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Abstract: Precise prediction of ore grade is essential in feasibility studies, mine planning, open-pit
and underground optimization, and ore grade control. Conventional methods, such as geometric and
geostatistical methods, are the most popular techniques for mineral resource estimation but fail to
capture the complexity of orebodies. Due to this limitation, grades are incorrectly estimated, leading
to inaccurate mine plans and costly financial decisions. Here, we propose an ore grade prediction
method using an artificial neural network (ANN). We collected 14,294 datasets from the Jaguar mine
in Western Australia. The proposed model was developed by incorporating lithology, alteration,
eastings, northwards, altitude, dip, and azimuth to predict the grade, and the performance evaluation
metrics were measured based on the mean absolute error (MAE), mean square error (MSE), root mean
square error (RMSE), correlation coefficient, R, and coefficient of determination (R2). The proposed
ANN model outperformed classic machine learning methods with R2, R, MAE, MSE, and RMSE
of 0.584, 0.765, 0.0018, 0.0016, and 0.041, respectively. The Shapley technique was used to evaluate
the feature importance of the input variables for the grade prediction. Lithology demonstrated the
highest influence on ore prediction, whereas eastings had the least impact on output. The proposed
approach is promising for ore model prediction.

Keywords: ore prediction; artificial neural network; feature importance

1. Introduction

Precise prediction of ore grade is important for mineral resource estimation and many
mine operations, such as ore grade control, underground operations, open-pit optimization,
and mine planning and design. Ore grade estimation plays a vital role in the economic
evaluation of mining projects, capital allocation, sustainability, depletion rates, and mining
feasibility. Estimating ore grade is complicated and problematic because of the multifaceted
processes involved in ore deposition. Traditional methods, namely geometric and geostatis-
tical methods, are the most popular in mineral resource estimation. Kriging is a well-known
estimation technique in the mining industry and has gained enormous recognition as an
accurate estimator of mineral resources. Kriging is an ideal spatial regression technique
designed for the regional or local estimation of block grades as a linear combination of
available data, which minimizes the estimation error [1]. Various kriging techniques have
been applied for mineral resource estimation, such as simple kriging (SK), indicator kriging
(IK), and ordinary kriging (OK). Ordinary kriging, also known as Best Linear Unbiased
Estimator, is the most widely used technique for estimating mineral resources [2]. This
technique can be used to estimate a value at an unsampled location in a region of interest
using data from the region and a variogram model interpreted from all data within the
region, which minimizes the expected error between the estimated and actual grades [3].
In addition, kriging can be used to estimate the mining block grades. This minimizes the
expected error between the estimated and actual grades. Although the supremacy and
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efficiency of these methods have been demonstrated in several studies [4–6], the major
limitation of these conventional techniques is that they require assumptions based on the
spatial correlation between samples to be estimated at unsampled location [7–9].

The spatial distribution of the kriging estimates tended to be smooth; they overes-
timated the low-grade values and underestimated the high-grade values. Deutsch and
Journel [10] introduced sequential Gaussian simulation (SGS) as a solution to the smoothing
problem of kriging. Pan et al. [11] concluded that conventional approaches may not provide
the best grade estimates because of the complex relationship between the spatial pattern
variability and grade distribution. However, the difficulty in estimating the grade of ore
deposits with few data points using geometrical and geostatistical methods has paved the
way for the application of artificial intelligence in grade estimation.

Over the past few decades, researchers [12–16] have applied neural networks to ore
grade prediction. Advancements in technology have shown the immense potential of ma-
chine learning (ML) algorithms over other interpolation techniques for ore grade estimation
because of their ability to learn any linear or nonlinear relationship between inputs and
outputs. The neural network method is appealing and has become a versatile technique for
grade prediction. Additionally, machine learning-based resource estimation techniques are
more efficient and cheaper than traditional resource estimation approaches [17]. Moreover,
ML contributes to the understanding of diverse types of ore deposits by modernizing
hypothesis testing and geological modeling [17]. Machine learning techniques address var-
ious operational challenges in the mining industry, including mineral exploration, drilling
and blasting, and mineral processing.

