Mineralogy, Geochemistry, and Genesis of Agates from Chihuahua, Northern Mexico
Abstract
:1. Introduction
2. Geological Background
- (1)
- Tuffs and volcanoclastic sediments of the Libres Formation;
- (2)
- Voluminous intermediate-to-mafic lava flows of the Rancho el Agate andesite;
- (3)
- Rhyolitic units with lava flows, domes, and veins (Mesteño, Gallego, Agua Nueva, Carneros, and El Dos);
- (4)
- Basalt flows and flow tuffs of the Milagro Basalt (compare Figure 1).
3. Materials and Methods
Sample | Color | Deposit | Occurence | Host Rock | Type |
---|---|---|---|---|---|
AAN_c | colorless | Agua Nueva | 1 | AN | chalcedony |
AANZ | yellow | Agua Nueva | 2 | ANZ | agate |
AOL_b | red-brown | Ojo Laguna | Arcoiris | OL | agate |
AOL_w | white | Ojo Laguna | Arcoiris | OL | agate |
ACLF_r | red | Coyamito | La Fortuna | CLF | agate |
ACLF_w | white | Coyamito | La Fortuna | CLF | agate |
AMo_g | yellow | Moctezuma | Moctezuma | Mo | agate |
AMo_r | red | Moctezuma | Moctezuma | Mo | agate |
AMo_q | colorless | Moctezuma | Moctezuma | Mo | quartz |
ACLA_r | red | Coyamito | Los Alamos | CLA | agate |
ACLA_w | colorless-white | Coyamito | Los Alamos | CLA | chalcedony |
AHdD_b | dark-brown | Huevos del Diabolo | Huevos del Diabolo | HdD | agate |
AHdD_bi | light-brown | Huevos del Diabolo | Huevos del Diabolo | HdD | agate |
AHdD_q | colorless | Huevos del Diabolo | Huevos del Diabolo | HdD | quartz |
ACJ_r | red | Coyamito | Japanese | CLJ | agate |
ACJ_v | violet | Coyamito | Japenese | CLJ | agate |
4. Results
4.1. Host Rocks
4.1.1. Chemistry
AN | CLF | HdD | Mo | CLJ | CLA | ANZ | OL | |
---|---|---|---|---|---|---|---|---|
LOI | 2.93 | 2.51 | 3.02 | 4.24 | 3.05 | 3.52 | 3.75 | 4.27 |
Total | 99.95 | 99.78 | 99.66 | 98.97 | 99.35 | 99.57 | 99.36 | 99.03 |
SiO2 | 58.98 | 57.65 | 55.33 | 53.79 | 58.22 | 57.50 | 55.57 | 62.19 |
TiO2 | 1.40 | 1.63 | 1.57 | 1.51 | 1.45 | 1.64 | 1.39 | 1.27 |
Al2O3 | 15.55 | 16.30 | 15.45 | 15.28 | 15.31 | 16.48 | 16.69 | 12.72 |
Fe2O3 | 8.04 | 7.50 | 11.31 | 8.86 | 6.83 | 7.51 | 7.93 | 9.12 |
Mn3O4 | 0.19 | 0.06 | 0.09 | 0.15 | 0.08 | 0.11 | 0.13 | 0.03 |
MgO | 1.45 | 2.15 | 0.89 | 2.16 | 1.36 | 1.68 | 0.75 | 0.72 |
CaO | 3.72 | 4.31 | 3.15 | 5.89 | 4.89 | 3.40 | 5.94 | 2.86 |
Na2O | 3.69 | 3.73 | 3.79 | 3.57 | 3.87 | 3.58 | 3.81 | 2.71 |
K2O | 3.35 | 3.29 | 4.10 | 2.90 | 3.64 | 3.47 | 2.65 | 2.54 |
P2O5 | 0.39 | 0.41 | 0.68 | 0.38 | 0.40 | 0.43 | 0.45 | 0.37 |
V2O5 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 |
SrO | 0.03 | 0.04 | 0.04 | 0.05 | 0.03 | 0.03 | 0.07 | 0.03 |
ZrO2 | 0.07 | 0.06 | 0.08 | 0.05 | 0.07 | 0.06 | 0.05 | 0.05 |
BaO | 0.13 | 0.11 | 0.13 | 0.10 | 0.12 | 0.12 | 0.13 | 0.11 |
ZnO | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
4.1.2. Phase Composition
AN | ANZ | CLJ | CLA | CLF | Mo | HdD | OL | |
---|---|---|---|---|---|---|---|---|
Plagioclase | 25.1 | 35.0 | 26.1 | 27.6 | 30.9 | 28.1 | 23.8 | 20.9 |
