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Abstract: Heavy metal pollution management is a global environmental problem that poses a
great threat to the ecological environment. Adsorption and biomineralization are considered to
be the two most promising heavy metal pollution remediation techniques among the numerous
available ones. In this work, a combined heavy metal removal system was constructed employing
the adsorption of montmorillonite and the mineralization of carbonate mineralizing bacteria to
expand their application potential for controlling heavy metal water pollution. Analysis of changes
in pH, CO3

2− concentration, Pb2+ concentration in the liquid phase, and changes in microscopic
morphology, mineral phase, and functional group on sedimentary minerals was done to study
the retention and fixation behaviour of montmorillonite and carbonate mineralizing bacteria on
Pb2+. The results show that the liquid phase pH may be slightly altered by the ions dissolved in
montmorillonite. Based on the conditions of montmorillonite and carbonate mineralizing bacteria
functioning separately, the elimination of Pb2+ may reach 35.31% and 45.75%, respectively. However,
when montmorillonite is combined with carbonate mineralizing bacteria, which is the heavy metal
removal system constructed in this study, montmorillonite can buffer part of the Pb2+ rapidly
and reduce its biotoxicity. Subsequently, these buffered Pb2+ are gradually desorbed by carbonate
mineralizing bacteria and removed by the effect of mineralized deposition. Results from SEM, FTIR,
and XRD indicate that Pb2+ is primarily removed from the liquid phase as rod-shaped PbCO3. It is
worth noting that this process is able to significantly increase the removal of Pb2+ up to 90.06%. In
addition, the presence of carbonate mineralizing bacteria can increase montmorillonite’s desorption
rate to over 81%, greatly enhancing its capacity for reuse. Therefore, our research work contributes to
expanding the potential of montmorillonite and carbonate mineralizing bacteria in the treatment of
heavy metal-polluted waters.

Keywords: biomineralization; carbonate mineralizing bacteria; montmorillonite; adsorption; heavy
metals; retention and fixation behaviour

1. Introduction

Lead (Pb), a heavy metal with a high ecological threat, is found in the environment
largely in the form of divalent compounds [1]. The nuclear industry, the petrochemical
industry, mineral mining and smelting, coal combustion, metal plating, etc., are all sig-
nificant anthropogenic sources supplementary to natural sources such as the weathering
and dissolution of rocks and minerals [2,3]. It is worth noting that lead is highly bioavail-
able, which means that it is easily absorbed and collected by organisms. Nonetheless,
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this bioaccumulation effect can exert a certain level of toxicity on biological organs and
tissues [4,5]. Lead in the blood, for instance, has a significant detrimental influence on
adults’ cardiovascular, neurological, and internal organs once a certain concentration level
is reached. Similarly, it also has a bad impact on children’s cognitive capacities, physical
development, and hearing levels [6–11]. Furthermore, lead is an important trigger for
cell carcinogenesis; although they do not directly cause cancer, they are a mutagen for
cancer development [12–14]. Early studies have shown a strong association between the
development of lung cancer and chronic exposure to lead [15,16]. For example, Anttila [17]
et al. found that the probability of developing lung cancer was eight times greater in those
with blood lead levels at or above 1.0 µM than in the general population. Therefore, the
treatment of lead pollution is very critical work.

