A Discussion on CO2 Sequestration in the UCG Space Based upon the Review of the UCG Residue Physicochemical Properties
Abstract
:1. Introduction
2. Distribution of Minerals in Coal and UCG Residue
2.1. Principle of UCG and Its Influence
2.2. Minerals in Coal and Its Transformation Due to UCG
2.2.1. Minerals in Coal
2.2.2. Mineral Transformation in the Oxidation Zone (900–1450 °C)
2.2.3. Mineral Transformation in the Reduction Zone (600–900 °C)
2.2.4. Mineral Transformation in the Dry Distillation Zone (200–600 °C)
3. Pore Structure of the Samples
4. CO2 Sequestration in the UCG Space
4.1. CO2 Mineralization
4.2. CO2 Adsorption
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- BP Group. BP Energy Outlook, 2019 [EB/OL]. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf (accessed on 16 February 2019).
- Zou, C.N.; Xue, H.Q.; Xiong, B.; Zhang, G.S.; Pan, S.Q.; Jia, C.Y.; Wang, Y.; Ma, F.; Sun, Q.; Guan, C.X.; et al. Connotation, innovation and vision of “carbon neutral”. Nat. Gas Ind. 2021, 41, 46–57. [Google Scholar]
- Chen, F.; Yu, H.C.; Bian, Z.F.; Yin, D.Y. How to handle the crisis of coal industry in China under the vision of carbon neutrality. J. China Coal Soc. 2021, 46, 1808–1820. [Google Scholar]
- Xie, H.P.; Ren, S.H.; Xie, Y.C.; Jiao, X.M. Development opportunities of the coal industry towards the goal of carbon neutrality. J. China Coal Soc. 2021, 46, 1808–1820. [Google Scholar]
- BP Group. BP Statistical Reviews of World Energy, 2018 [EB/OL]. Available online: https://www.bp.com/en/global/corporate/media/reports-and-publications.html (accessed on 22 October 2018).
- State Council of the PRC. Several Opinions on Promoting the Coordinated and Stable Development of Natural Gas [EB/OL]. Available online: http://www.gov.cn/zhengce/content/2018-09/05/content_5319419.htm (accessed on 5 September 2018).
- Klimenko, A.Y. Early ideas in underground coal gasification and their evolution. Energies 2009, 2, 456–476. [Google Scholar] [CrossRef]
- Evgeny, S.; Arvind, V. Underground coal gasification: A brief review of current status. Ind. Eng. Chem. Res. 2009, 48, 7865–7875. [Google Scholar]
- Qin, Y.; Wang, Z.; Han, L. Geological problems in underground coal gasification. J. China Coal Soc. 2019, 44, 2516–2530. [Google Scholar]
- Yang, F.; Duan, Z.H.; Ma, D.M.; Tian, T.; Fu, D.L.; He, D. New development of coal gasification technology. Sci. Technol. Rev. 2020, 38, 71–85. [Google Scholar]
- Liu, S.Q.; Qi, C.; Jiang, Z.; Zhang, Y.J.; Niu, M.F.; Li, Y.Y.; Dai, S.F.; Finkelman, R.B. Mineralogy and geochemistry of ash and slag from coal gasification in China: A review. Int. Geol. Rev. 2018, 60, 717–735. [Google Scholar] [CrossRef]
- Wang, Z. Establishment of Mass and Energy Balance Model in UCG Process Based on Three Zones Distribution; China University of Mining and Technology: Beijing, China, 2016. [Google Scholar]
- Ma, A.L.; Chen, L.J.; Xu, B. Study on physicochemical properties of “three zone” residues during underground coal gasification. Coal Sci. Technol. 2019, 47, 217–223. [Google Scholar]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Yu, X.H.; Sun, P.; Zhang, J.Y.; Tian, C.; Gong, B.G.; Chen, G.; Zhao, Y.C.; Zheng, C.G. Quantitative investigations on mineral matter and distributions of trace elements in Shengfu coal. J. China Coal Soc. 2015, 40, 2683–2689. [Google Scholar]
