Novel Hydroxyl-Containing Quaternary Ammonium Salt N-(2-Hydroxyethyl)-N, N-Dimethyl-3-[(1-Oxododecyl)amino]-1-Propanaminium: Its Synthesis and Flotation Performance to Quartz
Abstract
:1. Introduction
2. Materials and Methods
2.1. Minerals
2.2. Reagents
2.3. Flotation Tests
2.4. FTIR Measurements
2.5. Zeta Potential Determinations
2.6. XPS Measurements
3. Results and Discussions
3.1. Characterization of LPDC
3.2. Flotation Tests of Single Minerals
3.3. Flotation Tests of Artificial Minerals
3.4. FTIR Analysis
3.5. Zeta Potential Measurements
3.6. XPS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wesana, J.; De Steur, H.; Dora, M.K.; Mutenyo, E.; Muyama, L.; Gellynck, X. Towards Nutrition Sensitive Agriculture. Actor Readiness to Reduce Food and Nutrient Losses or Wastes along the Dairy Value Chain in Uganda. J. Clean. Prod. 2018, 182, 46–56. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, C.; Liu, Z.; Zeng, H.; Feng, B.; Zhong, H.; Luo, W.; Hu, Y.; Guo, Z.; He, G.; et al. Utilization of a New Gemini Surfactant as the Collector for the Reverse Froth Flotation of Phosphate Ore in Sustainable Production of Phosphate Fertilizer. J. Clean. Prod. 2019, 221, 108–112. [Google Scholar] [CrossRef]
- Han, Y.; Han, S.; Kim, B.; Yang, J.; Choi, J.; Kim, K.; You, K.-S.; Kim, H. Flotation Separation of Quartz from Apatite and Surface Forces in Bubble–Particle Interactions: Role of PH and Cationic Amine Collector Contents. J. Ind. Eng. Chem. 2019, 70, 107–115. [Google Scholar] [CrossRef]
- Merma, A.G.; Torem, M.L.; Morán, J.J.V.; Monte, M.B.M. On the Fundamental Aspects of Apatite and Quartz Flotation Using a Gram Positive Strain as a Bioreagent. Miner. Eng. 2013, 48, 61–67. [Google Scholar] [CrossRef]
- Cao, S.; Yin, W.; Yang, B.; Zhu, Z.; Sun, H.; Sheng, Q.; Chen, K. Insights into the Influence of Temperature on the Adsorption Behavior of Sodium Oleate and Its Response to Flotation of Quartz. Int. J. Min. Sci. Technol. 2022, 32, 399–409. [Google Scholar] [CrossRef]
- Shuai, S.; Huang, Z.; Burov, V.E.; Poilov, V.Z.; Li, F.; Wang, H.; Liu, R.; Zhang, S.; Cheng, C.; Li, W.; et al. Flotation Separation of Wolframite from Calcite Using a New Trisiloxane Surfactant as Collector. Int. J. Min. Sci. Technol. 2023, 33, 379–387. [Google Scholar] [CrossRef]
- Lei, D.; Gui, W.; Zhao, X.; Tian, X.; Xiao, W.; Xue, J.; Wang, Y.; Peng, X. New Insight into Poor Flotation Recovery of Fine Molybdenite: An Overlooked Phase Transition from 2H to 1T MoS2. Sep. Purif. Technol. 2023, 304, 122286. [Google Scholar] [CrossRef]
- Shen, Z.; Tao, J.; Wen, S.; Wang, H.; Zhang, Q.; Feng, Q. Surface Characteristics and Flotation Performance of Quartz in the Presence of Dissolved Components of Malachite. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130497. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Liu, W.; Li, P.; Chen, X.; Tong, K.; Kou, W. Adsorption Study of Potential Collector Polyoxyethylene Ether Phosphate on Magnesite. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131282. [Google Scholar] [CrossRef]
- Liu, G.; Yang, X.; Zhong, H. Molecular Design of Flotation Collectors: A Recent Progress. Adv. Colloid Interface Sci. 2017, 246, 181–195. [Google Scholar] [CrossRef]