Adsorption has been identified by a variety of researchers as an effective pollution
management technique for the treatment of diverse heavy metal-contaminated wastew-
ater for years of effort [18–20]. In their extensive research endeavours, researchers have
discovered an array of natural adsorbent materials with excellent capabilities. One of the
minerals of interest is montmorillonite (MMT), which is formed through the weathering
of volcanic ash, boasting both a large specific surface area and superior cation exchange
capacity while also being widely and affordably available [19,21–23]. In early research
work, researchers found that montmorillonite performed well in the removal of toxic metals
such as Cu, Fe, As, Cr, Co, Pb, Ni, Zn, Cd, Mn, etc. [21]. For example, Kahkha [24] et al.
reported that sodium montmorillonite with appropriate modification treatment could re-
move almost total Cd, Zn, Pb, and Ni from wastewater; Essebaai [25] et al. found that
the adsorption capacity of montmorillonite for Cr(III) could reach 7.5 mg/g in laboratory
conditions. Apart from adsorption, biomineralization has also been widely researched for
the treatment of heavy metal pollution [26,27]. Some studies have shown that practically
all microorganisms have the capacity to biomineralize, and their presence is crucial for
the emergence of natural minerals [28,29]. Recently, mineralizing microorganisms have
been found to convert various toxic and harmful heavy metal ions (e.g., Cd, Pb, Zn, etc.)
in their surroundings from ionic to solid compounds under the appropriate environment,
which significantly reduces their transportability and bio-availability in the ecosystem,
resulting in a reduction in their ecological threat to the environment and organisms [30–32].
In addition, the operation, cost, ecology, and efficiency of this biomineralization process are
also very favourable, allowing for its widespread use in a variety of disciplines, such as
the remediation of heavy metal contamination [26,33–35]. Among numerous mineralizing
microorganisms, carbonate mineralizing bacteria have demonstrated excellent removal
efficacy for various heavy metal ions, making them a promising candidate for the treatment
of heavy metal pollution [36]. Some examples include the removal of Zn, Pb, and Cd up
to 94.83%, 98.71%, and 97.15%, respectively, by carbonate mineralizing bacteria isolated
from calcareous soil environments and the removal of Cd and Ni up to 96% and 89%,
respectively, by carbonate mineralizing bacteria screened in farm soil environments [30,37].

The combined remediation of heavy metal pollution by montmorillonite and carbonate
mineralizing bacteria has rarely been reported, despite the fact that numerous research
works have focused on the modification of montmorillonite to improve the adsorption
efficiency of heavy metals and the remediation effect of various carbonate mineralizing bac-
teria on heavy metal pollution in various environmental factors. Therefore, this study aims
to construct a composite system of montmorillonite and carbonate mineralizing bacteria
using the rapid adsorption and buffering effect of montmorillonite and the efficient fixation
effect of carbonate mineralizing bacteria to explore its retention and fixation behavior and
removal effect on Pb2+, as well as to preliminarily evaluate the application potential of the
composite system of montmorillonite-carbonate mineralizing bacteria (MMT-CMB) in the
treatment of heavy metal pollution.
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2. Materials and Methods
2.1. Montmorillonite and Its Purification

The Altai region in Xinjiang provided the montmorillonite utilised in the research.
It was purified by continuously stirring and centrifugation in a deionized water solution
before the experiments. After being purified, the samples were dried in a drying oven
(DHG-9140A Shanghai, China) at 60 ◦C before being ground to 200 mesh [38,39].

2.2. Experimental Strains and Cultures

The strain used in this experiment is Klebsiella sp. CRRI-81_WR13A, which was
selected from the purple soil of the Sichuan basin in China. The medium for selecting and
cultivating carbonate mineralizing bacteria consists of the following components: urea
(20 g/L), protein peptone (10 g/L), and NaCl (5 g/L). All of the aforementioned ingredients,
with the exception of urea, were combined with deionized water for the cultivation of
microorganisms. The pH was subsequently corrected to 7.0. The urea solution was added
to the medium via a water filtration membrane (0.22 µm) after being sterilised and cooled.
Finally, the experimental bacterial strain was inoculated into the medium at a volume ratio
of 1:100 (v:v) and cultured at 30 ◦C in a shaking incubator (ZWY-211C, Zhicheng, Shanghai,
China) at 120 rpm for subsequent experiments.

2.3. Pb2+ Retention and Fixation by Montmorillonite and Carbonate Mineralizing Bacteria

For the experiment, protein peptone (10 g/L), NaCl (5 g/L), and Pb2+ 500 mg/L
(Pb(NO3)2 0.7993 g) were weighed in deionised water. Urea was then added using the
above-mentioned procedure after the mixture had been autoclaved and cooled. At the same
time, montmorillonite (20 g/L) was added to the medium, and the experimental group was
inoculated with the carbonate mineralizing bacteria reaching the logarithmic growth phase
at a volume ratio of 1:100 (v:v), while the control group remained non-inoculated state.
Finally, they were placed in a constant temperature shaking incubator (at 30 ◦C, 150 rpm).

