Investigating the Relationship between Growth Rate, Shell Morphology, and Trace Element Composition of the Pacific Littleneck Clam (Leukoma staminea): Implications for Paleoclimate Reconstructions
Abstract
:1. Introduction
Leukoma Staminea as a Study Organism
2. Materials and Methods
2.1. Oceanographic Setting of Broodstock Sampling Location
2.2. Sample Collection and Preparation
2.3. Shell Morphology and Growth Banding
2.4. Microstructual Properties: SEM Analyses
2.5. Trace Element Composition: EMP Analyses
2.6. Statistical Analyses
3. Results
3.1. Shell Morphology and Growth Banding
3.2. Microstructural Properties: SEM Analyses
3.3. Trace Element Composition: EMP Analyses
4. Discussion
4.1. Ontogenetic Influences on Shell Microstructure and Geochemistry
4.2. Population-Level Variability in Growth and Studying Biomineralization through Time
4.3. Potential of L. staminea to Document (Paleo)Environmental Conditions
5. Conclusions
5.1. Morphology and Growth Rate
5.2. Microstructure and Trace Elements
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schöne, B.R.; Pfeiffer, M.; Pohlmann, T.; Siegismund, F. A Seasonally Resolved Bottom-Water Temperature Record for the Period AD 1866–2002 Based on Shells of Arctica Islandica (Mollusca, North Sea). Int. J. Climatol. 2005, 25, 947–962. [Google Scholar] [CrossRef]
- Schöne, B.R.; Gillikin, D.P. Unraveling Environmental Histories from Skeletal Diaries—Advances in Sclerochronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 373, 1–5. [Google Scholar] [CrossRef]
- Trofimova, T.; Andersson, C.; Bonitz, F.G.W.; Pedersen, L.-E.R.; Schöne, B.R. Reconstructing Early Holocene Seasonal Bottom-Water Temperatures in the Northern North Sea Using Stable Oxygen Isotope Records of Arctica Islandica Shells. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 567, 110242. [Google Scholar] [CrossRef]
- Vriesman, V.P.; Carlson, S.J.; Hill, T.M. Investigating Controls of Shell Growth Features in a Foundation Bivalve Species: Seasonal Trends and Decadal Changes in the California Mussel. Biogeosciences 2022, 19, 329–346. [Google Scholar] [CrossRef]
- Cannarozzi, N.R.; Kowalewski, M. Seasonal Oyster Harvesting Recorded in a Late Archaic Period Shell Ring. PLoS ONE 2019, 14, e0224666. [Google Scholar] [CrossRef] [Green Version]
- Eerkens, J.W.; Byrd, B.F.; Spero, H.J.; Fritschi, A.K. Stable Isotope Reconstructions of Shellfish Harvesting Seasonality in an Estuarine Environment: Implications for Late Holocene San Francisco Bay Settlement Patterns. J. Archaeol. Sci. 2013, 40, 2014–2024. [Google Scholar] [CrossRef]
- Jenkins, J.A. Methods for Inferring Oyster Mariculture on Florida’s Gulf Coast. J. Archaeol. Sci. 2017, 80, 74–82. [Google Scholar] [CrossRef]
- Allison, N.; Finch, A.A. High-Resolution Sr/Ca Records in Modern Porites Lobata Corals: Effects of Skeletal Extension Rate and Architecture. Geochem. Geophys. Geosystems 2004, 5, 1–10. [Google Scholar] [CrossRef]
- Eggins, S.; De Deckker, P.; Marshall, J. Mg/Ca Variation in Planktonic Foraminifera Tests: Implications for Reconstructing Palaeo-Seawater Temperature and Habitat Migration. Earth Planet. Sci. Lett. 2003, 212, 291–306. [Google Scholar] [CrossRef]
