Three-Dimensional Inversion of Induced Polarization Effects in Airborne Time Domain Electromagnetic Data Using the GEMTIP Model
Abstract
:1. Introduction
2. GEMTIP Resistivity Relaxation Model
3. Modeling and Inversion of Airborne Time Domain EM Data for Complex Resistivity
3.1. Modeling Airborne Time Domain EM Data by Integral Equation Method
3.2. The Inverse Problem of the Airborne IP Method
3.3. Fréchet Derivative Calculation Using the Quasi-Born Approximation
3.4. Calculation of the Fréchet Derivatives with Respect to the GEMTIP Model Parameters
4. Case Study: Inversion of Airborne Data Acquired in Wawa, Ontario, Canada
4.1. Airborne Data Collection and Geological Background of the Survey Area
4.2. VTEM Inversion
4.2.1. Conductivity Results
4.2.2. Chargeability Inversion Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, T. Transient Electromagnetic Response of a Polarizable Ground. Geophysics 1981, 46, 1037–1041. [Google Scholar] [CrossRef]
- Flores, C.; Peralta-Ortega, S.A. Induced Polarization with In-Loop Transient Electromagnetic Soundings: A Case Study of Mineral Discrimination at El Arco Porphyry Copper, Mexico. J. Appl. Geophys. 2009, 68, 423–436. [Google Scholar] [CrossRef]
- Weidelt, P. Response Characteristics of Coincident Loop Transient Electromagnetic Systems. Geophysics 1982, 47, 1325–1330. [Google Scholar] [CrossRef]
- Smith, R.S.; Klein, J. A Special Circumstance of Airborne Induced Polarization Measurements. Geophysics 1996, 61, 66–73. [Google Scholar] [CrossRef]
- Goold, J.W.; Cox, L.H.; Zhdanov, M.S. Spectral Complex Conductivity Inversion of Airborne Electromagnetic Data. In Proceedings of the SEG Technical Program Expanded Abstracts, San Antonio, TX, USA, 23–28 September 2007; pp. 487–491. [Google Scholar]
- Kratzer, T.; Macnae, J. Induced Polarization in Airborne EM. Geophysics 2012, 77, E317–E327. [Google Scholar] [CrossRef]
- Kang, S.; Oldenburg, D.W. Recovering IP Information in Airborne-Time Domain Electromagnetic Data. In Proceedings of the 24th International Geophysical Conference and Exhibition, ASEG, Extended Abstracts, Perth, Australia, 15–18 February 2015; pp. 1–4. [Google Scholar]
- Viezzoli, A.; Manca, G. On Airborne IP Effects in Standard AEM Systems: Tightening Model Space with Data Space. Explor. Geophys. 2020, 51, 155–169. [Google Scholar] [CrossRef]
- Viezzoli, A.; Fiandaca, G.; Sergio, S. Study on the Potential of Recovering IP Parameters from Airborne TEM Data in Layered Geology. In Proceedings of the 6th International AEM Conference and Exhibition, SAGA, Expanded Abstracts, Kruger National Park, South Africa, 6–9 October 2013. [Google Scholar]
- Kaminski, V.; Viezzoli, A. Modeling IP Effects in TEM Data: Field Case Studies. Geophysics 2017, 82, 1MA-Z12. [Google Scholar] [CrossRef]
- Ellis, R.G. Inversion of Airborne Electromagnetic Data. Explor. Geophys. 1998, 29, 121–127. [Google Scholar] [CrossRef]
- Yoshioka, K.; Zhdanov, M. Three-Dimensional Nonlinear Regularized Inversion of the Induced Polarization Data Based on the Cole–Cole Model. Phys. Earth Planet. Inter. 2005, 150, 29–43. [Google Scholar] [CrossRef]
- Xu, Z.; Zhdanov, M.S. Three-Dimensional Cole-Cole Model Inversion of Induced Polarization Data Based on Regularized Conjugate Gradient Method. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1180–1184. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Foundations of Geophysical Electromagnetic Theory and Methods; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Alfouzan, F.; Alotaibi, A.; Cox, L.; Zhdanov, M.S. Spectral Induced Polarization Survey with Distributed Array System for Mineral Exploration: Case Study in Saudi Arabia. Minerals 2020, 10, 769. [Google Scholar] [CrossRef]
- Nordsiek, S.; Weller, A. A New Approach to Fitting Induced-Polarization Spectra. Geophysics 2008, 73, F235–F245. [Google Scholar] [CrossRef]
- Cole, K.; Cole, R. Dispersion and Absorption in Dielectrics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Pelton, W.H. Interpretation of Induced Polarization and Resistivity Data. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 1977. [Google Scholar]
- Pelton, W.H.; Smith, B.D.; Sill, W.R. Inversion of Complex Resistivity and Dielectric Data. Geophysics 1975, 40, 153. [Google Scholar]
- Pelton, W.H.; Rijo, L.; Swift, C.M., Jr. Inversion of Two-Dimensional Resistivity and Induced-Polarization Data. Geophysics 1978, 43, 788–803. [Google Scholar] [CrossRef]
- Seigel, H.O.; Nabighian, M.S.; Parasnis, D.S.; Vozoff, K. The Early History of the Induced Polarization Method. Lead. Edge 1997, 16, 312–321. [Google Scholar] [CrossRef]
- Seigel, H.O.; Vanhala, H.; Sheard, S.N. Some Case Histories of Source Discrimination Using Time-Domain Spectral IP. Geophysics 1997, 62, 1394–1408. [Google Scholar] [CrossRef]
- Yuval, D.; Oldenburg, D. Computation of Cole-Cole Parameters from IP Data. Geophysics 1997, 62, 436–448. [Google Scholar] [CrossRef] [Green Version]
- Routh, P.S.; Oldenburg, D.W. Electromagnetic Coupling in Frequency-Domain Induced Polarization Data: A Method for Removal. Geophys. J. Int. 2001, 145, 59–76. [Google Scholar] [CrossRef]
- Rowston, P.; Busuttil, S.; McNeill, G. Cole-Cole Inversion Telluric Cancelled IP Data. In Proceedings of the ASEG, Extended Abstracts, Adelaide, South Australia, 16–19 February 2003. [Google Scholar]
- Zhang, W.; Liu, J.-X.; Guo, Z.-W.; Tong, X.-Z. Cole-Cole Model Based on the Frequency-Domain IP Method of Forward Modeling. In Proceedings of the Progress in Electromagnetics Research Symposium Proceedings, Xi’an, China, 22–26 March 2010; Volume 2, pp. 383–386. [Google Scholar]
- Zhdanov, M. Generalized Effective-Medium Theory of Induced Polarization. Geophysics 2008, 73, F197–F211. [Google Scholar] [CrossRef]
- Zhdanov, M. New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods; U.S. Department of Energy, Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2008.