- Albijanic, B.; Ozdemir, O.; Nguyen, A.V.; Bradshaw, D. A Review of Induction and Attachment Times of Wetting Thin Films between Air Bubbles and Particles and Its Relevance in the Separation of Particles by Flotation. Adv. Colloid Interface Sci. 2010, 159, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Gharabaghi, M.; Aghazadeh, S. A Review of the Role of Wetting and Spreading Phenomena on the Flotation Practice. Curr. Opin. Colloid Interface Sci. 2014, 19, 266–282. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, Z.; Liu, W.; Tian, P. Effect of TIPA/TEA Combined Grinding Aid on the Behavior of Quartz Flotation in DDA System. Powder Technol. 2022, 406, 117570. [Google Scholar] [CrossRef]
- Ammar, M.; El-Halim, S.A.; Sharada, H.; Fadel, M.; Yehia, A. Study on the Interactions of Two Models of Enzymes as Eco-Friendly Depressants in Flotation Separation of Apatite from Hematite. Appl. Surf. Sci. 2022, 601, 154223. [Google Scholar] [CrossRef]
- Derhy, M.; Taha, Y.; Benzaazoua, M.; El-Bahi, A.; Ait-Khouia, Y.; Hakkou, R. Assessment of the Selective Flotation of Calcite, Apatite and Quartz Using Bio-Based Collectors: Flaxseed, Nigella, and Olive Oils. Miner. Eng. 2022, 182, 107589. [Google Scholar] [CrossRef]
- Luo, B.; Zhu, Y.; Sun, C.; Li, Y.; Han, Y. Flotation and Adsorption of a New Collector α-Bromodecanoic Acid on Quartz Surface. Miner. Eng. 2015, 77, 86–92. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, Y.; Han, Y.; Li, Y.; Yuan, S. Flotation Performance and Adsorption Mechanism of a New Collector 2-(Carbamoylamino) Lauric Acid on Quartz Surface. Miner. Eng. 2020, 153, 106343. [Google Scholar] [CrossRef]
- Peng, X.; Liu, W.; Zhao, Q.; Liu, W.; Tong, K.; Zhao, P. Development and Utilization of a Novel Hydrogen Bonding Enhanced Collector in the Separation of Apatite from Quartz. Miner. Eng. 2022, 180, 107477. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, M.; Zhang, G.; Zhao, W.; Han, G. Enhanced Adsorption of Sulfide and Xanthate on Smithsonite Surfaces by Lead Activation and Implications for Flotation Intensification. Sep. Purif. Technol. 2023, 307, 122772. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, W.; Liu, W.; Shen, Y.; Cui, B.; Zhao, Q. Novel Low-Foam Viscous Cationic Collector 2-[2-(Tetradecylamino)Ethoxy]Ethanol: Design, Synthesis, and Flotation Performance Study to Quartz. Sep. Purif. Technol. 2023, 307, 122633. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, H.; Wang, S.; Xia, L.; Zou, W.; Liu, G. Investigations on Reverse Cationic Flotation of Iron Ore by Using a Gemini Surfactant: Ethane-1,2-Bis(Dimethyl-Dodecyl-Ammonium Bromide). Chem. Eng. J. 2014, 257, 218–228. [Google Scholar] [CrossRef]
- Yang, L. Intensification of Interfacial Adsorption of Dodecylamine onto Quartz by Ultrasonic Method. Sep. Purif. Technol. 2019, 9, 115701. [Google Scholar] [CrossRef]
- Luo, J.; Liu, M.; Xing, Y.; Gui, X.; Li, J. Investigating Agglomeration of Kaolinite Particles in the Presence of Dodecylamine by Force Testing and Molecular Dynamics Simulation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128930. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Zhao, Q.; Shen, Y.; Wang, X.; Wang, B.; Peng, X. Design and Flotation Performance of a Novel Hydroxy Polyamine Surfactant Based on Hematite Reverse Flotation Desilication System. J. Mol. Liq. 2020, 301, 112428. [Google Scholar] [CrossRef]