- Sadekov, A.Y.; Eggins, S.M.; De Deckker, P. Characterization of Mg/Ca Distributions in Planktonic Foraminifera Species by Electron Microprobe Mapping. Geochem. Geophys. Geosyst. 2005, 6, 1–14. [Google Scholar] [CrossRef]
- Spero, H.J.; Lea, D.W. Experimental Determination of Stable Isotope Variability in Globigerina Bulloides: Implications for Paleoceanographic Reconstructions. Mar. Micropaleontol. 1996, 28, 231–246. [Google Scholar] [CrossRef]
- Poulain, C.; Gillikin, D.P.; Thébault, J.; Munaron, J.M.; Bohn, M.; Robert, R.; Paulet, Y.-M.; Lorrain, A. An Evaluation of Mg/Ca, Sr/Ca, and Ba/Ca Ratios as Environmental Proxies in Aragonite Bivalve Shells. Chem. Geol. 2015, 396, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Schöne, B.R.; Zhang, Z.; Radermacher, P.; Thébault, J.; Jacob, D.E.; Nunn, E.V.; Maurer, A.-F. Sr/Ca and Mg/Ca Ratios of Ontogenetically Old, Long-Lived Bivalve Shells (Arctica Islandica) and Their Function as Paleotemperature Proxies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 302, 52–64. [Google Scholar] [CrossRef]
- Ulrich, R.N.; Guillermic, M.; Campbell, J.; Hakim, A.; Han, R.; Singh, S.; Stewart, J.D.; Román-Palacios, C.; Carroll, H.M.; De Corte, I.; et al. Patterns of Element Incorporation in Calcium Carbonate Biominerals Recapitulate Phylogeny for a Diverse Range of Marine Calcifiers. Front. Earth Sci. 2021, 9, 1–26. [Google Scholar] [CrossRef]
- Markulin, K.; Peharda, M.; Mertz-Kraus, R.; Schöne, B.R.; Uvanović, H.; Kovač, Ž.; Janeković, I. Trace and Minor Element Records in Aragonitic Bivalve Shells as Environmental Proxies. Chem. Geol. 2019, 507, 120–133. [Google Scholar] [CrossRef]
- Warter, V.; Erez, J.; Müller, W. Environmental and Physiological Controls on Daily Trace Element Incorporation in Tridacna Crocea from Combined Laboratory Culturing and Ultra-High Resolution LA-ICP-MS Analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 496, 32–47. [Google Scholar] [CrossRef]
- Kinsman, D.J.J.; Holland, H.D. The Co-Precipitation of Cations with CaCO3—IV. The Co-Precipitation of Sr2+ with Aragonite between 16° and 96 °C. Geochim. Cosmochim. Acta 1969, 33, 1–17. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Pankow, J.F. Solid Solution Partitioning of Sr2+, Ba2+, and Cd2+ to Calcite. Geochim. Cosmochim. Acta 1996, 60, 1053–1063. [Google Scholar] [CrossRef]
- Zhong, S.; Mucci, A. Calcite and Aragonite Precipitation from Seawater Solutions of Various Salinities: Precipitation Rates and Overgrowth Compositions. Chem. Geol. 1989, 78, 283–299. [Google Scholar] [CrossRef]
- Oomori, T.; Kaneshima, H.; Maezato, Y.; Kitano, Y. Distribution Coefficient of Mg2+ Ions between Calcite and Solution at 10–50 °C. Mar. Chem. 1987, 20, 327–336. [Google Scholar] [CrossRef]
- Schleinkofer, N.; Raddatz, J.; Evans, D.; Gerdes, A.; Flögel, S.; Voigt, S.; Büscher, J.V.; Wisshak, M. Compositional Variability of Mg/Ca, Sr/Ca, and Na/Ca in the Deep-Sea Bivalve Acesta Excavata (Fabricius, 1779). PLoS ONE 2021, 16, e0245605. [Google Scholar] [CrossRef] [PubMed]