Aguilera et al. [18] studied the performance of deep learning- (DL) based models in
ore grade estimation for a copper mine in Chile to reduce these differences in long- and
short-term planning. They analyzed feed-forward neural network (FNN), one-dimensional
(1D) convolutional neural network (CNN), and long short-term memory (LSTM) models.
Matias et al. [19] examined the precision of kriging, regularization networks (RN), multi-
layer perceptron (MLP), and radial basis function (RBF) networks when determining the
slate quality. Schnitzler et al. [20] assessed the Random Forest performance with varying
numbers of instances and input variables. The MLP network performed well in terms
of test error and training speed. Samantha et al. [21] estimated ore grade values using
an RBF network and compared the results to feed-forward neural networks and conven-
tional ordinary kriging. They concluded that feed-forward neural networks provided
better results than ordinary kriging. Chatterjee et al. [22] suggested the use of a genetic
algorithm (GA) and k-means clustering techniques for ensemble neural network modeling
of a lead–zinc deposit. Two types of ensemble neural network models were investigated:
a resampling-based neural ensemble and a parameter-based neural ensemble. K-means
clustering was used to select diversified ensemble members. The GA was used to improve
the accuracy by calculating the ensemble weights. The results were compared with the
average ensemble, weighted ensemble, best individual networks, and ordinary kriging
models. The GA-based model outperformed all other methods that were considered. An
artificial neural network (ANN) was trained to recognize the relationship between a sample
point’s location, lithology, and major metal content because the spatial correlation structures
could not be extracted from the semi-variograms or cross-variograms between two major
and minor elements [23]. Based on sample data, the network model can generate a model
with many high-content zones.

The development of multi-layered ANN with multiple input variables has resulted
in considerable advances in ANN accuracy, and numerous studies have been conducted
on this topic. Mahmoudabadi et al. [24] suggested a hybrid method that combines the
Levenberg–Marquardt (LM) method and a GA to identify the optimal initial weights of
the ANN. Jalloh et al. [25] integrated an ANN and geostatistics for an optimum mineral
reserve estimation. The drilling spatial locations (X, Y, and Z) and sample length were
used to predict the grade of the mineral sand. They concluded that the model showed
precise predictions of the ore grade; however, the major drawback of this approach was
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that the model underestimated high-grade values that had relatively few training sets.
Alawi et al. [26] predicted the grades of bauxite deposits from 163 drillholes by developing
a multilayer feed-forward ANN model using a backpropagation algorithm. X and Y were
used as input variables, whereas the thickness of the mineralized lengths of the deposit and
the corresponding silica and alumina contents were used as target variables. The results
show that the input variables could only explain 79% of the output variables. To make grade
assessments of mineral deposits, Kaplan and Topal [27] suggested a modeling strategy that
included k-nearest neighbor (kNN) and ANN. The kNN model predicted rock types and
alteration levels before estimating the grades and estimates of geological information at
non-sampled locations. In the second step, the ANN model uses the geological information
predictions provided by the kNN model and the geographic information as input variables.
Although existing literature highlights the efficiency and potential benefits of machine
learning algorithms for the accurate prediction of grades, there are some shortcomings
associated with these techniques. The most significant problem is that there are no set
rules for determining the network hyperparameters to achieve the correct model structure;
additionally, the method requires a computer-intensive procedure that involves trial and
error to obtain the results.

The purpose of this study is to present an ore grade prediction approach based on
an ANN model that incorporates spatial information (eastings, northings, and altitude),
drilling parameters (dip and azimuth), and geological information (lithology and alteration)
as model input variables and copper ore grade as an output variable. Previous researchers
used sample locations and geological attributes (lithology and alterations); however, the
proposed technique goes beyond the use of sample location and geological attributes by
incorporating drilling parameters into ore grade prediction. The proposed technique is
unique because of its ability to learn nonlinear relationships between input variables based
on a combination of geological, drilling, and sample location information and the output
variable, that is, copper grade. Seven input variables were selected as essential features
for ore grade estimation, because they provided the relevant information required for the
model to accurately predict the ore grade. The alteration and lithology are related to the
mineralization of the orebody, whereas the sample location shows the exact coordinates of
where the sample was collected. The dip and azimuth angles indicate the angles at which
the drillhole was drilled. The proposed approach contributes to a better understanding of
the complexities and types of ore deposits.

The remainder of this paper is organized as follows: Section 2 outlines the geology
of the study area, dataset information, methodology, and data pre-processing. Section 3
describes the proposed ANN, network training, and its implementation. Section 4 presents
the results and discussion, and Section 5 presents the conclusions.

