Cu Grade (%)

5 m
PC1 3426 0.84 0.34

PC2-West 3138 0.99 0.34
PC2-East 3798 0.84 0.40

10 m
PC1 1711 0.84 0.34

PC2-West 1575 0.99 0.34
PC2-East 1908 0.84 0.40

20 m
PC1 853 0.84 0.34

PC2-West 800 0.99 0.34
PC2-East 957 0.83 0.40

3.4. Estimating In Situ Heterogeneity and Simulating Bulk Ore Sorting Performance

Distribution heterogeneity (DH), often referred to as spatial heterogeneity, is a concept
developed by Gy [21]. DH can be calculated by Equation (1), where Nu is the number of
units that make up the ore lot, ai and Mi are the grade and mass of a unit within the lot,
and aL and ML are the average grades and total mass of the entire lot. DH is employed
in bulk ore sorting studies to quantify variations in the contents of certain components
of units that constitute an ore lot [4,22]. These units can be blocks or drill core samples
when the in situ grade heterogeneity of an ore deposit is assessed. Alternately, units can be
batches of material (whether on a conveyor or in a bucket of an excavator) when on-site
sensor trials are conducted. DH is a dimensionless indicator that essentially measures the
variation in the grade product, i.e., grade multiplied by mass. Higher DH values denote a
higher potential for bulk ore sorting. The DH equation was used to calculate the in situ
gold and copper heterogeneities of the panel caves.

DH = Nu∑
i

[
(ai− aL)Mi

aLML

]2
(1)

In addition to the grade heterogeneity, determining the degree of upgrading and mass
rejection rates through grade-recovery versus mass yield curves is essential for assessing
the bulk ore sorting potential of an ore deposit. To produce the curves, grades are sorted
from high to low, and the cumulative recovery (or distribution) and mass values, and the
average concentrate grades are calculated. DH is positively correlated with the theoretical
recovery at a given mass yield rate. For instance, a heterogeneity assessment for a block
cave mine showed a drill hole with 1.96 DH, 40% of the mass, which contained about 90%
of the total copper. In contrast, for a drill hole with a comparably low DH value (0.56), the
same mass amount contained around 70% of the total copper in that drill hole [12].

Copper was used as the proxy element for gold to determine the degree of upgrading
and mass rejection rates of the Cadia East panel caves. The selection of copper as the proxy



Minerals 2023, 13, 603 6 of 17

was based on two factors: (1) challenges in detecting gold accurately by sensor technologies
and (2) the strong correlation between gold and copper in the Cadia East deposit [23]. The
sorting cut-off grade was assigned to be 0.1% Cu.

A density of 2.76 t/m3 [18] was used to calculate the masses of drill core composites
based on their lengths and diameters. As discussed previously, a limitation of using drill
core composites for bulk ore sorting evaluations is that they only represent a small volume
and grade variation in the vertical direction. However, it was assumed that the mass yield
rates estimated using the drill core composite masses might represent the mass yield rates,
which can be typically achieved when the ore is subjected to bulk sorting.

The density of 2.76 t/m3 was also assigned to convert the block volumes to masses.
The selected block sizes correspond to 345, 2760, and 22,080 tonnes of ore. Considering
the capacity of the main production conveyor at Cadia (4600 tph), the block model with
the finest resolution (5 × 5 × 5 m3) would equal bulk sorting the ore every four and a half
minutes using a diverter on the conveyor belt.

After obtaining the degree of upgrading and mass rejection rates, the bulk ore sorting
performances of the caves were estimated by calculating the change in the Net Smelter
Return (NSR) of the ore. Net Smelter Return (NSR) is the net revenue a mine receives from
selling metal or non-metal concentrates less mining-and-processing-related costs. The main
benefit of ore sorting is that the below cut-off material can be discarded as waste and is
not processed in the concentrators, thereby increasing the net revenue received from the
ore. In addition, higher recoveries are usually obtained in the concentrators due to the
improvement in the quality of the feed material by sorting.