- Rajabzadeh, M.A.; Ghorbani, Z.; Keshavarzib, B. Chemistry, mineralogy and distribution of selected trace-elements in the Parvadeh coals, Tabas, Iran. Fuel 2016, 174, 216–224. [Google Scholar] [CrossRef]
- Zhuang, X.G.; Querol, X.; Zeng, R.S.; Xu, W.D.; Alastuey, A.; Lopez-Soler, A.; Plana, F. Mineralogy and geochemistry of coal from the Liupanshui mining district, Guizhou, South China. Int. J. Coal Geol. 2000, 45, 21–37. [Google Scholar] [CrossRef]
- Permana, A.K.; Ward, C.R.; Li, Z.S.; Gurba, L.W. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116, 185–207. [Google Scholar] [CrossRef]
- Kortenski, J. Carbonate minerals in Bulgarian coals with different degrees of coalification. Int. J. Coal Geol. 1992, 20, 225–242. [Google Scholar] [CrossRef]
- Yang, Q.; Pan, Z.G.; Weng, C.M.; Su, Y.C.; Wang, Z.P. Discussion on Metamorphic Characteristics and Geological Factors of Permian Carboniferous Coal in North China; Geological Publishing House: Beijing, China, 1988; p. 81. [Google Scholar]
- Zhang, P.A.; Yuan, J.; Wen, C.; Luo, G.Q.; Yu, D.X.; Yao, H. CCSEM investigation on the mineral properties of six Chinese typical steam coals. J. China Coal Soc. 2016, 41, 2326–2331. [Google Scholar]
- Susilawati, R.; Ward, C.R. Metamorphism of mineral matter in coal from the Bukit Asam deposit, south Sumatra, Indonesia. Int. J. Coal Geol. 2006, 68, 171–195. [Google Scholar] [CrossRef]
- Dai, S.F.; Chou, C.L. Occurrence and origin of minerals in a chamosite-bearing coal of Late Permian age, Zhaotong, Yunnan, China. Am. Mineral. 2007, 92, 1253–1261. [Google Scholar] [CrossRef]
- Daniels, E.J.; Aleaner, S.P. Clay mineral authigenesis in coal and shale from the Anthracite region, Pennsylvania. Am. Mineral. 1990, 75, 825–839. [Google Scholar]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. Int. J. Coal Geol. 2012, 94 (Suppl. S1), 94–110. [Google Scholar] [CrossRef]
- Greb, S.F.; Eble, C.F.; Chestnud, D.R.; Phillips, T.L.; Hower, J.C. An in-situ occurrence of coal balls in the Amburgy coal bed, Pikeville Formation (Duckmantian), central Appalachian Basin, USA. Palaios 1999, 14, 432–450. [Google Scholar] [CrossRef]
- Raymond, A.; Guillemette, R.; Jones, C.P.; Ahr, W.M. Carbonate petrology and geochemistry of Pennsylvanian coal balls from the Kalo Formation of Iowa. Int. J. Coal Geol. 2012, 94 (Suppl. S1), 137–149. [Google Scholar] [CrossRef]
- Hower, J.C.; Williams, D.A.; Eble, C.F.; Sakulpitakphon, T.; Moecher, D.P. Brecciated and mineralized coals in Union County, Western Kentucky coal field. Int. J. Coal Geol. 2001, 47, 223–234. [Google Scholar] [CrossRef]
- Liu, S.; Qi, C.; Zhang, S.; Deng, Y.P. Minerals in the ash and slag from oxygen—Enriched underground. Minerals 2016, 6, 27–42. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Wu, H.; Cai, X.L.; Zhuo, J.D.; Lai, S.Y.; Liu, H.G.; Jing, Y.H.; Yuan, W. Basic Characteristics of coal gasification residual. Clean Coal Technol. 2015, 21, 110–113, 74. [Google Scholar]