2. Dataset and Methods
2.1. Geology of the Study Area

The dataset used in this case study was collected from the Jaguar mine, located 60 km
north of Leonora in the Eastern Goldfields region of Western Australia. The Jaguar deposit
lies four kilometers to the south of the historic Teutonic Bore mine. A map of the location is
presented in Figure 1. The deposit consists of a steep west-dipping massive sulfide lens
of pyrite/pyrrhotite, chalcopyrite, and sphalerite mineralization hosted in a succession of
basaltic and andesitic flow sills. Mineralization occurs in basalts that lie above a thick basal
rhyolitic sequence with an overlying andesite. The rhyolitic sequence comprises rhyolitic
mass flow units and lavas that vary in nature from massive and locally flow-banded to
highly auto-brecciated. The Jaguar stratigraphy strikes from north northwest (NNW) to
south southeast (SSE) and dips steeply from 75◦ to 80◦ to the west. Drilling extends to a
maximum downhole depth of 870 m. However, in this study, drilling extends to 190 m for
simplicity of analysis. The data contained copper grade values measured as percentages of
185 drillholes with a drill spacing of 20 m.
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(a) (b)

Figure 1. Jaguar Mine Location Map (a,b).
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2.2. Dataset Collection and Pre-Processing

Grade estimation is based primarily on geological attributes, spatial information, and
drilling parameters. The aim of this study was to develop a model that demonstrates the
effects of sample location and geological and drilling parameters in accurately predicting
ore grade. Samples from the drillholes were collected at 1-m intervals. The raw drillhole
data were composited based on lithology and 14,294 samples were produced. Seven
input variables, i.e., dip, azimuth, eastings, northings, altitude, lithology, and alteration,
were investigated with only one output: the copper grade. In this study, lithologies that
displayed similar characteristics were grouped into five categories, namely dolerite, basalt,
andesite, massive sulfides, and sediments, to minimize estimation errors. The ore was
extracted from four major alteration types: sericitization, chloritization, silification, and
carbonatization. The alterations and lithologies are related to the chemical composition of
the mineral deposits. East, north, and altitude indicate the location at which the sample
was collected. The dip indicates the direction in which the drillholes are inclined from the
horizontal plane, whereas the azimuth is the inclination angle measured from north during
drilling. A list of unweighted ore grade prediction variables and the corresponding ore
grades is displayed in Table 1.

Table 1. List of unweighted input variables and corresponding copper ore grade.

X Y Z Dip Azimuth Lithology Alteration Cu Grade (%)

9879.20 55,954.33 4056.84 312 356 Basalt Chloritization 0.0230
9878.16 55,954.46 4057.86 304 357 Dolerite Sericitization 0.5896
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Figure 2 shows a flowchart of the overall analysis. The following steps were followed 
to prepare the ANN model: firstly, since this dataset used raw drillhole data, it was nor-
malized to avoid spatial grade variability and noise caused by outliers, which differed 
greatly from other observations. Normalization was also performed to improve the learn-
ing performance of the model and avoid overfitting. Table 2 shows the descriptive statis-
tics of the dataset, and Equation (1) shows the formula for data normalization. The nu-
merical variables were normalized by using the mean and standard deviation as shown 
in Equation (1) where the normalized variable z is obtained by subtracting the mean µ 
from each value in x and all divided by the standard deviation σ. The data were trans-
formed into numerical values, because neural networks only work with numbers. A hold-
out method was used to split the data into two sets: training and testing. 14,179 datasets 
were used for training. To show how the well the model performed across the drillholes, 
a set of data from the entire single drillhole was excluded from the dataset and used as a 
test case. 

Finally, Shapley values were used to determine the feature importance of the input 
parameter on the model output. 𝑧 = (௫ ି µ)ఙ  (1)

Table 2. Descriptive statistics of the dataset. 