- Urey, H.C.; Lowenstam, H.A.; Epstein, S.; McKinney, C.R. Measurement of Paleotemperatures and Temperatures of the Upper Cretaceous of England, Denmark and the Southeastern United States. Bull. Geol. Soc. Am. 1951, 62, 399–416. [Google Scholar] [CrossRef]
- Weiner, S.; Dove, P.M. An Overview of Biomineralization Processes and the Problem of the Vital Effect. Rev. Mineral. Geochem. 2003, 54, 1–29. [Google Scholar] [CrossRef]
- Ballesta-Artero, I.; Zhao, L.; Milano, S.; Mertz-Kraus, R.; Schöne, B.R.; van der Meer, J.; Witbaard, R. Environmental and Biological Factors Influencing Trace Elemental and Microstructural Properties of Arctica Islandica Shells. Sci. Total Environ. 2018, 645, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Surge, D.; Walker, K.J. Geochemical Variation in Microstructural Shell Layers of the Southern Quahog (Mercenaria Campechiensis): Implications for Reconstructing Seasonality. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 237, 182–190. [Google Scholar] [CrossRef]
- Gillikin, D.P.; Lorrain, A.; Navez, J.; Taylor, J.W.; André, L.; Keppens, E.; Baeyens, W.; Dehairs, F. Strong Biological Controls on Sr/Ca Ratios in Aragonitic Marine Bivalve Shells. Geochem. Geophys. Geosyst. 2005, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Freitas, P.S.; Clarke, L.J.; Kennedy, H.; Richardson, C.A.; Abrantes, F. Environmental and Biological Controls on Elemental (Mg/Ca, Sr/Ca and Mn/Ca) Ratios in Shells of the King Scallop Pecten Maximus. Geochim. Cosmochim. Acta 2006, 70, 5119–5133. [Google Scholar] [CrossRef]
- Richardson, C.A.; Peharda, M.; Kennedy, H.; Kennedy, P.; Onofri, V. Age, Growth Rate and Season of Recruitment of Pinna Nobilis (L) in the Croatian Adriatic Determined from Mg:Ca and Sr:Ca Shell Profiles. J. Exp. Mar. Biol. Ecol. 2004, 299, 1–16. [Google Scholar] [CrossRef]
- Milano, S.; Schöne, B.R.; Witbaard, R. Changes of Shell Microstructural Characteristics of Cerastoderma Edule (Bivalvia)—A Novel Proxy for Water Temperature. New Res. Methods Appl. Sclerochronol. 2017, 465, 395–406. [Google Scholar] [CrossRef]
- Clark, G.R. Growth Lines in Invertebrate Skeletons. Annu. Rev. Earth Planet. Sci. 1974, 2, 77–99. [Google Scholar] [CrossRef]
- McConnaughey, T. Biomineralization Mechanisms. In Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals; Crick, R.E., Ed.; Springer: Boston, MA, USA, 1989; pp. 57–73. [Google Scholar] [CrossRef]
- Cusack, M.; Freer, A. Biomineralization: Elemental and Organic Influence in Carbonate Systems. Chem. Rev. 2008, 108, 4433–4454. [Google Scholar] [CrossRef]
- Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science 1996, 271, 67–69. [Google Scholar] [CrossRef]
- Shirai, K.; Schöne, B.R.; Miyaji, T.; Radarmacher, P.; Krause, R.A.; Tanabe, K. Assessment of the Mechanism of Elemental Incorporation into Bivalve Shells (Arctica Islandica) Based on Elemental Distribution at the Microstructural Scale. Geochim. Cosmochim. Acta 2014, 126, 307–320. [Google Scholar] [CrossRef]
- Evans, D.; Gray, W.R.; Rae, J.W.B.; Greenop, R.; Webb, P.B.; Penkman, K.; Kröger, R.; Allison, N. Trace and Major Element Incorporation into Amorphous Calcium Carbonate (ACC) Precipitated from Seawater. Geochim. Cosmochim. Acta 2020, 290, 293–311. [Google Scholar] [CrossRef]