Albite | 10.6 | 9.9 | 11.1 | 13.8 | 9.6 | 11.7 | 17.3 | 7.6 |
Sanidin-Na16 | 16.1 | 13.0 | 16.0 | 18.5 | 20.3 | 12.1 | 13.4 | 12.6 |
Sanidin-Na67 | 4.1 | 3.8 | 5.0 | 1.8 | 1.2 | 5.5 | 7.6 | 1.1 |
Augite | 6.3 | 2.2 | 5.5 | 2.9 | 5.9 | 5.8 | 2.6 | 2.2 |
Fluorapatite | 3.4 | 1.1 | 4.2 | 2.0 | 1.4 | 1.9 | 1.5 | 5.5 |
Hematite | 3.0 | 2.1 | 2.1 | 1.8 | 3.0 | 0.8 | 0.9 | 4.8 |
Goethite | 0.2 | 0.8 | 0.6 | 0.0 | 0.0 | 1.8 | 2.5 | 0.0 |
Rutile | 0.3 | 0.3 | 0.1 | 0.0 | 0.1 | 0.0 | 0.4 | 0.2 |
Magnetite | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 2.0 | 0.0 |
Opal-CT | 3.1 | 3.6 | 1.0 | 0.0 | 0.9 | 0.6 | 2.6 | 7.4 |
Cristobalite | 3.9 | 4.9 | 5.1 | 2.9 | 5.1 | 4.4 | 4.3 | 2.1 |
Quartz | 0.2 | 0.0 | 3.3 | 1.2 | 0.9 | 2.5 | 0.0 | 9.6 |
Calcite | 0.2 | 2.3 | 2.2 | 0.0 | 0.3 | 1.9 | 0.0 | 1.0 |
Smectite | 13.8 | 7.5 | 8.0 | 17.8 | 14.6 | 9.7 | 2.6 | 12.9 |
Celadonite | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.0 |
Amorphous content | 9.3 | 13.5 | 9.6 | 9.6 | 5.9 | 12.4 | 14.4 | 12.3 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 99.9 | 100.0 | 100.0 | 100.0 |
4.1.3. Microscopic Studies
4.2. Agate
4.2.1. Macroscopic and Microscopic Appearance
4.2.2. Trace Elements
AAN_C | ACJ_r | ACJ_v | AOL_w | AOL_r | AHdD_b | AHdD_bi | AHdD_q | |
---|---|---|---|---|---|---|---|---|
Li | 0.933 | 0.364 | 0.322 | 1.34 | 1.34 | 1.43 | 3.21 | 10.0 |
Na | 241 | 131 | 119 | 197 | 213 | 324 | 464 | 304 |
Mg | 22.9 | 16 | 15.7 | 51 | 22.6 | 19.7 | 23.7 | 15 |
Al | 53.2 | 34.3 | 25.1 | 78.2 | 57.5 | 207 | 96.7 | 19.5 |
K | 114 | 66.3 | 67.6 | 109 | 143 | 240 | 227 | 98.6 |
Ca | 268 | 223 | 250 | 388 | 639 | 205 | 464 | 175 |
Sc | 0.151 | <0.1 | <0.1 | 0.109 | <0.1 | <0.1 | 0.164 | <0.1 |
Ti | 3.02 | 3.93 | 1.31 | 3.51 | 3.52 | 21.3 | 24.3 | 1.65 |
V | 0.218 | 1.83 | 0.313 | 0.415 | 0.36 | 0.521 | 0.207 | <0.1 |
Cr | 17.4 | 1.96 | 28.3 | 40.8 | 24.3 | 50.3 | 21.0 | 11.3 |
Mn | 3.55 | 1.99 | 3.74 | 13.1 | 4.29 | 54.6 | 11.6 | 2.05 |
Fe | 456 | 748 | 256 | 455 | 471 | 604 | 522 | 77.9 |
Co | 0.133 | 0.029 | 0.247 | 0.319 | 0.209 | 0.376 | 0.179 | 0.086 |
Cu | 1.16 | 1.57 | 1.61 | 2.94 | 10.2 | 1.96 | 1.31 | 0.846 |
Zn | 11.9 | 4.63 | 14.4 | 7.26 | 14 | 9.43 | 27.8 | 11 |
Cs | <0.01 | <0.01 | 0.015 | 1.98 | 1.19 | 0.065 | 0.067 | <0.01 |
Rb | 0.593 | 0.262 | 0.185 | 0.982 | 0.706 | 1.58 | 0.596 | 0.215 |
Sr | 4.21 | 2.84 | 13.2 | 16.0 | 15.0 | 21.2 | 142 | 1.56 |
Y | 3.17 | 0.65 | 2.39 | 2.75 | 2.29 | 1.88 | 7.45 | 1.32 |
Nb | 0.152 | 0.070 | 0.065 | 0.086 | 0.071 | 0.095 | 0.318 | 0.044 |
Sb | 1.91 | 2.60 | 1.01 | 305 | 343 | 0.407 | 0.202 | 0.099 |
Ba | 2.4 | 2.27 | 1.73 | 0.982 | 1.03 | 7.32 | 133 | 0.574 |
Ta | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Th | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
U | 16.5 | 31.5 | 8.31 | 5.29 | 8.87 | 11.5 | 8.25 | 2.26 |
AMo_g | AMo_r | AMo_q | ACLF_w | ACLF_r | ACLA_w | ACLA_r | AANZ | |
Li | 1.88 | 0.423 | 1.35 | 0.769 | 0.772 | 0.904 | 0.821 | 0.971 |