Table 2 shows the cost and price assumptions and plant recovery models used to
calculate NSR. The assumptions and recovery models were determined from the technical
report on the Cadia Valley operations [18]. The cost assumptions were converted from
AUD to USD using an exchange rate of 1:0.8. The rationale behind using the plant recovery
models was to incorporate the impact of grade uplifting by sorting.

Table 2. Cost and price assumptions.

Assumptions Unit
With Bulk Ore Sorting Without Bulk Ore

SortingConcentrate Reject

Cost

Mine operating cost USD/t 4.25 4.25 4.25
Mine sustaining capital cost USD/t 0.63 0.63 0.63

Mineralization treatment operating cost USD/t 6.64 0.00 6.64
Mineralization treatment sustaining capital cost USD/t 0.71 0.00 0.71

Tailings dam sustaining capital cost USD/t 0.60 0.00 0.60
General and administration cost USD/t 2.14 2.14 2.14

Sorting cost USD/t 0.4 0.4 0
Total 15.37 7.42 14.97

Price
Au USD/oz 1300
Cu USD/lb 3.40

Plant
recovery
models

Cave Model

Au
PC1 Recovery (%) = 80.65 + 2.88ln(Au)

PC2-West and PC2-East Recovery (%) = 79.76 + 3.52ln(Au)
Cu All caves Recovery (%) =− 50.64(Cu)2 + 47.91(Cu) + 76.27

The sorting cost was nominated to be USD0.4 per ton of sorter feed [24]. In cave
mining, many mixing events that occur within caved ore result in lower grade variability
and bulk ore sorting potential [9]. The impact of mixing that would occur in the caves
during mining and along the material handling system was not incorporated in the NSR
estimations, and the sorting efficiency was assumed to be 100%. This was due to the
study, which was aimed at comparing the differences between the presented approaches to
estimate the maximum theoretical benefit that could be gained instead of calculating the
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actual value of bulk ore sorting for the mine. The change in NSR was calculated using the
following equation:

Change in NSR (USD /t) = NSR with sorting − NSR without sorting (2)

4. Results and Discussion
4.1. In Situ Grade Heterogeneity Estimations

Figure 4 presents a comparison of the in situ gold and copper grade distribution
heterogeneities of the panel caves estimated by both approaches. Higher gold DH values
of all the caves showed that gold was more heterogeneously distributed within the deposit
than copper. For ore deposits where the economy is driven by multiple commodities and
the use of a proxy element is inevitable, bulk ore sorting potential depends on the grade
heterogeneity of the proxy and the extent of correlation that it has with other target elements.
Since copper was decided to be the proxy element for gold in this study, the variability in
copper grades and its relationship with gold were the main factors determining the bulk
ore sorting performances of the Cadia panel caves.

Figure 4 also reveals the adverse impact of scale on grade variability. The smallest size
blocks (5 × 5 × 5 m3) and drill core composites (5 m) yielded the highest gold and copper
DH values. As shown in Table 3, on average, the DH values decreased by 27 and 38% for
gold and 31 and 44% for copper when the block size was increased to 10 × 10 × 10 and
20 × 20 × 20 m3. Similarly, when the composite length was increased from 5 m to 10 and
20 m, the Au DH values dropped by 16 and 27%, and the Cu DH values decreased by 15
and 27%, on average.
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Table 3. Relative change in DH of panel caves with scale.

Variable

Mean Relative Change (%) in DH (Reference: DH of the Smallest Scale)

Approach 1: Block Model Grade Data Approach 2: Drill Hole Grade Data

Block Size Change (%) Composite Size Change (%)

Au
5 × 5 × 5 m3 0 5 m 0

10 × 10 × 10 m3 −27 10 m −16
20 × 20 × 20 m3 −38 20 m −27

Cu
5 × 5 × 5 m3 0 5 m 0

10 × 10 × 10 m3 −31 10 m −15
20 × 20 × 20 m3 −44 20 m −27

When a comparison is made between the results presented in Figure 4, it can be
observed that the gold and copper DH values estimated by the block modelling approach
were usually lower than the ones calculated by the drill core compositing approach. These
lower grade heterogeneity estimates are due to block modelling smoothing out the metal
grades and decreasing the variance of the metal grade distributions. Figures 5 and 6 show
the gold and copper grade profiles of the caves along the z-axis at different scales. Block
modelling reduces the grade variability that was initially existent in the drill core data, thus
leading to smoother grade profiles and lower DH estimates.