- Mergelsberg, S.T.; De Yoreo, J.J.; Miller, Q.R.S.; Marc Michel, F.; Ulrich, R.N.; Dove, P.M. Metastable Solubility and Local Structure of Amorphous Calcium Carbonate (ACC). Geochim. Cosmochim. Acta 2020, 289, 196–206. [Google Scholar] [CrossRef]
- Marin, F. The Formation and Mineralization of Mollusk Shell. Front. Biosci. 2012, 4, 1099–1125. [Google Scholar] [CrossRef] [Green Version]
- Fraser, C.M.; Smith, G.M. Notes on the Ecology of the Little Neck Clam. Paphia Staminea Conrad. Trans. R. Soc. Can. Ser. 1928, 3, 249–269. [Google Scholar]
- Lepofsky, D.; Smith, N.; Cardinal, N.; Harper, J.; Morris, M.; Elroy White, G.; Bouchard, R.; Kennedy, D.; Solomon, A.; Puckett, M.; et al. Ancient Shellfish Mariculture on the Northwest Coast of North America. Am. Antiq. 2015, 80, 236–259. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; DeAntoni, G.; Hill, A.; Apodaca, A. Indigenous Persistence and Foodways at the Toms Point Trading Post (CA-MRN-202), Tomales Bay, California. J. Calif. Gt. Basin Anthropol. 2018, 38, 51–73. [Google Scholar]
- Smith, G.M. Food Material as a Factor in Growth Rate of Some Pacific Clams. Trans. R Soc. Can Ser. 1928, 3, 287–291. [Google Scholar]
- Harrington, R.J. Skeletal Growth Histories of Protothaca Staminea Conrad and Protothaca Grata Say throughout Their Geographic Ranges Northeastern Pacific. Veliger 1987, 30, 148–158. [Google Scholar]
- Feder, H.M.; Hendee, J.C.; Holmes, P.; Mueller, G.J.; Paul, A.J. Examination of a Reproductive Cycle of Protothaca Staminea Using Histology, We Weight-Dry Weight Ratios, and Condition Indices. Veliger 1979, 22, 182–187. [Google Scholar]
- Bendell, L.I. Evidence for Declines in the Native Leukoma Staminea as a Result of the Intentional Introduction of the Non-Native Venerupis Philippinarum in Coastal British Columbia, Canada. Estuaries Coasts 2014, 12, 369–380. [Google Scholar] [CrossRef]
- Takesue, R.K.; van Geen, A. Mg/Ca, Sr/Ca, and Stable Isotopes in Modern and Holocene Protothaca Staminea Shells from a Northern California Coastal Upwelling Region. Geochim. Cosmochim. Acta 2004, 68, 3845–3861. [Google Scholar] [CrossRef]
- Schöne, B.R.; Dunca, E.; Fiebig, J.; Pfeiffer, M. Mutvei’s Solution: An Ideal Agent for Resolving Microgrowth Structures of Biogenic Carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 228, 149–166. [Google Scholar] [CrossRef]
- Schöne, B.; Surge, D. Bivalve Sclerochronology and Geochemistry; Paleontological Institute: Moscow, Russia, 2012; pp. 1–24. [Google Scholar]
- Strasser, C.A.; Mullineaux, L.S.; Walther, B.D. Growth Rate and Age Effects on Mya Arenaria Shell Chemistry: Implications for Biogeochemical Studies. J. Exp. Mar. Biol. Ecol. 2008, 355, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Schöne, B.R. Arctica Islandica (Bivalvia): A Unique Paleoenvironmental Archive of the Northern North Atlantic Ocean. Glob. Planet. Chang. 2013, 111, 199–225. [Google Scholar] [CrossRef]
- Hickey, B.M.; Banas, N.S. Oceanography of the U.S. Pacific Northwest Coastal Ocean and Estuaries with Application to Coastal Ecology. Estuaries 2003, 26, 1010–1031. [Google Scholar] [CrossRef]