Na | 372 | 557 | 394 | 273 | 192 | 243 | 346 | 139 |
Mg | 24.5 | 17.9 | 17.6 | 139 | 27.6 | 23.2 | 19.2 | 39 |
Al | 76.2 | 23.5 | 25.9 | 78.9 | 42.3 | 49.4 | 33.7 | 28.6 |
K | 179 | 148 | 61 | 140 | 123 | 97.7 | 161 | 88.4 |
Ca | 285 | 255 | 197 | 311 | 225 | 156 | 191 | 236 |
Sc | 0.142 | 0.103 | <0.1 | 0.268 | <0.1 | <0.1 | <0.1 | <0.1 |
Ti | 2.55 | <0.1 | 1.19 | 4.39 | 3.54 | 5.22 | 20.7 | 6.06 |
V | 0.223 | <0.1 | <0.1 | 0.241 | 0.264 | 0.216 | 0.305 | 0.173 |
Cr | 32.8 | 4.27 | 4.90 | 19.2 | 14.5 | 12.9 | 14.2 | 18.3 |
Mn | 7.45 | 6.17 | 2.01 | 4.14 | 8.24 | 5.06 | 5.85 | 3.96 |
Fe | 633 | 538 | 141 | 361 | 654 | 262 | 863 | 969 |
Co | 0.256 | 0.045 | 0.048 | 0.208 | 0.115 | 0.151 | 0.130 | 0.167 |
Cu | 2.26 | 6.96 | 3.16 | 4.7 | 3.97 | 1.86 | 1.2 | 4.07 |
Zn | 6.53 | 14.8 | 4.44 | 13.4 | 16 | 4.25 | 187 | 6.69 |
Cs | 0.040 | 0.044 | 0.025 | 0.192 | 0.118 | 0.097 | 0.191 | 0.227 |
Rb | 0.411 | 0.239 | 0.131 | 0.599 | 0.616 | 0.475 | 0.768 | 0.620 |
Sr | 35.1 | 2.34 | 1.82 | 3.91 | 2.95 | 1.76 | 2.41 | 4.33 |
Y | 3.33 | 0.371 | 1.52 | 1.76 | 1.69 | 3.1 | 2.55 | 1.11 |
Nb | 0.055 | 0.035 | 0.031 | 0.053 | 0.031 | 0.028 | 0.153 | 0.047 |
Sb | 1.26 | 3.61 | 11.3 | 1.13 | 1.29 | 4.88 | 2.47 | 0.314 |
Ba | 3.22 | 3.19 | 0.856 | 4.46 | 5.38 | 1.78 | 2.53 | 1.49 |
Ta | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Th | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
U | 13.3 | 24.4 | 10.8 | 13.9 | 30.6 | 7.18 | 32.5 | 19 |
4.2.3. Cathodoluminescence (CL)
4.2.4. Electron Paramagnetic Resonance (EPR)
5. Discussion
5.1. Characteristics and Formation of Volcanic Host-Rocks
5.2. Origin of Silica for Agate Formation
5.3. Microstructure and Color of Agates
5.4. Agate Formation Process
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cross, B.L. The Agates of Northern Mexico; Burgess International: Edina, MN, USA, 1996; 201p. [Google Scholar]
- Morán-Zenteno, D.J. The Geology of the Mexican Republic, 1st English ed.; AAPG Studies in Geology; American Association of Petroleum Geologists: Tulsa, OK, USA, 1994; Volume 39, 160p. [Google Scholar]
- Bockoven, N.T. Petrology and Volcanic Stratigraphy of the El Sueco Area, Chihuahua, Mexico. Doctoral Dissertaition, The University of Texas at Austin, Austin, TX, USA, 1976. [Google Scholar]
- Mandujano, M.C.; Pisanty, I.; Eguiarte, L.E. Plant Diversity and Ecology in the Chihuahuan Desert; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; 327p. [Google Scholar]
- Keller, P.C.; Bockoven, N.T.; McDowell, F.W. Tertiary volcanic history of the Sierra del Gallego area, Chihuahua, Mexico. Geol. Soc. Am. Bull. 1982, 93, 303–314. [Google Scholar] [CrossRef]
- Zenz, J. Achate; Bode-Verlag: Haltern, Germany, 2005; 656p. [Google Scholar]
- Döbelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2005, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Neuser, R.D.; Bruhn, F.; Götze, J.; Habermann, D.; Richter, D.K. Kathodolumineszenz: Methodik und Anwendung. Zent. Für Geol. Und Paläontologie Teil 1 1995, 1, 287–306. [Google Scholar]