During the experiment, samples were collected from the medium at 0 h, 2 h, 1 d,
2 d, 3 d, 5 d, 7 d, 15 d, and 30 d and were centrifuged at 4000 r/min for 1 min. Firstly,
the Multiparameter tester (Seven Excellence, Mettler Toledo, Greifensee, Switzerland)
was used to test the pH of the supernatant; secondly, Pb2+ concentrations of the super-
natant were measured by inductively coupled plasma optical emission spectroscopy (ICP-
OES ICAP6500, Thermo Fisher Scientific, Waltham, MA, USA), with a detection limit of
10−9–10−6 g/L; finally, the CO3

2− concentration in the liquid phase was determined by
titration (DZT 0064.49-1993). Moreover, the precipitate obtained after centrifugation was
washed three times with deionised water and dried in a drying oven at 60 ◦C. Subsequently,
Pb2+ dissolved by ion exchange was determined via the method described above.

In the end, appropriate samples were collected and processed by drying and grinding
(100 mesh). Following this, the samples were examined by X-ray Diffraction (XRD, X’Pert
PRO, PANalytical, Almelo, Netherlands) in the range 3–80◦, and the data were analysed
by Jade 6.0 to determine the change in mineral phases before and after the experiment;
Fourier transform infrared spectroscopy (FTIR, Nico-let5700, Thermo Electron Corporation,
Waltham, MA, USA) was used to record and analyse the changes in mineral functional
groups over the range 4000–400 cm−1 before and after the experiment. In addition, a
scanning electron microscope (SEM, Ultra55, Zeiss, Oberkochen, Germany) was used to
determine and analyse the microscopic morphology of the sedimentary minerals.

2.4. Analysis of Data

The rate of pH change (n1), Pb2+ removal rate (n2), Pb2+ removal rate (n3), montmoril-
lonite retention rate (n4) and carbonate mineralizing bacteria mineralization rate (n5) were
calculated during the experiment as follows:

n1 =
∆pH

∆t
=

pHt2 − pHt1

t2 − t1
(1)
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n2 =
∆C
∆t

=
Ct2 − Ct1

t2 − t1
(2)

n3 =
C0 − C1

C0
× 100% (3)

n4 =
C0 − C2

C0
× 100% (4)

n5 = 1− n1 − n2 (5)

where ∆t is the unit time of action, ∆pH is the change in pH per unit time, ∆C is the change
in Pb2+ concentration per unit time, C0 is the initial Pb2+ concentration in the liquid phase,
C1 is the Pb2+ concentration in the liquid phase during the experiment, and C2 is the Pb2+

concentration adsorbed by montmorillonite in Section 2.2.

3. Results
3.1. Analysis of pH Changes

The variation of liquid phase pH is shown in Figure 1. It is visually observable that
the pH of the liquid phase increases to varying degrees throughout the entire reaction
(Figure 1a), whether carbonate mineralizing bacteria is added or not. Meanwhile, all
samples show an increase in the pH of the liquid phase to around 7.9 at 1 d. The pH
becomes stable when montmorillonite works alone, while it shows an increasing trend
from 1–7 d when montmorillonite and carbonate mineralizing bacteria work together and
stabilizes at around 8.54. This means that montmorillonite has a moderating effect on pH;
it is noteworthy that the rate of pH change (Figure 1b) increases to some extent from 1 d
when carbonate mineralizing bacteria is inoculated. Especially from 3 to 7 d, indicating that
the effect of montmorillonite on the pH of the liquid phase is primarily reflected in the early
stages of the experiment, whereas the effect of carbonate mineralizing bacteria is primarily
observed in the middle of the experiment. This is largely caused by the low number
of microbial cells in the initial period. However, in earlier research (Figure 1c), it was
found that without the addition of Pb2+, the liquid phase pH stabilized at around 9.5 after
only 60 h. This stabilization not only occurred more quickly than the combined effect of
montmorillonite and carbonate mineralizing bacteria but also resulted in a significantly
higher pH level after stabilization. This indicates that the growth of carbonate-mineralizing
bacteria may have been affected to a certain extent.