 X Y Z Dip Azimuth Cu Grade (%) 
Count 14,294 14,294 14,294 14,294 14,294 14,294 
Mean 0.9960 0.9983 0.9840 0.8011 0.7012 0.5893 

Std 0.0015 0.0094 0.0040 0.3394 0.2219 1.7594 
Min 0.9925 0.9548 0.9765 0.0000 0.1321 0.0000 
25% 0.9947 0.9818 0.9806 0.8969 0.6509 0.0140 
50% 0.9958 0.9914 0.9833 0.9411 0.7460 0.0330 
75% 0.9972 0.9961 0.9880 0.9691 0.8711 0.2110 
Max 1.0000 1.0000 1.0000 0.9556 1.0000 26.996 
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Figure 2 shows a flowchart of the overall analysis. The following steps were followed
to prepare the ANN model: firstly, since this dataset used raw drillhole data, it was
normalized to avoid spatial grade variability and noise caused by outliers, which differed
greatly from other observations. Normalization was also performed to improve the learning
performance of the model and avoid overfitting. Table 2 shows the descriptive statistics
of the dataset, and Equation (1) shows the formula for data normalization. The numerical
variables were normalized by using the mean and standard deviation as shown in Equation
(1) where the normalized variable z is obtained by subtracting the mean µ from each value
in x and all divided by the standard deviation σ. The data were transformed into numerical
values, because neural networks only work with numbers. A hold-out method was used to
split the data into two sets: training and testing. 14,179 datasets were used for training. To
show how the well the model performed across the drillholes, a set of data from the entire
single drillhole was excluded from the dataset and used as a test case.

Table 2. Descriptive statistics of the dataset.

X Y Z Dip Azimuth Cu Grade (%)

Count 14,294 14,294 14,294 14,294 14,294 14,294
Mean 0.9960 0.9983 0.9840 0.8011 0.7012 0.5893

Std 0.0015 0.0094 0.0040 0.3394 0.2219 1.7594
Min 0.9925 0.9548 0.9765 0.0000 0.1321 0.0000
25% 0.9947 0.9818 0.9806 0.8969 0.6509 0.0140
50% 0.9958 0.9914 0.9833 0.9411 0.7460 0.0330
75% 0.9972 0.9961 0.9880 0.9691 0.8711 0.2110
Max 1.0000 1.0000 1.0000 0.9556 1.0000 26.996
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Figure 2 Figure 2. Flowchart of the proposed technique for ore grade estimation.



Minerals 2023, 13, 658 7 of 18

Finally, Shapley values were used to determine the feature importance of the input
parameter on the model output.

z=
(x− µ)

σ
(1)

Figure 3 illustrates the copper ore grade histogram, with a minimum value (ymin) of 0,
maximum value (ymax) of 26.996, and mean (ymean) of 0.5893. The copper grade distribution
is positively skewed, with a high coefficient variation of (σ/ymean) = 2.986, indicating the
presence of extreme values in the dataset. Some areas of the ore deposit were rich in Cu,
whereas others had low Cu grades. A high ratio between the mean and ymax is one of the
features that renders accurate grade prediction difficult, because it requires a model to
identify high-grade areas among low-grade areas. The proposed multilayer feed-forward
ANN can help solve this problem by learning the nonlinear relationships between the
inputs and outputs.
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Figure 3. The histogram of the copper ore grade distribution.

3. The Proposed ANN for Grade Estimation

ANNs are composed of ‘neurons’, which are programming constructs that simulate the
properties of biological neurons. A network of weighted connections allows information
to propagate through the network to solve artificial intelligence problems without the
network designer having a model of a real system. An ANN is a robust machine learning
technique that can be applied to model complicated patterns, solve prediction issues by
recognizing existing relationships in a dataset, and predict the output values for a given
input dataset [28]. It consists of three major interconnected layers: the input, hidden, and
output layers, which determine the network architecture. ANNs have been widely used
in different fields, and the recognition of this approach has been attributed to their ability
to learn and model nonlinear complex relationships. Over the years, ANNs have gained
significant attention in mineral resource estimation because of the outstanding learning and
generalization performance of the model from given parameters. ANNs have proven to
be a prominent technique for estimating mineral resources, and studies [22,27] have gone
beyond the use of raw drillhole spatial positions to include critical geological parameters
such as lithology and alteration.