- Monecke, T.; Bombach, G.; Klemm, W.; Kempe, U.; Götze, J.; Wolf, D. Determination of trace elements in quartz standard UNS-SpS and in natural quartz by ICP-MS. Geostand. Newsl. 2000, 24, 73–81. [Google Scholar] [CrossRef]
- Cox, K.G.; Bell, J.D.; Pankhurst, R.J. The Interpretation of Igneous Rocks; Springer eBook Collection; Springer: Dordrecht, The Netherlands, 1979; 450p. [Google Scholar]
- LeBas, M.J.; Maitre, R.W.L.; Streckeisen, A.; Zanettin, B. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar]
- Middlemost, E.A. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Pearce, J.A. A User’s Guide to Basalt Discrimination Diagrams. In Trace Element Geo-Chemistry of Volcanic Rocks—Applications for Massive Sulphide Exploration, ShortCourse Notes; Geological Association of Canada: St. Johns, NL, Canada, 1996; Volume 12, 113p. [Google Scholar]
- Shelley, D. Igneous and Metamorphic Rocks under the Microscope: Classification, Textures, Microstructures and Mineral Preferred Orientations; Chapman and Hall: London, UK, 1997; 445p. [Google Scholar]
- de La Roche, H.; Leterrier, J.; Grandclaude, P.; Marchal, M. A classification of volcanic and plutonic rocks using R 1 R 2-diagram and major-element analyses—Its relationships with current nomenclature. Chem. Geol. 1980, 29, 183–210. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals and Their X-ray Identification; The Mineralogical Society of Great Britain and Ireland: London, UK, 1984; Volume 5, 495p. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997; 378p. [Google Scholar]
- Götze, J.; MacRae, C.; Pan, Y.; Wilson, N.C.; Torpy, A.; Audédat, A. The 450 nm (2.8 eV) cathodoluminescence emission in quartz and its relation to structural defects and Ti contents. Am. Mineral. 2023, in press. [Google Scholar] [CrossRef]
- Stevens-Kalceff, M.A. Cathodoluminescence microcharacterization of point defects in α-quartz. Mineral. Mag. 2009, 73, 585–606. [Google Scholar] [CrossRef]
- Götze, J.; Gaft, M.; Möckel, R. Uranium and uranyl luminescence in agate/chalcedony. Mineral. Mag. 2015, 79, 985–995. [Google Scholar] [CrossRef]
- Götze, J.; Pan, Y.; Müller, A. Mineralogy and mineral chemistry of quartz—A review. Mineral. Mag. 2021, 85, 639–664. [Google Scholar] [CrossRef]
- Mashkovtsev, R.I.; Balitsky, V.S.; Pan, Y. EPR characteristics of radiation-induced defects in Ge-rich α-quartz. Solid State Sci. 2022, 125, 106833. [Google Scholar] [CrossRef]
- Götze, J.; Pan, Y.; Stevens-Kalceff, M.; Kempe, U.; Müller, A. Origin and significance of the yellow cathodoluminescence (CL) of quartz. Am. Mineral. 2015, 100, 1469–1482. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Geochemistry; Clarendon Press: Oxford, UK, 1954; 730p. [Google Scholar]
- Nixon, G.T.; Pearce, T.H. Laser-interferometry study of oscillatory zoning in plagioclase; the record of magma mixing and phenocryst recycling in calc-alkaline magma chambers, Iztaccihuatl Volcano, Mexico. Am. Mineral. 1987, 72, 1144–1162. [Google Scholar]