- Wei, C.D.; Yang, D.; Li, Y.; Mikuni, A. Influence of temperature on phase transformation of calcined kaolinite and Si, Al activity. Acta Mineral. Sin. 2005, 25, 197–202. [Google Scholar]
- Li, G.H.; Jiang, T.; Fang, X.H.; Qui, G.Z. Thermochemical activation of silicon in illite and its removal. Met. Mine 2004, 5, 18–21. [Google Scholar]
- Liu, Y.Q.; Lv, X.J.; Qiu, J. Theories and comparison of several methods for measuring layer charge density of montmorillonites. Sci. Online 2008, 3, 288–292. [Google Scholar]
- Tao, Y.C.; Hao, Z.Y.; Jia, P.; Lu, C.H. Raman spectrum analysis of pyrophillite and dolomite by HP-HT. Diam. Abras. Eng. 2003, 138, 61–64. [Google Scholar]
- Shao, J.B.; Shao, X.X.; Wang, Z.N. Influence of mineral composition in coal on properties of fly ash. Coal Process. Compr. Util. 1996, 37–41. [Google Scholar]
- Zhao, L.; Dai, S.F.; Zhang, Y.; Wang, X.B.; Li, D.; Yan-feng, L.; Zhu, X.W.; Sun, Y.Y.; Ma, Y.W. Mineral abundances of high-alumina fly ash from the Jungar Power Plant, Inner Mongolia, China. J. China Coal Soc. 2008, 33, 1168–1172. [Google Scholar]
- Wang, H.; Song, M.S.; Li, J.F.; Zhang, G.N.; Shao, T.B.; Wang, X.N.; Wang, S.M. Experimental study on deformation property of Yunnan dolomite marble under high-temperature and high-pressure conditions. Geotecton. Metallog. 2020, 44, 852–983. [Google Scholar]
- Kuang, J.Z.; Qiu, T.S.; Shi, F. Effect of heat treatment on structure transformation and activities of kaolinite. Chin. J. Nonferrous Met. 2012, 22, 258–264. [Google Scholar]
- Ward, C.R. Review of mineral matter in coal. Aust. Coal Geol. 1986, 6, 87–110. [Google Scholar]
- Zhou, G.L.; Wu, J.J.; Miao, Z.Y.; Hu, X.L.; Li, X.; Shi, X.; Cai, Z.D.; Shang, Y.K. Effects of process parameters on pore structure of semi-coke prepared by solid heat carrier with dry distillation. Int. J. Min. Sci. Technol. 2013, 23, 423–427. [Google Scholar] [CrossRef]
- Du, Y.; Sang, S.X.; Wang, W.F.; Liu, S.Q.; Wang, T.; Fang, H.H. Experimental study of the reactions of supercritical CO2 and minerals in high-rank coal under formation conditions. Energy Fuels 2018, 32, 1115–1125. [Google Scholar] [CrossRef]
- Chen, R.; Qin, Y. Fluid-solid coupling between supercritical CO2 and minerals in coal and geological significances. Coal Sci. Technol. 2012, 40, 17–21. [Google Scholar]
- Harvey, O.R.; Qafoku, N.P.; Cantrell, K.J.; Lee, G.; Amonette, J.E.; Brown, C.F. Geochemical implications of gas leakage associated with geologic CO2 storage—A qualitative review. Environ. Sci. Technol. 2013, 47, 23–36. [Google Scholar] [CrossRef]
- Manning, D.A.C.; Renforth, P. Passive sequestration of atmospheric CO2 through coupled plant-mineral reactions in urban soils. Environ. Sci. Technol. 2013, 47, 135–141. [Google Scholar] [CrossRef]
- Jorat, M.E.; Kraavi, K.E.; Manning, D.A.C. Removal of atmospheric CO2 by engineered soils in infrastructure projects. J. Environ. Manag. 2022, 314, 115016. [Google Scholar] [CrossRef] [PubMed]