- Largier, J.L. Upwelling Bays: How Coastal Upwelling Controls Circulation, Habitat, and Productivity in Bays. Annu. Rev. Mar. Sci. 2020, 12, 415–447. [Google Scholar] [CrossRef] [PubMed]
- García-Reyes, M.; Largier, J. Observations of Increased Wind-Driven Coastal Upwelling off Central California. J. Geophys. Res. Oceans 2010, 115, 1–8. [Google Scholar] [CrossRef] [Green Version]
- García-Reyes, M.; Largier, J.L. Seasonality of Coastal Upwelling off Central and Northern California: New Insights, Including Temporal and Spatial Variability. J. Geophys. Res. Oceans 2012, 117, 1–17. [Google Scholar] [CrossRef]
- Arp, A.J.; Hansen, B.M.; Julian, D. Burrow Environment and Coelomic Fluid Characteristics of the Echiuran Worm Urechis Caupo from Populations at Three Sites in Northern California. Mar. Biol. 1992, 113, 613–623. [Google Scholar] [CrossRef]
- Ricart, A.M.; Ward, M.; Hill, T.M.; Sanford, E.; Kroeker, K.J.; Takeshita, Y.; Merolla, S.; Shukla, P.; Ninokawa, A.T.; Elsmore, K.; et al. Coast-Wide Evidence of Low pH Amelioration by Seagrass Ecosystems. Glob. Chang. Biol. 2021, 27, 2580–2591. [Google Scholar] [CrossRef]
- Silbiger, N.J.; Sorte, C.J.B. Biophysical Feedbacks Mediate Carbonate Chemistry in Coastal Ecosystems across Spatiotemporal Gradients. Sci. Rep. 2018, 8, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindeberg, T.; Bates, N.R.; Courtney, T.A.; Cyronak, T.; Griffin, A.; Mackenzie, F.T.; Paulsen, M.-L.; Andersson, A.J. Porewater Carbonate Chemistry Dynamics in a Temperate and a Subtropical Seagrass System. Aquat. Geochem. 2020, 26, 375–399. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Brosset, C.; Höche, N.; Shirai, K.; Nishida, K.; Mertz-Kraus, R.; Schöne, B.R. Strong Coupling between Biomineral Morphology and Sr/Ca of Arctica Islandica (Bivalvia)—Implications for Shell Sr/Ca-Based Temperature Estimates. Minerals 2022, 12, 500. [Google Scholar] [CrossRef]
- Schöne, B.R.; Radermacher, P.; Zhang, Z.; Jacob, D.E. Crystal Fabrics and Element Impurities (Sr/Ca, Mg/Ca, and Ba/Ca) in Shells of Arctica Islandica—Implications for Paleoclimate Reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 373, 50–59. [Google Scholar] [CrossRef]
- Arias, J.L.; Fernández, M.S. Polysaccharides and Proteoglycans in Calcium Carbonate-Based Biomineralization. Chem. Rev. 2008, 108, 4475–4482. [Google Scholar] [CrossRef]
- Dauphin, Y.; Cuif, J.-P.; Doucet, J.; Salomé, M.; Susini, J.; Terry Willams, C. In Situ Chemical Speciation of Sulfur in Calcitic Biominerals and the Simple Prism Concept. J. Struct. Biol. 2003, 142, 272–280. [Google Scholar] [CrossRef]
- Dauphin, Y.; Cuif, J.; Doucet, J.; Salomé, M.; Susini, J.; Williams, C. In Situ Mapping of Growth Lines in the Calcitic Prismatic Layers of Mollusc Shells Using X-ray Absorption near-Edge Structure (XANES) Spectroscopy at the Sulphur K-Edge. Mar. Biol. 2003, 142, 299–304. [Google Scholar] [CrossRef]
- Guzman, N.; Ball, A.D.; Cuif, J.-P.; Dauphin, Y.; Denis, A.; Ortlieb, L. Subdaily Growth Patterns and Organo-Mineral Nanostructure of the Growth Layers in the Calcitic Prisms of the Shell of Concholepas Concholepas Bruguière, 1789 (Gastropoda, Muricidae). Microsc. Microanal. Off. J. Microsc. Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can. 2007, 13, 397–403. [Google Scholar] [CrossRef]