3.2. Analysis of the Variation of CO3
2− Concentration

The concentration of CO3
2− in the liquid phase environment is an effective predictor

of the experimental strains’ mineralization characteristics. Based on the fact that CO3
2−

created by the carbonate mineralizing bacteria is continually mineralized with Pb2+ during
the mineralization process, the data shown in Figure 2. depict the residual concentration
of CO3

2−. Compared to the control group, the concentration of CO3
2− increases rapidly

and reaches 105.35 mg/L at 7 d following the inclusion of carbonate mineralizing bacteria,
while it increases to 115.03 mg/L slowly later, indicating that the main source of CO3

2− is
produced by carbonate mineralizing bacteria. This also means that when microorganisms
reach a certain population level, they dramatically enhance their metabolic rate and are able
to produce enormous amounts of CO3

2− for mineralization. At the end of the experiment,
mineralization deposition is finished, but some CO3

2− is still present in the liquid phase.
This may be caused by nutrient restrictions that make it difficult for microbes to continue
decomposing urea to produce CO3

2−.
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3.3. Analysis of the Variation of Pb2+ Concentration

The change in Pb2+ concentration in the liquid phase environment is the primary factor
used to assess the performance of the montmorillonite-carbonate mineralizing bacteria
system built for this study. Montmorillonite shows a moderate effect in removing Pb2+,
while the addition of carbonate mineralizing bacteria improves its removal efficacy, as seen
in Figure 3a. Due to the flocculation of organic material in the medium, the initial concen-
tration of Pb2+ determined is 327.4 mg/L, which is lower than the initial concentration of
500 mg/L planned for the experiment. At this initial concentration, when working alone,
montmorillonite makes the concentration of Pb2+ gradually reduce and stabilise at around
216.40 mg/L after 7 d. However, when both montmorillonite and carbonate mineralizing
bacteria are present, the Pb2+ concentration can be significantly reduced to 32.52 mg/L.
The experimental procedure (Figure 3b) shows that the highest rate of Pb2+ adsorption
by montmorillonite, which reached 815.43 mg/L·d−1, was achieved at 2 h, regardless of
whether or not carbonate mineralizing bacteria were included. This is the highest rate
of Pb2+ adsorption observed for montmorillonite. Furthermore, the addition of carbon-
ate mineralizing bacteria results in a rapid decrease in the concentration of Pb2+ within
0.083-7d. Meanwhile, the removal rate of Pb2+ is just 35.31% in the control group, and it has
been progressively declining since 15 d of the experiment. However, the removal rate of
Pb2+ in the montmorillonite-carbonate mineralizing bacteria system keeps increasing, and
the removal rate of Pb2+ is up to 90.06% at 30 d. However, previous research (Figure 3c)
had shown that when the initial Pb2+ concentration was at 414.2mg/L, the removal rate of
Pb2+ was less than 50% after 168 h of the only action of carbonate mineralizing bacteria.
However, during the same time frame, the addition of montmorillonite to the combination
of carbonate mineralizing bacteria resulted in an 80% removal rate of Pb2+, indicating a
significant enhancement in Pb2+ removal rate with the addition of montmorillonite.
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3.4. Analysis of the Variation of Pb2+ Fugitive Content in MMT-CMB Systems

In the montmorillonite-carbonate mineralizing bacteria system constructed in this
study, Pb2+ can be divided into three components: the residual component in the liquid
phase, the retained component in montmorillonite, and the mineralized component in
carbonate mineralizing bacteria. Figure 4 shows the variation of Pb2+ amounts in each
fraction with time. In terms of the overall effect, the retention effect of montmorillonite
on Pb2+ is markedly lower than the mineralizing bacteria, which means that carbonate
mineralizing bacteria dominate the removal process of Pb2+. Furthermore, the amount
of Pb2+ remaining in the liquid phase and the retention of montmorillonite gradually
decreased as the experiment progressed, while the proportion of Pb2+ mineralized by
carbonate mineralizing bacteria showed a gradual improvement. The components of the
residual, the retained, and the mineralized are 2.69%, 85.29%, and 12.02%, respectively, at
7 d, which means that part of the retained fraction of montmorillonite is transferred to the
mineralized fraction by carbonate mineralizing bacteria. This indicates that the carbonate
mineralizing bacteria can not only remove Pb2+ from the liquid phase but also desorb most
of the Pb2+ adsorbed by montmorillonite and remove it by mineralization deposition.
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3.5. Analysis of Sediment SEM in the MMT-CMB System

The SEM patterns of the sediments after the work are shown in Figure 5a–c. Compared
to the control group, without the action of carbonate mineralization bacteria (Figure 5a),
some bars and grains of crystals appear in the sediment (Figure 5b,c), with a size of
1–3 µm, and the surface of these crystals is relatively smooth. This result is relatively
consistent with our earlier study on the mineralization products of carbonate mineralizing
bacteria (Figure 5d).