In this study, the sample location (X, Y, and Z), geological attributes (lithology and
alteration), and drilling parameters (dip and azimuth) were combined to predict the copper
grade. The ANN architecture was determined by trying several neural network configu-
rations and selecting the one with the lowest error rate. The proposed ANN architecture
comprises one input layer consisting of seven neurons, one hidden layer, and one output
layer, as shown in Figure 4. The tanh activation function is used for the hidden layers,
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whereas a linear function is used for the output layer. The mean square error (MSE) is a
popular regression model evaluation technique that utilizes the squared difference between
the predicted and actual values and averages them. The MSE sums the actual and predicted
values and divides them by the total number of observations. The MSE was used as a cost
function because it ensures that the model does not have outlier predictions with large
errors because the MSE assigns higher weights to these errors in the squaring part of the
function. The MSE expression is shown in Equation (2); however, a major limitation of this
method is that the squared part magnifies the errors if the model contains extreme values.
The lower the MSE, the better the results are. Gradient descent and momentum terms
were used to train the ANN. In this case, gradient descent was used as an optimization
algorithm to determine the local minimum of a differentiable function and minimize the
cost function, i.e., MSE.

MSE =
1
n ∑n

i = 1(yi − ŷi)
2 (2)

where MSE is the mean square error, n is the number of observations, yi the observed value,
and ŷi = predicted value.
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Network Training and Implementations

The input and output data were normalized from zero to one to supplement the learn-
ing performance of the ANN. The data were split into training and testing, respectively,
using the hold-out cross validation method. The training process was performed using
MATLAB (R2020b) with a deep-learning toolbox on a workstation with a Windows 10
64-bit operating system, Intel Core i7-8750H CPU @ 2.2 central processing unit, 16 GB
memory, and NVIDIA GeForce GTX graphics processing (Mouse Computer Co., Ltd, Akita
city, Akita, Japan). Although there are numerous methods to train neural networks, the
backpropagation method is the most adaptable and powerful. For multilayer neural net-
works, learning in this manner is most effective. Backpropagation algorithms are widely
used because they are excellent at overcoming prediction issues. In this study, an ANN
was trained using a Bayesian regularization backpropagation algorithm. Bayesian regu-
larization (BR) exploits a mathematical process that converts nonlinear regression into a
well-posed statistical problem in the manner of a ridge regression [29]. Essentially, BR
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generates a network that minimizes the combination of errors and squared weights to deter-
mine the correct combination and achieve a generalized model. Since evidence procedures
provide an objective Bayesian criterion for determining when to stop training, they are
difficult to overtrain. They are also difficult to overfit because BRANN only calculates and
trains on a small number of effective network parameters or weights, effectively turning
off those that are no longer relevant [30]. In most cases, this effective number is less than
the number of weights in a typical fully connected backpropagation neural network, which
was adopted in this study because of the performance and accuracy of the predicted models.
It can also handle uncertainties in the model parameters, which contribute significantly to
accurate prediction.

4. Results and Discussion

All models were trained based on similar parameters of data splitting, including
learning rate, training ratio, and epochs. The performance metrics used for the evaluation
of prediction performance are mean squared error (MSE), mean absolute error (MAE), Root
mean square error (RMSE), correlation coefficient (R), and coefficient of determination (R2).
MAE is the average of all absolute errors. RMSE is a parameter that can be used to evaluate
a model’s performance by determining the amount of deviation between the predicted and
observed values. The key advantage of MSE and RMSE is that they account for uncertainty
in predictions; however, their primary downside is that the methods are problematic when
there are a lot of extreme values. Even though MAE is an absolute measure like MSE, its
outstanding feature over MSE is that it is less influenced by outliers. RMSE and MAE are
defined by Equations (3) and (4). The correlation coefficient is an evaluation approach
used to measure the relationship between variables, while the coefficient of determination
measures how well the model predicts the outcome. It measures the goodness of fit and is
the proportion of variance in the dependent variable that the model explains.

RMSE =

√
1
n ∑n

i = 1(yi − ŷi)
2 (3)

where RMSE is the root mean square error, n is the number of observations, yi the observed
value, and ŷi = predicted value.

MAE =
1
n ∑n

i = 1 |y i − ŷi| (4)

where MAE = mean absolute error, n = number of observations, yi = observed value, and
ŷi = predicted value.