The only exception where block modelling did not lead to comparably lower DH
estimates was the PC-2 West cave. As shown in Figure 4, a higher Au DH was obtained
with block modelling at the smallest scale for PC2-West (at 5 × 5 × 5 m3 block size:
1.38 vs. at 5 m composite length: 1.20). The block model grades also yielded very
similar Au DH values to the drill core grades at the other two scales (10 × 10 × 10 and
20 × 20 × 20 m3 block sizes: 1.00 and 0.86 vs. at 10 and 20 m composite lengths: 1.00
and 0.88). This could be due to the fact that block modelling produced a high percentage
of data points (blocks) with low gold grades for PC2-West. As shown in Figure 7, there
was a significant difference between PC2-West’s mean and median block model (mean:
0.71 and median: 0.33 g/t) and drill core (mean: 0.99 and median: 0.61 g/t) gold grades.
Such changes in grade distribution profiles can stem from nonrepresentative drilling,
i.e., the available samples over a domain may not be representative of that domain due
to spatial clustering [14]. During block modelling, geostatistical interpolation methods
utilize all the drill holes found within a specified search distance to carry out grade
estimations. In cases where drilling is not entirely representative of the area of interest,
block modelling can yield grade distribution dissimilar to those produced by drill core
samples. As evident by the substantial increase in the share of the below 0.3 g/t data
points, for PC2-West, the gold grade distribution obtained with the block model grades
was not similar to that obtained with the drill core grades (Figure 7). Despite the grade
smoothing effect of geostatistical interpolation, spatial clustering could be suggested as
a factor leading to high heterogeneity estimates with block modelling.

The discrepancy between the heterogeneity estimates of approaches is the highest for
the PC1 cave. The gold and copper heterogeneities estimated using the drill core composite
grades were nearly twice as high as those obtained by the block model grades. The grade
distributions presented in Figures 7 and 8 reveal that the approaches predict similar median
grades for PC1. However, block modelling predicts lower mean gold and copper grades
than the drill compositing approach for the same cave. When drilling is sparse or widely
spaced compared to the selected block size, block modelling artificially smooths out the
grade variability, as small adjacent blocks receive about the same grade if the same drill hole
grade data are used to populate them [25,26]. Although PC1 possesses the most extensive
footprint of all the caves, it has the lowest ratio of the number of drill core samples to the
number of blocks at all scales, as shown in Table 4. In other words, PC1 is the cave with
the sparsest drilling data. As a result, block modelling produces significant amounts of
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similar-grade blocks around a lower mean, thus yielding remarkably lower DH estimates
for PC1. While the PC1 cave is estimated to be the most heterogeneous cave by the drill
core compositing approach, the block modelling approach suggests the opposite (Figure 4).
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Table 4. Ratio of the number of drill core composites and the number of blocks identified in cave footprints.

Block Size vs. Composite Length Panel Cave Number of Core Samples/Blocks Identified in Cave Footprints (%)

5 × 5 × 5 m3 vs. 5 m
PC1 0.71

PC2-West 0.81
PC2-East 0.98

10 × 10 × 10 m3 vs. 10 m
PC1 2.83

PC2-West 3.23
PC2-East 3.79

20 × 20 × 20 m3 vs. 20 m
PC1 11.34

PC2-West 13.16
PC2-East 14.86

4.2. Simulating Bulk Ore Sorting Performance

The data obtained from the recovery-grade curves shown in Figures 9–11 are presented
in Table 5. The table shows a drop in the degree of upgrading and mass rejection rates for
each cave with the scale. This is because the grades of blocks and drill core composites
converged to average values as the scale increased. The highest-grade uplift and sorting
rejection rates were achieved when the block size or composite length was the smallest.
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Table 5. Comparison of recovery, upgrading, mass yield, and mass rejection rates of panel caves.