Minerals 2023, 13, x  9 of 16 
 

 

 
Figure 5. SEM profiles of sedimentary minerals. (a) SEM profile of sedimentary minerals from the 
control group; (b,c) SEM profiles of sediments from the montmorillonite-carbonate mineralizing 
bacteria system; (d) SEM profile of products from earlier studies of the interaction of carbonate min-
eralizing bacteria with Pb2+. 

3.6. Analysis of FTIR and XRD Profiles of Sedimentary Minerals 
3.6.1. FTIR Analysis 

FTIR of the deposited minerals (Figure 6a) shows that, compared to the control group, 
new absorption peaks appear around 1472 cm−1, 850 cm−1, and 798 cm−1 for the experi-
mental montmorillonite minerals, corresponding to the anti-symmetric stretching vibra-
tion absorption peak, the out-of-plane bending vibration absorption peak and the in-plane 
bending vibration absorption peak for CO32−, respectively [40,41]. 

3.6.2. XRD Analysis 
Similarly, the XRD patterns of the sedimentary minerals show that the characteristic 

diffraction peaks of PbCO3 are present in the sedimentary minerals after Pb2+ has been 
treated with montmorillonite and carbonate mineralizing bacteria. This result further in-
dicates that the Pb2+ in solution has been converted to carbonate by the carbonate miner-
alizing bacteria and then removed from the liquid phase. 

Figure 5. SEM profiles of sedimentary minerals. (a) SEM profile of sedimentary minerals from the
control group; (b,c) SEM profiles of sediments from the montmorillonite-carbonate mineralizing
bacteria system; (d) SEM profile of products from earlier studies of the interaction of carbonate
mineralizing bacteria with Pb2+.

3.6. Analysis of FTIR and XRD Profiles of Sedimentary Minerals
3.6.1. FTIR Analysis

FTIR of the deposited minerals (Figure 6a) shows that, compared to the control group,
new absorption peaks appear around 1472 cm−1, 850 cm−1, and 798 cm−1 for the experi-
mental montmorillonite minerals, corresponding to the anti-symmetric stretching vibration
absorption peak, the out-of-plane bending vibration absorption peak and the in-plane
bending vibration absorption peak for CO3

2−, respectively [40,41].

3.6.2. XRD Analysis

Similarly, the XRD patterns of the sedimentary minerals show that the characteristic
diffraction peaks of PbCO3 are present in the sedimentary minerals after Pb2+ has been
treated with montmorillonite and carbonate mineralizing bacteria. This result further
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indicates that the Pb2+ in solution has been converted to carbonate by the carbonate
mineralizing bacteria and then removed from the liquid phase.
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4. Discussion
4.1. Montmorillonite Structure and Adsorption Properties

Montmorillonite is a typical dioctahedral structure, which contains a quantity of Na2+,
Mg2+, Al3+, Fe3+, Ca2+ and other cations inside [42–44]. They have a certain hydrophilicity
and are capable of hydration, as well as hydrolysis in an aqueous environment. When
montmorillonite enters a water environment, the cations contained within it are able to enter
the aqueous environment. Due to the hydrolysis of the cations, especially the Al3+, some
amount of hydroxide can be released, making the water alkaline. As shown in Figure 1a
of this study, the addition of montmorillonite raises the pH of the liquid environment
to around 7.79.