4.1. The Proposed ANN Model Analysis

The dataset used in this study comprises 185 drillholes. The primary issue with such a
large dataset is the significant variation in drillhole samples and the erratic distribution
of geochemical anomalies; thus, careful selection of the data partitioning procedure is
crucial in order to improve the accuracy of the prediction model. Individual samples
were modelled along the z-axis based on the cores sample intervals of 1 m. A hold-out
method was used to split data into two sets: training and testing. The 14,179 dataset was
for training and 115 dataset for testing. The performance of the model across drillholes
was validated by using an independent and unused testing dataset. Figure 5 shows the
regression analysis diagram for the training data, testing data and the overall data for the
drillhole. It can be noted that the correlation coefficients, R of training, testing, and overall
model, are 0.788, 0.765, and 0.773, respectively. As BR was used to train the ANN model,
there was no overfitting or underfitting because it has an objective function that stops
training whenever necessary. The numbers of layers, neurons, and activation functions
were optimized. As indicated by the green line in Figure 5, a set of a single drillhole was
used for testing to provide an unbiased evaluation of the final model fit to the training
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dataset. The best model architecture consists of seven inputs, one hidden layer, and one
output. Although the results clearly show that the input variables are highly correlated
with the output, with high accuracy, a conclusion should not be drawn solely on the basis
of the high correlation coefficient; further investigation of statistical analysis must also be
considered. Figure 6 shows the learning performance of the models based on the MSE. It
can be highlighted that the best performance of the training and test data was attained at
epoch 1000 steps of iteration with a corresponding MSE value and gradient value of 0.0016
and 0.00066, correspondingly. The MAE and RMSE of the ANN model prediction were
0.018, and 0.041, respectively. The MAE has a lower value because it does not place too
much emphasis on outliers, and this loss function provides a generic and even measure of
how well the model performs. This finding suggests that the proposed model performed
well based on the MAE when considering the variability of the copper.
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Additionally, an error histogram was generated to show the distribution of errors
of the training and testing dataset. Figure 7 shows the prediction error distribution. The
zero error, represented by the orange line in this histogram, indicates that the error is
largely concentrated in the region of ±0.08. Figure 8 shows the data distribution of the
actual versus predicted grade of the model. This figure shows that the copper grade can
be moderately estimated by the proposed ANN model. The overall model results showed
minimum errors, indicating that the input and output variables were highly correlated. The
results show that the proposed ANN is a reliable and powerful tool for ore grade prediction
and can be applied to mining operations.
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4.2. Model Comparison with Other Machine Learning Methods

A comparative analysis of various ore grade estimation techniques was performed to
determine the best copper grade prediction. MSE, MAE, RMSE, R, and R2 were used as
evaluation performance measures to compare the ANN model with other machine learning
techniques. Although the R2 provides some useful insights into the regression model, one
should not rely solely on the measure in assessing a statistical mode because it does not
reveal information about the causal relationship between the independent and dependent
variables, nor does it indicate the correctness of the regression model, which is why the
other evaluation performance metrics were considered in this study. The MSE, MAE, and
RMSE indicate the accuracy and precision of the model. The best model was chosen based
on the highest correlation R2 and the lowest MAE and MSE errors.

To evaluate the prediction performance of basic machine learning approaches to the
ANN model, hyperparameter optimization was performed in order to produce a robust
and credible predictive model. Hyperparameter tuning is very important in model devel-
opment. Table 3 shows the summary of how the chosen classic machine learning methods
were optimized. Table 4 shows the results of the statistical methodologies used to predict
the copper grade. The coefficients of determination, R2 for the classic methods—extra trees
regressor, random forest regressor, light gradient boosting machines (LGBM), K neighbor
regressor, and linear regression—were 0.575, 0.563, 0.546, 0.541, and 0.123, respectively. The
results indicated that these statistical methods exhibited moderate correlation coefficients,
whereas linear regression performed poorly. Linear regression showed the worst perfor-
mance, with the lowest correlation, R2 of 0.123, which is not surprising given that linear
regression does not account for nonlinear relationships. Since the ore grade is a varying
component, this linear regression method cannot produce a strong model.
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Table 3. Hyperparameter tuning results for classic machine learning methods.

Method Parameter

Extra trees regressor bootstrap false
criterion Square_error

n_estimator 100
random_state 211

Random forest regressor bootstrap true
criterion Square_error

n_estimators 100
random_state 4822

Light gradient boosting
machine

boosting_type Gbdt
min_child_samples 20
min_child_weight 0.001

n_estimators 100
num_leaves 31

random_state 179
subsample_for_bin 200,000

K neighbors regressor

Leaf_size 30
Metric Euclidean

n_neighbors 28
p 2

weights distance

Linear regression
fit_intercept True

n_jobs −1
positive false

Table 4. Model performance of the machine learning statistical methods.