- Liu, C.; Ni, C.; Yao, J.; Chang, Z.; Wang, Z.; Zeng, G.; Luo, X.; Yang, L.; Ren, Z.; Shao, P.; et al. Hydroxypropyl Amine Surfactant: A Novel Flotation Collector for Efficient Separation of Scheelite from Calcite. Miner. Eng. 2021, 167, 106898. [Google Scholar] [CrossRef]
- Qiao, X.; Liu, A.; Li, Z.; Fan, J.; Fan, P.; Fan, M. Preparation and Properties of Dodecylamine Microemulsion for the Flotation of Quartz and Magnetite. Miner. Eng. 2021, 164, 106821. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, W.; Chen, C.; Chai, L.; Li, L.; Liu, S.; Zhang, T. Selective Flotation of Smithsonite, Quartz and Calcite Using Alkyl Diamine Ether as Collector. Trans. Nonferrous Met. Soc. China 2018, 28, 163–168. [Google Scholar] [CrossRef]
- Zhao, P.; Liu, W.; Liu, W.; Tong, K.; Shen, Y.; Zhao, S.; Zhou, S. Efficient Separation of Magnesite and Quartz Using Eco-Friendly Dimethylaminopropyl Lauramide Experimental and Mechanistic Studies. Miner. Eng. 2022, 188, 107814. [Google Scholar] [CrossRef]
- Liu, W.; Wei, D.; Wang, B.; Fang, P.; Wang, X.; Cui, B. A New Collector Used for Flotation of Oxide Minerals. Trans. Nonferrous Met. Soc. China 2009, 19, 1326–1330. [Google Scholar] [CrossRef]
- Sun, H.; Yin, W.; Yang, B.; Chen, K.; Sheng, Q. Efficiently Separating Magnesite from Quartz Using N-Hexadecyltrimethylammonium Chloride as a Collector via Reverse Flotation. Miner. Eng. 2021, 166, 106899. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Wei, D.; Wang, B. Utilization of Novel Surfactant N-Dodecyl-Isopropanolamine as Collector for Efficient Separation of Quartz from Hematite. Sep. Purif. Technol. 2016, 162, 188–194. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Wang, B.; Zhao, Q.; Duan, H.; Chen, X. Molecular-Level Insights into the Adsorption of a Hydroxy-Containing Tertiary Amine Collector on the Surface of Magnesite Ore. Powder Technol. 2019, 355, 700–707. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Q.; Wang, X. New Insights on Depressive Mechanism of Citric Acid in the Selective Flotation of Dolomite from Apatite. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130075. [Google Scholar] [CrossRef]
- Sun, H.; Yin, W.; Yao, J. Study of Selective Enhancement of Surface Hydrophobicity on Magnesite and Quartz by N, N-Dimethyloctadecylamine: Separation Test, Adsorption Mechanism, and Adsorption Model. Appl. Surf. Sci. 2022, 583, 152482. [Google Scholar] [CrossRef]
- Lima, R.M.F.; Brandao, P.R.G.; Peres, A.E.C. The Infrared Spectra of Amine Collectors Used in the Flotation of Iron Ores. Miner. Eng. 2005, 18, 267–273. [Google Scholar] [CrossRef]
- Liu, W.; Peng, X.; Liu, W.; Wang, X.; Zhao, Q.; Wang, B. Effect Mechanism of the Iso-Propanol Substituent on Amine Collectors in the Flotation of Quartz and Magnesite. Powder Technol. 2020, 360, 1117–1125. [Google Scholar] [CrossRef]
- Huang, Z. Reverse Flotation Separation of Quartz from Phosphorite Ore at Low Temperatures by Using an Emerging Gemini Surfactant as the Collector. Sep. Purif. Technol. 2020, 7, 116923. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Duan, H.; Liu, W.; Shen, Y.; Gu, X.; Qiu, J.; Jia, C. Potential Application of an Eco-Friendly Amine Oxide Collector in Flotation Separation of Quartz from Hematite. Sep. Purif. Technol. 2021, 278, 119668. [Google Scholar] [CrossRef]