The isomorphous substitution of ions occurs on the tetrahedra and octahedra in
montmorillonite; for example, Al3+ can replace Si4+ and Mg2+ in the tetrahedral and
octahedral lamellae, respectively, which gives montmorillonite a permanent negative
charge or charge layer and gives it a certain adsorption capacity [18,44,45]. However,
under certain conditions, the effectiveness of natural montmorillonite in removing heavy
metal ions through adsorption is not very high. Moreover, the distinct chemical properties
of heavy metal ions, including their charge and ionic radius, can result in variability in
the adsorption effectiveness of montmorillonite for different metal ions. For instance,
Zhao [46] et al. found that at an initial concentration of 1.6g/L of montmorillonite and
100 ppm Sr2+ concentration, the Sr2+ removal rate was only 27.15%. Wang [47] et al.
investigated the fixation behaviour of natural Ca-montmorillonite and Na-montmorillonite
on heavy metals in tailings, and the results showed that the fixation of Pb2+ was around
5% and 50%, respectively. Similarly, in this study, as shown in Figure 3a, under conditions
where the initial Pb2+ concentration was 327.4 mg/L, the maximum removal rate of Pb2+

by montmorillonite was only 35.30%. Hu [48] et al. studied the adsorption properties
of montmorillonite in the presence of various heavy metal ions and showed that the
adsorption capacity of montmorillonite for Pb2+, Cu2+ and Cd2+ was Pb2+ > Cu2+ > Cd2+

as a result of electronegativity. Moreover, as shown in Figure 3a, it can be deduced that
the concentration of Pb2+ in the liquid phase experienced a certain degree of reduction
under the influence of montmorillonite. However, the concentration of Pb2+ exhibited an
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increasing trend from 15 d, indicating that the adsorption of Pb2+ by montmorillonite lacks
long-term stability and is susceptible to desorption.

4.2. Mechanism of Combined Removal by Montmorillonite-Carbonate Mineralizing Bacteria

In the current study, the combined effects of montmorillonite and carbonate miner-
alizing bacteria are mostly responsible for the removal of Pb2+, and the main mechanism
is shown in Figure 7. Montmorillonite has a large amount of negative charge in the layer
sheet, which has a strong adsorption effect on Pb2+ in the liquid phase. Meanwhile, mont-
morillonite has strong ion exchange properties. When montmorillonite enters the water
column, the Ca2+ and Na+ contained within it will experience ion exchange reactions with
Pb2+, and the interlayer ions are transferred to the liquid phase environment while Pb2+

enters the montmorillonite interlayer domain.
At the early stage of the experiment, the contribution of carbonate mineralizing bac-

teria in the reduction of Pb2+ is relatively small due to the poor biomass and delayed
metabolic activity of the microorganisms. However, once the population of carbonate min-
eralizing bacteria reached a certain level, they participated in the process of Pb2+ removal
rapidly. At this moment, montmorillonite has reached adsorption saturation equilibrium,
and the carbonate mineralizing bacteria begin to carry out the following re reactions:

CO(NH2)2 + 2H2O U→ H2CO3 + 2NH3 (6)

2NH3 + 2H2O→ 2NH+
4 + 2OH− (7)

H2CO3 ↔ HCO−3 + H+ (8)

HCO−3 + H+ + 2OH− ↔ CO2−
3 + 2H2O (9)

Pb2+ + CO2−
3 → PbCO3 ↓ (10)

Firstly, carbonic acid and ammonia are produced by the decomposition of urea during
the development of carbonate mineralizing bacteria (Equation (6)); subsequently, ammonia
dissolves in water and transforms into NH4

+ with the release of OH−, which results in
the liquid phase environment to increase in alkalinity (Equation (7)); then, the HCO3

−

ionised from H2CO3 is continuously converted to CO3
2− in an alkaline environment

(Equations (8) and (9)), which reacts in the reaction of the CO3
2− with the Pb2+ in the envi-

ronment as well as those adsorbed on the surface of the carbonate mineralizing bacteria to
form carbonate precipitates (Equation (10)) [49–51]. During this period, the CO3

2− gener-
ated by the above reaction is also continuously combined with the Pb2+ adsorbed on the
surface of the montmorillonite and then deposited, thus allowing the montmorillonite to be
desorbed. However, various functional groups are present in the microorganism and their
metabolites, including carboxyl, ammonia, hydroxyl, sulfhydryl and phosphate [52–54].
When they come into contact with montmorillonite, they can indirectly modify the treat-
ment of montmorillonite, causing it to have more adsorption sites and stronger adsorption
capacity, thus enhancing the adsorption of heavy metal ions by montmorillonite. Moreover,
the increase in pH within the environment also enhances the increased adsorption of metal
ions by montmorillonite [55,56]. Hence, at the end of the experiment, the montmorillonite
still contained some Pb2+.
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4.3. The Influence of Montmorillonite on Carbonate-Mineralizing Bacterial Growth