Methodology R2 R MAE MSE RMSE SD

Artificial neural network 0.584 0.765 0.018 0.0016 0.041 0.0414
Extra trees regressor 0.575 0.756 0.319 0.0020 0.0448 0.0761

Random forest regressor 0.563 0.746 0.332 0.0021 0.0458 0.0758
Light gradient boosting machine 0.546 0.723 0.369 0.0022 0.0463 0.0663

K neighbors regressor 0.541 0.665 0.415 0.0024 0.0485 0.0779
Linear regression 0.123 0.315 0.821 2.725 1.643 1.512

Figure 9 presents the prediction error plots for the classic machine learning approaches
using R2 evaluation metrics. The prediction error graphs show the actual values versus the
predicted values generated by the models. These models show us how much variance there
is in the model. Figure 9 clearly shows that, despite having high correlation coefficients,
the actual and predicted values for the random forest regressor, extra tree regressor, light
gradient boosting machines, and K neighbor regressor have significant errors around them.
The data distribution of linear regression model appears rather poor, and it should be
emphasized that the model is not a good fit for the existing dataset. To perform a fair
statistical comparison of the models, it is interesting to report the standard deviation (SD)
of each model. The standard deviation measures the spread of data around the mean, with
an SD around zero being ideal. As can be seen in Table 4, the proposed ANN model has
the lowest SD of 0.041 when compared to the other machine learning approaches. The
proposed ANN outperformed the other machine learning methods with R2, R, MAE, MSE,
and RMSE of, 0.584, 0.765, 0.018, 0.0016, and 0041, respectively. Hence, better prediction
accuracy was achieved by the ANN. The proposed ANN model had the lowest MAE, MSE,
and RMSE followed by the extra tree regressor, with MAE, MSE and RMSE values of 0.319,
0.0020, and 0.0448, respectively. The subsequent models–random forest regressor, light
gradient boosting machine, K neighbors regressor, and linear regression–showed MAE of
0.332, 0.369, 0.415, and 0.821, respectively. This clearly indicates the superior performance
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of the ANN model compared with other machine learning methods. It can be concluded
that the results from our proposed approach can moderately predict the copper grade
because of the high coefficient of determination, and R2 and the standard deviation of this
model was optimal as it was closer to zero. Moreover, the data for ANN is well-distributed
which makes it a more reliable and powerful method than the classic machine learning
methods.
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4.3. Feature Importance Analysis

The correlation matrix provides the relevant information for feature importance anal-
ysis. Figure 10 depicts the correction matrix based on the correlation coefficient, which
measures the linear relationship between two variables. The color variation represents
the correlation relationship between two variables, with dark blue indicating a significant
negative correlation and contribution and dark red indicating a strong positive correlation.
The correlation matrix normally has values ranging from −1 to 1, with 1 indicating a
perfectly positive linear correlation between two variables, 0 indicating that there is no
linear correlation between the two variables, and−1 indicating a completely negative linear
correlation between two variables. Lithology correlates with copper grade more strongly
than the other variables. Lithology correlates positively with altitude and alteration but
negatively with eastings, northings, altitude, azimuth, and dip. Eastings correlate posi-
tively with azimuth, northings, dip, and alteration but negatively with lithology. Figure 3
illustrates the other variable relationships.
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Researchers are often reluctant to adopt machine learning algorithms because of
the complexities associated with evaluating the mechanism inside the model. Therefore,
an ANN is often treated as a black box, where the connection weights of the neurons
are highly volatile over the amount of data. To verify the soundness of this study, the
Shapley Additive Explanation (SHAP) was used for feature importance. SHAP is the most
prominent technique adapted from cooperative game theory, it is a useful tool for feature
importance, and it supports explainable machine learning [31]. The Shapley value approach
was used to reveal and understand the feature importance or contribution of the input
parameters to the grade prediction of copper. This was also performed to avoid the black
box issue. The kernel explainer way of the SHAP was used to determine important features
of the model. Kernel SHAP is a technique that generates the relevance of each feature
employing a particular weighted linear regression. The significant outcomes produced
are Shapley values from game theory as well as coefficients from a local linear regression.
It is of utmost importance to note that Kernel SHAP can interpret any machine learning
model regardless of its nature, which is why it was used for this study. The SHAP library’s
KernelExplainer computes SHAP values using 10,000 background samples. However,
the n_samples parameter can be used to change this. Fewer samples may be sufficient
for smaller datasets or less complex models, whereas more samples may be required for
larger datasets or more sophisticated models to obtain accurate results.. The background
dataset is used for feature integration. To determine the impact of a feature, it should be
set it to “missing” and the change should be monitored in model output. Due to the fact
that most models are not built to handle random missing data during testing, we mimic
“missing” by replacing the feature with the values it takes from the background dataset. So,
if the background dataset is a simple sample of all zeros, we can approximate a missing
feature by setting it to zero. For simple problems, the entire training set can be used as
the background dataset, but for larger problems, we considered using a single reference
value or the k-means function to summarize the dataset. It is worth noting that for sparse
situations, we accept any sparse matrix but converted to LIL format for efficiency reasons.