- Pearce, T.H.; Russell, J.K.; Wolfson, I. Laser-interference and Nomarski interference imaging of zoning profiles in plagioclase phenocrysts from the May 18, 1980, eruption of Mount St. Helens, Washington. Am. Mineral. 1987, 72, 1131–1143. [Google Scholar]
- Watson, E.B.; Green, T.H. Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet. Sci. Lett. 1981, 56, 405–421. [Google Scholar] [CrossRef]
- Watson, E.; Capobianco, C.J. Phosphorus and the rare earth elements in felsic magmas: An assessment of the role of apatite. Geochim. Et Cosmochim. Acta 1981, 45, 2349–2358. [Google Scholar] [CrossRef]
- Vernon, R.H. A Practical Guide to Rock Microstructure, 2nd ed.; Cambridge University Press: Cambridge, UK, 2018; 431p. [Google Scholar]
- Hibbard, M.J. The magma mixing origin of mantled feldspars. Contrib. Mineral. Petrol. 1981, 76, 158–170. [Google Scholar] [CrossRef]
- Rink, W.J.; Rendell, H.; Marseglia, E.A.; Luff, B.J.; Townsend, P.D. Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Phys. Chem. Miner. 1993, 20, 353–361. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Fuchs, H.; Habermann, D. Defect structure and luminescence behaviour of agate; results of electron paramagnetic resonance (EPR) and cathodolumines-cence (CL) studies. Mineral. Mag. 1999, 63, 149–163. [Google Scholar] [CrossRef]
- Götze, J. Chemistry, textures and physical properties of quartz—Geological interpretation and technical application. Mineral. Mag. 2009, 73, 645–671. [Google Scholar] [CrossRef]
- Rusk, B.; Möckel, R.; Götze, J. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In Quartz: Deposits, Mineralogy and Analytics; Götze, J., Möckel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 307–329. [Google Scholar]
- Monnier, L.; Salvi, S.; Pochon, A.; Melleton, J.; Béziat, D.; Lach, P.; Bailly, L. Antimony in quartz as a vector to mineralization: A statistical approach from five Variscan Sb occurrences (France). J. Geochem. Explor. 2021, 221, 106705. [Google Scholar] [CrossRef]
- Pacák, K.; Zachariáš, J.; Strnad, L. Trace-element chemistry of barren and ore-bearing quartz of selected Au, Au-Ag and Sb-Au deposits from the Bohemian Massif. J. Geosci. 2019, 64, 19–35. [Google Scholar] [CrossRef]
- Götze, J. Mineralogy, geochemistry and genesis of agate–revealing the mystery of agate formation. In Quartz2021; Natural History Museum, University of Oslo: Oslo, Norway, 2021; pp. 1–26. [Google Scholar]
- Staude, J.-M. Map of metallic mining districts and mineral deposit types in Chihuahua, Mexico. US Geol. Surv. 1993, 93–718. [Google Scholar] [CrossRef]
- Lueth, V.W.; Megaw, P.K.M.; Pingitore, N.E.; Goodell, P.C. Systematic Variation in Galena Solid-Solution Compositions at Santa Eulalia, Chihuahua. Mex. Econ. Geol. 2000, 95, 1673–1687. [Google Scholar] [CrossRef]