It can be seen from the above results that montmorillonite performs a crucial buffering
function in the Pb2+ removal experiments. In other words, montmorillonite reduces the
concentration of heavy metal ions to a certain extent in a short time through its adsorption
and ion exchange. Subsequently, the continuous mineralization and deposition by car-
bonate mineralizing bacteria reduce the concentration of the Pb2+, while the continuously
produced CO3

2− combines with the Pb2+ adsorbed by the montmorillonite, converting the
Pb2+ to PbCO3 and desorbing the montmorillonite. High concentrations of heavy metal
ions (especially Pb2+) have been proven to have certain harmful effects on organisms in
a large number of early investigations [50,57]. In previous studies, we found that when
exposed to a liquid environment containing Pb2+, the removal rate of Pb2+ by carbonate
mineralizing bacteria alone was less than 50% (Figure 3c). However, in the montmorillonite-
carbonate mineralizing bacteria system, the removal rate of Pb2+ reached 90.06%, with a
maximum contribution rate of 87.34% by the carbonate mineralizing bacteria (Figure 4).
This result confirms that montmorillonite can effectively decrease the biotoxicity associated
with Pb2+, highlighting the merits of the montmorillonite-carbonate mineralizing bacteria
system in terms of Pb2+ removal. Furthermore, compared to the normal growth condi-
tions where carbonate mineralizing bacteria can raise the pH of the culture medium to
around 9.5 (Figure 1c), the liquid phase pH in this study only slightly elevates to around
8.5 (Figure 1a). This may be attributed to two factors: the inhibitory effect of Pb2+ toxicity
on the growth of carbonate mineralization bacteria and the consumption of HCO3

− due
to its transformation to CO3

2−. The SEM profile (Figure 5b,c) illustrates the presence of
numerous crystals in the sedimentary minerals, and XRD results (Figure 6b) also indicate
the occurrence of PbCO3. This further confirms that Pb2+ is ultimately transformed from
its ionic state to a solid state through the mineralization process of carbonate-mineralizing
bacteria and thus removed from the liquid phase environment. This indicates that the
montmorillonite-carbonate mineralizing bacteria system constructed in this study allows
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for the re-recovery of montmorillonite as well as improving the mineralization performance
of the carbonate mineralizing bacteria.

4.4. Performance Evaluation of MMT-CMB System for Heavy Metal Pollution Treatment

Based on the aforementioned research, the system constructed with montmorillonite
and carbonate mineralizing bacteria has demonstrated a superior removal effect on Pb2+ in
comparison to their individual effects. Modification and intercalation of montmorillonite
are currently key research areas which have demonstrated a marked enhancement in the ad-
sorption ability of montmorillonite through these processes. For example, Wang [47] et al.
found that the removal efficiency of Pb2+ and Mn2+ increased from about 5% and 8%
initially to 80% and 28%, respectively, after montmorillonite was modified by Na2CO3.
Ma [55] et al. found that montmorillonite modified with sodium lignosulfonate could
increase the adsorption of Pb2+ from an initial 40 mg/g to about 52.5 mg/g, while the
adsorption of Cu2+ increased from an initial 6.5 mg/g to about 7.5 mg/g. It is worth noting
that while the montmorillonite modification treatment and intercalation treatment can
significantly improve its capacity to adsorb heavy metal ions, both the cost of treatment (as
mentioned for sodium lignosulfonate) and the modification treatment process could further
increase the cost of heavy metal pollution treatment. Moreover, according to the results of
this research, it can be inferred that the long-term stability of Pb2+ subsequent to montmoril-
lonite adsorption is relatively inferior. In this study, it was shown that the combined action
of montmorillonite and carbonate mineralizing bacteria offers a relatively cost-effective
and simpler approach to heavy metal pollution remediation. This approach tackles the
risk of environmental re-pollution caused by Pb2+ desorption following montmorillonite
adsorption by transforming Pb2+ into insoluble carbonates. Moreover, the desorption of
Pb2+ in montmorillonite can enhance its potential for repeated use. Therefore, the utiliza-
tion of montmorillonite and carbonate mineralizing bacteria for constructing a heavy metal
removal system holds promising application prospects. However, considering that the
growth of microorganisms and the efficiency of heavy metal ion removal are significantly
affected by various environmental factors, such as the co-existence of a large number of
other ions in polluted wastewater, which may influence the removal rate of the target ion,
this is still an important issue to be addressed in future work. Additionally, the combination
of modified montmorillonite or other clay minerals with carbonate mineralizing bacteria to
treat heavy metal pollution is another potential direction for further research.