- Burtman, V.; Zhdanov, M.; Lin, W.; Endo, M. Complex Resistivity of Mineral Rocks in the Context of the Generalized Effective-Medium Theory of the IP Effect. In Proceedings of the 86th Annual International Meeting, Dallas, TX, USA, 18–21 September 2016; pp. 2238–2242. [Google Scholar]
- Zhdanov, M.S.; Burtman, V.; Endo, M.; Lin, W. Complex Resistivity of Mineral Rocks in the Context of the Generalised Effective Medium Theory of the Induced Polarization Effect. Geophys. Prospect. 2018, 66, 798–817. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Inverse Theory and Applications in Geophysics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 36. [Google Scholar]
- Cox, L.H.; Zhdanov, M.S. Large-Scale 3D Inversion of HEM Data Using a Moving Footprint. In Proceedings of the 77th Annual International Meeting, San Antonio, TX, USA, 23–28 September 2007. [Google Scholar]
- Cox, L.H.; Wilson, G.A.; Zhdanov, M.S. 3D Inversion of Airborne Electromagnetic Data. Geophysics 2012, 77, WB59–WB69. [Google Scholar] [CrossRef]
- Cox, L.; Jorgensen, M.; Zhdanov, M.; Pitcher, D.; Niemi, J. Inversion of Airborne Data for Three-Dimensional Conductivity, Chargeability, and Magnetic Properties Models in Wawa, Ontario, Canada. In Proceedings of the 83rd EAGE Annual Conference & Exhibition, Madrid, Spain, 6–9 June 2022; EAGE Publications BV: Dubai, United Arab Emirates, 2022; Volume 2022, pp. 1–5. [Google Scholar]
- Seigel, H.O. Mathematical Formulation and Type Curves for Induced Polarization. Geophysics 1959, 24, 547–565. [Google Scholar] [CrossRef]
- Cox, L.; Endo, M.; Zhdanov, M.S. 3D Inversion of AEM Data Based on a Hybrid IE-FE Method and the Moving Sensitivity Domain Approach with a Direct Solver. In Proceedings of the 77th EAGE Conference and Exhibition, Expanded Abstracts; European Association of Geoscientists & Engineers, Madrid, Spain, 1–4 June 2015. [Google Scholar]
- Hursán, G.; Zhdanov, M.S. Contraction Integral Equation Method in Three-Dimensional Electromagnetic Modeling. Radio Sci. 2002, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Raiche, A. Modelling the Time-Domain Response of AEM Systems. Explor. Geophys. 1998, 29, 103–106. [Google Scholar] [CrossRef]
- Tikhonov, A. Solutions of Ill-Posed Problems: Andrey N. Tikhonov and Vasiliy Y. Arsenin; John, F., Translator; John Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- Cullen, D.; Clark, G. 43–101 Report: Technical Report on the Ballard Lake Property 2017. Available online: https://rtmcorp.com/0/projects/ballard/rtm_ni43101_ballard_20170521.pdf (accessed on 15 January 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cox, L.H.; Zhdanov, M.S.; Pitcher, D.H.; Niemi, J. Three-Dimensional Inversion of Induced Polarization Effects in Airborne Time Domain Electromagnetic Data Using the GEMTIP Model. Minerals 2023, 13, 779. https://doi.org/10.3390/min13060779
Cox LH, Zhdanov MS, Pitcher DH, Niemi J. Three-Dimensional Inversion of Induced Polarization Effects in Airborne Time Domain Electromagnetic Data Using the GEMTIP Model. Minerals. 2023; 13(6):779. https://doi.org/10.3390/min13060779
Chicago/Turabian StyleCox, Leif H., Michael S. Zhdanov, Douglas H. Pitcher, and Jeremy Niemi. 2023. "Three-Dimensional Inversion of Induced Polarization Effects in Airborne Time Domain Electromagnetic Data Using the GEMTIP Model" Minerals 13, no. 6: 779. https://doi.org/10.3390/min13060779
APA StyleCox, L. H., Zhdanov, M. S., Pitcher, D. H., & Niemi, J. (2023). Three-Dimensional Inversion of Induced Polarization Effects in Airborne Time Domain Electromagnetic Data Using the GEMTIP Model. Minerals, 13(6), 779. https://doi.org/10.3390/min13060779