- Hyrsl, J. Chrome chalcedony. J. Gemmol. 1999, 26, 364–370. [Google Scholar] [CrossRef]
- Hyrsl, J. Chrome Chalcedony from Tanzania. J. Gemmol. 2016, 35, 189–191. [Google Scholar]
- Powolny, T.; Dumańska-Słowik, M.; Sikorska-Jaworowska, M.; Wójcik-Bania, M. Agate mineralization in spilitized Permian volcanics from “Borówno” quarry (Lower Silesia, Po-land)—Microtextural, mineralogical, and geochemical constraints. Ore Geol. Rev. 2019, 114, 103130. [Google Scholar] [CrossRef]
- Arai, S.; Akizawa, N. Precipitation and dissolution of chromite by hydrothermal solu-tions in the Oman ophiolite: New behavior of Cr and chromite. Am. Mineral. 2014, 99, 28–34. [Google Scholar] [CrossRef]
- Salaün, A.; Villemant, B.; Gérard, M.; Komorowski, J.-C.; Michel, A. Hydrothermal alteration in andesitic volcanoes: Trace element redistribution in active and ancient hydrothermal systems of Guadeloupe (Lesser Antilles). J. Geochem. Explor. 2011, 111, 59–83. [Google Scholar] [CrossRef]
- Götze, J.; Hanchar, M. Atlas of Cathodoluminescence Textures; Geological Association of Canada: St. John’s, NL, Canada, 2018; 248p. [Google Scholar]
- Pagel, M.; Barbin, V.; Blanc, P.; Ohnenstetter, D. Cathodoluminescence in Geosciences: An Introduction; Springer: Berlin/Heidelberg, Germany, 2000; 514p. [Google Scholar]
- Götze, J.; Möckel, R.; Pan, Y. Mineralogy, Geochemistry and Genesis of Agate—A Review. Minerals 2020, 10, 1037. [Google Scholar] [CrossRef]
- Pan, Y.; Li, D.; Feng, R.; Wiens, E.; Chen, N.; Götze, J.; Lin, J. Uranyl binding mechanism in microcrystalline silicas: A potential missing link for uranium mineralization by direct uranyl co-precipitation and environmental implications. Geochim. Et Cosmochim. Acta 2021, 292, 518–531. [Google Scholar] [CrossRef]
- Moxon, T. A re-examination of water in agate and its bearing on the agate genesis enigma. Mineral. Mag. 2017, 81, 1223–1244. [Google Scholar] [CrossRef]
- Moxon, T. Agate: A study of ageing. Eur. J. Mineral. 2002, 14, 1109–1118. [Google Scholar] [CrossRef]
- Schwertmann, U. Relations between Iron Oxides, Soil Color, and Soil Formation. Soil Color 1993, 31, 51–69. [Google Scholar]
- Porter, R.A.; Weber, W.J. The interaction of silicic acid with iron(III) and uranyl ions in dilute aqueous solution. J. Inorg. Nucl. Chem. 1971, 33, 2443–2449. [Google Scholar] [CrossRef]
- Krawczyk-Bärsch, E.; Arnold, T.; Reuther, H.; Brandt, F.; Bosbach, D.; Bernhard, G. Formation of secondary Fe-oxyhydroxide phases during the dissolution of chlorite—Effects on uranium sorption. Appl. Geochem. 2004, 19, 1403–1412. [Google Scholar] [CrossRef]
- Ames, L.L.; McGarrah, J.E.; Walker, B.A.; Salter, P.F. Uranium and radium sorption on amorphous ferric oxyhydroxide. Chem. Geol. 1983, 40, 135–148. [Google Scholar] [CrossRef]
- Bruno, J.; de Pablo, J.; Duro, L.; Figuerola, E. Experimental study and modeling of the U(VI)-Fe(OH)3 surface precipitation/coprecipitation equilibria. Geochim. Et Cosmochim. Acta 1995, 59, 4113–4123. [Google Scholar] [CrossRef]