5. Conclusions

In the co-removal of Pb2+ by montmorillonite and carbonate mineralizing bacteria,
montmorillonite provided an important buffering role, reducing Pb2+ concentrations and
biotoxicity in a short time. The carbonate mineralizing bacteria can not only contribute to
the mineralized deposition of Pb2+ in the liquid phase but also release the Pb2+ gradually
adsorbed by montmorillonite and remove it. In this study, the Pb2+ removal rate was only
35.31% and 45.75% for montmorillonite and carbonate mineralizing bacteria, respectively.
The composite system using montmorillonite and carbonate mineralizing bacteria could
significantly increase the Pb2+ removal rate to 90.06% while allowing montmorillonite to
be recovered and reused. The results of this study demonstrate significant potential for
addressing the problem of heavy metal pollution and thus represent a valuable contribution
to the field of environmental research. This study can serve as a useful reference for policy-
makers, researchers, and others who are engaged in the search for effective solutions to the
problem of heavy metal pollution.

Author Contributions: Conceptualization, Q.D.; methodology, Q.D. and F.X.; software, L.W.; vali-
dation, W.W. and F.X.; formal analysis, W.W., Y.Z. and F.X.; investigation, Q.D. and R.J.; resources,
Q.D.; data curation, W.W. and Y.Z.; writing—original draft preparation, Q.D.; writing—review and
editing, W.W., F.X. and R.J.; visualization, Y.Z. and W.W.; supervision, Q.D.; project administration,
Q.D.; funding acquisition, Q.D. and L.Z. All authors have read and agreed to the published version
of the manuscript.



Minerals 2023, 13, 763 13 of 15

Funding: This research was funded by the National Natural Science Foundation of China
(41102212, 42007281).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors gratefully acknowledge the National Natural Science Foundations
of China for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qian, X.; Fang, C.; Huang, M.; Achal, V. Characterization of fungal-mediated carbonate precipitation in the biomineralization of

chromate and lead from an aqueous solution and soil. J. Clean. Prod. 2017, 164, 198–208. [CrossRef]
2. Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant

system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [CrossRef] [PubMed]
3. Sevak, P.I.; Pushkar, B.K.; Kapadne, P.N. Lead pollution and bacterial bioremediation: A review. Environ. Chem. Lett. 2021, 19,

4463–4488. [CrossRef]
4. Pal, A.; Bhattacharjee, S.; Saha, J.; Sarkar, M.; Mandal, P. Bacterial survival strategies and responses under heavy metal stress: A

comprehensive overview. Crit. Rev. Microbiol. 2022, 48, 327–355. [CrossRef] [PubMed]
5. Prabhakaran, P.; Ashraf, M.A.; Aqma, W.S. Microbial stress response to heavy metals in the environment. RSC Adv. 2016, 6,

109862–109877. [CrossRef]
6. Kumar, A.; Kumar, A.; Cabral-Pinto, M.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan,

S.K.; Kumar, S.S.; et al. Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches. Int. J.
Environ. Res. Public Health 2020, 17, 2179. [CrossRef] [PubMed]

7. Forsyth, J.E.; Islam, M.S.; Parvez, S.M.; Raqib, R.; Rahman, M.S.; Muehe, E.M.; Fendorf, S.; Luby, S.P. Prevalence of elevated blood
lead levels among pregnant women and sources of lead exposure in rural Bangladesh: A case control study. Environ. Res. 2018,
166, 1–9. [CrossRef] [PubMed]

8. Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences.
J. Cell. Biochem. 2018, 119, 157–184. [CrossRef]
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