Approach 1: Block Modelling Recovery (%) Concentrate Grade Reject Grade Upgrading (%)
Mass Rejection (%)

Block Size Panel Cave Au Cu Au (g/t) Cu (%) Au (g/t) Cu (%) Au Cu

5 × 5 × 5 m3
PC1 98.14 99.04 0.61 0.33 0.22 0.06 103.32 104.27 5.02

PC2-West 98.74 97.99 0.80 0.29 0.11 0.06 107.84 107.03 8.45
PC2-East 98.91 97.74 0.73 0.37 0.05 0.05 114.28 112.93 13.45

10 × 10 × 10 m3
PC1 99.61 99.66 0.70 0.34 0.15 0.06 101.48 101.53 1.84

PC2-West 99.64 98.55 0.77 0.31 0.04 0.06 106.83 105.66 6.73
PC2-East 99.36 98.50 0.75 0.38 0.05 0.06 108.61 107.67 8.52

20 × 20 × 20 m3
PC1 99.77 99.80 0.68 0.34 0.17 0.07 100.70 100.73 0.92

PC2-West 99.75 98.96 0.76 0.31 0.04 0.06 105.11 104.28 5.10
PC2-East 99.48 98.73 0.74 0.37 0.06 0.07 106.33 105.53 6.44

Approach 2: Drill Core Compositing Recovery (%) Concentrate Grade Reject Grade Upgrading (%)
Mass Rejection(%)

Composite Size Panel Cave Au Cu Au (g/t) Cu (%) Au (g/t) Cu (%) Au Cu

5 m
PC1 97.43 98.12 0.92 0.38 0.20 0.06 109.20 109.97 10.77

PC2-West 98.49 98.38 1.07 0.36 0.18 0.07 107.35 107.23 8.25
PC2-East 99.36 98.77 0.92 0.43 0.06 0.05 109.22 108.57 9.03

10 m
PC1 98.13 98.54 0.90 0.37 0.19 0.06 107.14 107.59 8.42

PC2-West 98.94 98.96 1.04 0.35 0.19 0.06 104.58 104.61 5.40
PC2-East 99.49 98.88 0.90 0.43 0.05 0.06 108.04 107.38 7.91

20 m
PC1 98.53 98.86 0.88 0.36 0.19 0.06 105.32 105.67 6.45

PC2-West 99.30 99.34 1.01 0.35 0.19 0.06 102.90 102.95 3.50
PC2-East 99.54 98.95 0.89 0.42 0.05 0.06 106.91 106.28 6.90

A summary of the NSR return calculations simulating the bulk ore sorting perfor-
mances of the caves is shown in Table 6. The PC2-East cave was identified as the only
cave for which there was potential for bulk ore sorting. The same cave was assessed to
have the highest copper grade variability, degree of upgrading, and mass rejection rates by
the block modelling approach (Table 5). An increase in the NSR of PC2-East of USD0.22
per ton was estimated if the sorting application was conducted at a scale of 5 × 5 × 5 m3

blocks. The cave lost its bulk ore sorting potential when the scale increased to the block
sizes of 10 × 10 × 10 and 20 × 20 × 20 m3. The drill core compositing approach was
unable to produce any NSR estimates that would favour the bulk ore sorting application at
PC2-East. The low mass rejection rates predicted by the drill core compositing approach
are insufficient to offset the metal losses and the sorting cost.