Figure 11 depicts the feature importance of the input features. The color variation
indicates the impact of the features on the model output, with blue showing the least
contribution and red the most. Lithology had the greatest influence on copper grade
prediction, with a SHAP value of 5. This research showed that lithology significantly affects
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grade prediction because it is linked to the geochemical formation and mineralization of
the deposit. Altitude was the second most influential input parameter. This is because
the samples were collected at 1 m intervals, allowing the model to simulate the spatial
distribution along the drillholes and improve the performance and accuracy. The eastings
had the least impact on the prediction because the drillhole samples extended along the
x-axis. Consequently, the model performance may have been skewed because closer holes
tended to exhibit characteristics similar to those of other holes. The dip and azimuth did
not show much significance in the grade prediction.
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The main contribution of this study is the launch of an innovative and novel ore
prediction approach that uses seven input variables that incorporate geological attributes,
spatial locations, and drilling parameters to predict ore grade using ANNs. This study also
compared the efficacy of ANNs with five classic machine learning techniques. All these
classic methods were outperformed by the ANN. Researchers have combined optimization
algorithms, the generic algorithm, k-means clustering, the generic algorithm and Levenberg–
Marquardt, and the combination of kNN and ANNs adopted for grade prediction over
the years. However, for this research, we adopted the Bayesian regularization algorithm
over other algorithms because of its precision and performance. It should be noted that
the proposed technique can be used to assess grades for a wide range of mineral resources.
Despite its promising potential, the main drawback of the technique is that it does not
account for geological discontinuities, faults, and joints in mineral estimation. Furthermore,
because ANN performance is data-driven, an adequate amount of data is required for an
accurate grade prediction model.

5. Conclusions

Accurate ore grade prediction is challenging because of the multifaceted processes
associated with geological formation and ore deposition. Precise grade prediction plays a
significant role in mine planning, ore grade control, and feasibility studies. In this study,
we propose a multilayer feed-forward ANN that combines seven input variables, sample
locations (X, Y, and Z), geological attributes (alteration and lithology), and dip and azimuth,
for ore grade estimation of the Jaguar mine in Australia. The proposed technique is data-
driven and learns the relationship between the input and output values to predict the
grade. The performance metrics, R2, R, MAE, MSE, and RMSE, were used to evaluate the
prediction performance of the ANN model and the other machine learning techniques:
linear regression, K neighbors regressor, random forest regressor, light gradient boosting
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machine, and extra tree regressor. The ANN model outperformed these classical approaches
with R2, R, MAE, MSE, and RMSE of 0.584, 0.765, 0.018, 0.0016, and 0.041, respectively.
Moreover, the standard deviation of the proposed ANN model was the lowest with an
SD of 0.0414. Shapley values were used to assess the input variables to measure feature
importance. Lithology has the greatest influence on copper grade prediction because it
is associated with the mineral composition of the orebody. It is important to note that
this study presents the implementation of a robust and powerful methodology for ore
grade estimation by learning the relationship between the input and output variables.
The developed ANN model demonstrates that this technique can be used to supplement
exploration activities, thereby reducing drilling requirements. It can also be used for mine-
planning analysis as an efficient mineral resource evaluation approach that generates the
best block model for mine design, resulting in extensive savings. Although the ANN
model accurately predicted the ore grade, it did not consider the geological structure of
the orebody, faults, and discontinuities. The presented results are promising and pave
the way for further research in the future. In future research, it would be worthwhile to
compare the proposed model to the established geostatistical methods such as kriging.
Furthermore, future approaches should integrate feature selection in the data preprocessing
step in machine learning as an effective way to remove unnecessary variables and reduce
the dimensionality of input features. The best input variables can then be used to accurately
predict the grade.
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