- Götze, J.; Nasdala, L.; Kleeberg, R.; Wenzel, M. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study. Contrib. Mineral. Petrol. 1998, 133, 96. [Google Scholar] [CrossRef]
- Zenz, J. Achate III; Bode-Verlag: Lauenstein, Germany, 2011; 656p. [Google Scholar]
- Mernagh, T.P.; Miezitis, Y. A Review of the Geochemical Processes Controlling the Distribution of Thorium in the Earth’s Crust and Australia’s Thorium Resources; Geoscience Australia: Canberra, Australia, 2008; 48p. [Google Scholar]
- Keller, P.C. Geology of the Sierra Del Gallego Area, Chihuahua, Mexico; The University of Texas at Austin: Austin, TX, USA, 1977. [Google Scholar]
- Megaw, P. Geology and Geochemistry of the Santa Eulalia Mining District, Chihuahua, Mexico; The University of Arizona: Austin, TX, USA, 1990. [Google Scholar]
- Harder, H. Agates-formation as a multi component colloid chemical precipitation at low temperatures. Neues Jahrb. Für Mineral. Mon. 1993, 1, 31–48. [Google Scholar]
- Götze, J. Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microsc. Microanal. 2012, 18, 1270–1284. [Google Scholar] [CrossRef] [PubMed]
- Moxon, T.; Ríos, S. Moganite and water content as a function of age in agate: An XRD and thermogravimetric study. Eur. J. Mineral. 2004, 16, 269–278. [Google Scholar] [CrossRef]
- Moxon, T.; Palyanova, G. Agate Genesis: A Continuing Enigma. Minerals 2020, 10, 953. [Google Scholar] [CrossRef]
Sample | Color | Deposit | Occurence | Properties |
---|---|---|---|---|
AN | red-purple | Agua Nueva | 1 | porphyritic, fresh |
ANZ | gray-purple | Agua Nueva | 2 | microcrystalline, aphyric |
CLJ | gray | Coyamito | Japanese deposit | porphyritic, fresh |
CLA | gray | Coyamito | Los Alamos claim | porphyritic, fresh |
CLF | gray-red | Coyamito | La Fortuna claim | porphyritic, fresh, with big agate nodules |
HdD | greenish-gray | Huevos del Diabolo | Huevos del Diabolo | aphyric, strongly altered |
Mo | gray | Moctezuma | Moctezuma | porphyritic, fresh |
OL | red | Ojo Laguna | Arcoiris claim | porphyritic, strongly altered, impregnated with chalcedony |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrozik, M.; Götze, J.; Pan, Y.; Möckel, R. Mineralogy, Geochemistry, and Genesis of Agates from Chihuahua, Northern Mexico. Minerals 2023, 13, 687. https://doi.org/10.3390/min13050687
Mrozik M, Götze J, Pan Y, Möckel R. Mineralogy, Geochemistry, and Genesis of Agates from Chihuahua, Northern Mexico. Minerals. 2023; 13(5):687. https://doi.org/10.3390/min13050687
Chicago/Turabian StyleMrozik, Maximilian, Jens Götze, Yuanming Pan, and Robert Möckel. 2023. "Mineralogy, Geochemistry, and Genesis of Agates from Chihuahua, Northern Mexico" Minerals 13, no. 5: 687. https://doi.org/10.3390/min13050687
APA StyleMrozik, M., Götze, J., Pan, Y., & Möckel, R. (2023). Mineralogy, Geochemistry, and Genesis of Agates from Chihuahua, Northern Mexico. Minerals, 13(5), 687. https://doi.org/10.3390/min13050687