- Guo, W.; Han, Y.; Zhu, Y.; Li, Y.; Tang, Z. Effect of Amide Group on the Flotation Performance of Lauric Acid. Appl. Surf. Sci. 2020, 505, 144627. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Wei, D.; Li, M.; Zhao, Q.; Xu, S. Synthesis of N,N-Bis(2-Hydroxypropyl)Laurylamine and Its Flotation on Quartz. Chem. Eng. J. 2017, 309, 63–69. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, S.; Zhang, F.; Wang, H.; Zhou, J.; Yu, X.; Liu, R.; Cheng, C.; Liu, Z.; Guo, Z.; et al. Evaluation of a Novel Morpholine-Typed Gemini Surfactant as the Collector for the Reverse Flotation Separation of Halite from Carnallite Ore. J. Mol. Liq. 2020, 313, 113506. [Google Scholar] [CrossRef]
- Filippov, L.O.; Severov, V.V.; Filippova, I.V. An Overview of the Beneficiation of Iron Ores via Reverse Cationic Flotation. Int. J. Miner. Process. 2014, 127, 62–69. [Google Scholar] [CrossRef]
- Duan, H.; Liu, W.; Wang, X.; Liu, W.; Zhang, X. Effect of Secondary Amino on the Adsorption of N-Dodecylethylenediamine on Quartz Surface: A Molecular Dynamics Study. Powder Technol. 2019, 351, 46–53. [Google Scholar] [CrossRef]
- Ren, L.; Qiu, H.; Zhang, Y.; Nguyen, A.V.; Zhang, M.; Wei, P.; Long, Q. Effects of Alkyl Ether Amine and Calcium Ions on Fine Quartz Flotation and Its Guidance for Upgrading Vanadium from Stone Coal. Powder Technol. 2018, 338, 180–189. [Google Scholar] [CrossRef]
- Zhang, H.; Chai, W.; Cao, Y. Flotation Separation of Quartz from Gypsum Using Benzyl Quaternary Ammonium Salt as Collector. Appl. Surf. Sci. 2022, 576, 151834. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Zhao, Q.; Peng, X.; Wang, B.; Zhou, S.; Zhao, L. Investigating the Performance of a Novel Polyamine Derivative for Separation of Quartz and Hematite Based on Theoretical Prediction and Experiment. Sep. Purif. Technol. 2020, 237, 116370. [Google Scholar] [CrossRef]
Sample | Atomic Concentration (%) | |||
---|---|---|---|---|
C 1s | O 1s | N 1s | Si 2p | |
quartz | 18.8 | 52.6 | - | 28.6 |
quartz + LPDC | 22.2 | 49.7 | 2.9 | 27.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhao, P.; Liu, W.; Liu, W.; Guo, Y.; Tong, K.; Chen, X. Novel Hydroxyl-Containing Quaternary Ammonium Salt N-(2-Hydroxyethyl)-N, N-Dimethyl-3-[(1-Oxododecyl)amino]-1-Propanaminium: Its Synthesis and Flotation Performance to Quartz. Minerals 2023, 13, 702. https://doi.org/10.3390/min13050702
Wang B, Zhao P, Liu W, Liu W, Guo Y, Tong K, Chen X. Novel Hydroxyl-Containing Quaternary Ammonium Salt N-(2-Hydroxyethyl)-N, N-Dimethyl-3-[(1-Oxododecyl)amino]-1-Propanaminium: Its Synthesis and Flotation Performance to Quartz. Minerals. 2023; 13(5):702. https://doi.org/10.3390/min13050702
Chicago/Turabian StyleWang, Benying, Panxing Zhao, Wengang Liu, Wenbao Liu, Ying Guo, Kelin Tong, and Xudong Chen. 2023. "Novel Hydroxyl-Containing Quaternary Ammonium Salt N-(2-Hydroxyethyl)-N, N-Dimethyl-3-[(1-Oxododecyl)amino]-1-Propanaminium: Its Synthesis and Flotation Performance to Quartz" Minerals 13, no. 5: 702. https://doi.org/10.3390/min13050702
APA StyleWang, B., Zhao, P., Liu, W., Liu, W., Guo, Y., Tong, K., & Chen, X. (2023). Novel Hydroxyl-Containing Quaternary Ammonium Salt N-(2-Hydroxyethyl)-N, N-Dimethyl-3-[(1-Oxododecyl)amino]-1-Propanaminium: Its Synthesis and Flotation Performance to Quartz. Minerals, 13(5), 702. https://doi.org/10.3390/min13050702