- Washbourne, C.L.; Lopez-Capel, E.; Renforth, P.; Ascough, P.L.; Manning, D.A. Rapid removal of atmospheric CO2 by urban soils. Environ. Sci. Technol. 2015, 49, 5434–5440. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.W. Adsorptive capacity of coals and its affecting factors. Earth Sci.-J. China Univ. Geosci. 2004, 29, 327–332, 368. [Google Scholar]
- Chen, R.; Qin, Y.; Wei, C.T. Differences in pore structures and adsorptivity between raw and two-step-solvent extracted vitrains. Nat. Gas Geosci. 2014, 25, 1103–1110. [Google Scholar]
Three Reaction Zones | Temperature (°C) | Chemical Reaction | Function |
---|---|---|---|
oxidation zone | 900–1450 | C + O2 → CO2 2CO + O2 → 2CO2 | Provide energy for reaction of reduction and dry distillation zones |
reduction zone | 600–900 | CO2 + C → 2CO H2O + C → CO + H2 CO + H2O → CO2 + H2 | CO2 reduction, steam decomposition and other reactions occur, which are endothermic in nature |
dry distillation zone | 200–600 | COAL → H2 + CO + CO2 + CH4 | Coal seam pyrolysis, drying and dehydration |
Samples | Proximate Analysis | Ultimate Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
Md | Ad | Vdaf | FCdaf | Cdaf | Hdaf | Odaf | Ndaf | St,d | |
Raw coal | 1.36 | 8.96 | 9.02 | 90.98 | 93.26 | 2.91 | 2.36 | 0.35 | 1.09 |
Dry distillation residue | - | 9.69 | 4.58 | 95.42 | 97.22 | 0.04 | 1.16 | 0.20 | 0.35 |
Reduction residue | - | 11.04 | 2.49 | 97.51 | 97.52 | 0.03 | 1.89 | 0.2 | 0.36 |
Oxidation residue | - | 94.90 | 43.61 | 56.39 | - | - | - | - | - |
Minerals | Chemical Formula | Mass Fraction | Refs. | |
---|---|---|---|---|
clay | kaolinite | Al2Si2O5(OH)4 | 2%~40% | [14,15,17] |
Illite | K1.5Al4(Si6.5Al1.5)O20(OH)4 | 1%~30% | [14,15,17] | |
montmorillonite | Na0.33(Al1.67Mg0.33)Si4O10(OH)2 | <0.1% | [14,15] | |
chlorite | (MgFeAl)6(AlSi)4O10(OH)8 | <0.1% | [14,15] | |
carbonate | calcite | CaCO3 | 0.3%~25% | [14,15,16,18] |
dolomite | CaMg(CO3)2 | <0.5% | [14,15] | |
siderite | FeCO3 | <1% | [14,15] | |
ankerite | (Ca,Mg,Fe)CO3 | <5.3% | [14,15] | |
silicate | quartz | SiO2 | 2%~30% | [14,15,18] |
oxide | hematite | Fe2O3 | 0.5%~9.5% | [14,15,16] |
sulfide | pyrite | FeS2 | 0.5%~7.5% | [14,15,18] |
sulfate | gypsum | CaSO4·2H2O | <0.8% | [14,15] |
phosphate | apatite | Ca5F(PO4)3 | <0.8% | [14,15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Lv, F.; Bao, Y.; Chen, F.; Dou, T.; Tu, G. A Discussion on CO2 Sequestration in the UCG Space Based upon the Review of the UCG Residue Physicochemical Properties. Minerals 2023, 13, 616. https://doi.org/10.3390/min13050616
Chen R, Lv F, Bao Y, Chen F, Dou T, Tu G. A Discussion on CO2 Sequestration in the UCG Space Based upon the Review of the UCG Residue Physicochemical Properties. Minerals. 2023; 13(5):616. https://doi.org/10.3390/min13050616
Chicago/Turabian StyleChen, Run, Fengrong Lv, Yunxia Bao, Fu Chen, Tianzheng Dou, and Guanglong Tu. 2023. "A Discussion on CO2 Sequestration in the UCG Space Based upon the Review of the UCG Residue Physicochemical Properties" Minerals 13, no. 5: 616. https://doi.org/10.3390/min13050616
APA StyleChen, R., Lv, F., Bao, Y., Chen, F., Dou, T., & Tu, G. (2023). A Discussion on CO2 Sequestration in the UCG Space Based upon the Review of the UCG Residue Physicochemical Properties. Minerals, 13(5), 616. https://doi.org/10.3390/min13050616