The PC1 cave is predicted to have the lowest bulk ore sorting performance, as demon-
strated by the decrease in its NSR estimated by both approaches. Table 5 shows that
significant amounts of gold were lost to the sorting waste (around 0.2 g/t Au in the material
rejected at 0.1% Cu cut-off grade), making PC1 unsuitable for bulk ore sorting. The gen-
eration of similar-grade blocks (generally above the sorting cut-off) with block modelling
due to the drill hole data sparsity drops the mass rejection rates of the PC1 cave, which
causes a significant decline in its NSR estimates. Although PC1 was assessed to possess the
highest gold and copper grade heterogeneities by the drill core compositing approach, the
calculations show that the cave is not amenable to bulk ore sorting. The NSR calculations
of the PC1 cave show the importance of carrying out economic evaluations rather than
sticking only with grade heterogeneity estimations in order to estimate the actual value
associated with bulk ore sorting.

The NSR values estimated for PC2-West show that the application of bulk ore sorting is
not economically feasible for the cave at any scale. For PC2-West, block modelling produced
more promising NSR values than drill core compositing. This difference was due to the
higher-grade uplift and mass rejection rates obtained by the block modelling approach.



Minerals 2023, 13, 603 15 of 17

Table 6. Change in net smelter returns of panel caves with bulk ore sorting.

Approach 1: Block Modelling

Block Size Panel Cave Change in NSR (USD/t) Comment on Sortability

5 × 5 × 5 m3
PC1 −0.49 Not sortable

PC2-West −0.23 Not sortable
PC2-East 0.22 Sortable

10 × 10 × 10 m3
PC1 −0.39 Not sortable

PC2-West −0.09 Not sortable
PC2-East −0.05 Not sortable

20 × 20 × 20 m3
PC1 −0.41 Not sortable

PC2-West −0.15 Not sortable
PC2-East −0.18 Not sortable

Approach 2: Drill Core Compositing

Composite Size Panel Cave Change in NSR (USD/t) Comment on Sortability

5 m
PC1 −0.50 Not sortable

PC2-West −0.42 Not sortable
PC2-East −0.02 Not sortable

10 m
PC1 −0.44 Not sortable

PC2-West −0.44 Not sortable
PC2-East −0.06 Not sortable

20 m
PC1 −0.44 Not sortable

PC2-West −0.42 Not sortable
PC2-East −0.12 Not sortable

5. Conclusions

The comparison between block modelling and drill core compositing shows that
the approaches are prone to producing varying in situ grade heterogeneity and sorting
performance estimates.

The results reveal that the block modelling of an ore deposit tends to smooth the grade
variability in the drill core data. In particular, the grade-smoothing effect of block modelling
can be observed in the portions of the deposit where the drill hole data is sparse or widely
spaced. The ore blocks in those portions are populated with similar grade estimates by the
geostatistical interpolation method used. As a result, block modelling yields lower grade
heterogeneity and bulk ore sorting performance estimates. When assessing the potential to
apply bulk ore sorting using the block modelling approach, the scale should be selected
according to drill hole spacing to avoid artificially smoothing out the grade variability of
an ore deposit.

In cases where the drill hole data is not representative of the area of interest due to
spatial clustering, the block modelling approach can produce more realistic bulk ore and
sorting performance estimates than the drill core compositing approach. Since preferential
drilling is generally concentrated in high-grade portions of an ore deposit, the drill core
compositing approach is more likely to yield lower-grade uplift and mass rejection rates due
to lacking low-grade data points. Such bias in the drill core data leads to more discouraging
bulk ore sorting potential estimates by the drill core compositing approach.

The sorting scale impacts the grade heterogeneity estimates obtained by both ap-
proaches similarly. An increase in the sizes of blocks and the lengths of drill core samples
reduces the grade variability due to the averaged metal grades.

The approaches compared in this study were limited to simulating the bulk ore sorting
performances of the caves for the ideal case. A further investigation where the simulation
results and the actual production data are compared is required to assess the impact of
mixing that occurs during mining and material handling. The aim of the study is not to
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justify one approach over another but to compare their principal and practical advantages
and limitations.
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