- Addadi, L.; Raz, S.; Weiner, S. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. ChemInform 2003, 34, 959–970. [Google Scholar] [CrossRef]
- Ren, D.; Feng, Q.; Bourrat, X. Effects of Additives and Templates on Calcium Carbonate Mineralization in Vitro. Micron 2011, 42, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Huang, J.; Liu, C.; Wang, H.; Zhang, G.; Xie, L.; Zhang, R. Characterization of the Myostracum Layers in Molluscs Reveals a Conservative Shell Structure. Front. Mar. Sci. 2022, 9, 544. [Google Scholar] [CrossRef]
- Dicko, H.; Grünewald, T.A.; Ferrand, P.; Vidal-Dupiol, J.; Teaniniuraitemoana, V.; Koua, M.S.; le Moullac, G.; Le Luyer, J.; Saulnier, D.; Chamard, V.; et al. Sub-Micrometric Spatial Distribution of Amorphous and Crystalline Carbonates in Biogenic Crystals Using Coherent Raman Microscopy. J. Struct. Biol. 2022, 214, 107909. [Google Scholar] [CrossRef]
- Duboisset, J.; Ferrand, P.; Baroni, A.; Grünewald, T.A.; Dicko, H.; Grauby, O.; Vidal-Dupiol, J.; Saulnier, D.; Gilles, L.M.; Rosenthal, M.; et al. Amorphous-to-Crystal Transition in the Layer-by-Layer Growth of Bivalve Shell Prisms. Acta Biomater. 2022, 142, 194–207. [Google Scholar] [CrossRef]
- Grünewald, T.A.; Checchia, S.; Dicko, H.; Le Moullac, G.; Sham Koua, M.; Vidal-Dupiol, J.; Duboisset, J.; Nouet, J.; Grauby, O.; Di Michiel, M.; et al. Structure of an Amorphous Calcium Carbonate Phase Involved in the Formation of Pinctada Margaritifera Shells. Proc. Natl. Acad. Sci. USA 2022, 119, e2212616119. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Simkiss, K.; Greaves, G.N. Amorphous Structure of Intracellular Mineral Granules. Biochem. Soc. Trans. 1986, 14, 549–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blue, C.R.; Dove, P.M. Chemical Controls on the Magnesium Content of Amorphous Calcium Carbonate. Geochim. Cosmochim. Acta 2015, 148, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, A.; Stagioni, M.; Prada, F.; Scarponi, D.; Piccinetti, C.; Goffredo, S. Environmental Influence on Calcification of the Bivalve Chamelea Gallina along a Latitudinal Gradient in the Adriatic Sea. Sci. Rep. 2019, 9, 11198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, M.; Nagasawa, H. Mollusk Shell Structures and Their Formation Mechanism. Can. J. Zool. 2013, 91, 349–366. [Google Scholar] [CrossRef]
- Moss, D.K.; Ivany, L.C.; Jones, D.S. Fossil Bivalves and the Sclerochronological Reawakening. Paleobiology 2021, 47, 551–573. [Google Scholar] [CrossRef]
- Hallmann, N.; Burchell, M.; Schöne, B.R.; Irvine, G.V.; Maxwell, D. High-Resolution Sclerochronological Analysis of the Bivalve Mollusk Saxidomus Gigantea from Alaska and British Columbia: Techniques for Revealing Environmental Archives and Archaeological Seasonality. J. Archaeol. Sci. 2009, 36, 2353–2364. [Google Scholar] [CrossRef]
- Louis, V.; Besseau, L.; Lartaud, F. Step in Time: Biomineralisation of Bivalve’s Shell. Front. Mar. Sci. 2022, 9, 1–16. [Google Scholar] [CrossRef]
- Lutz, R.; Rhoads, D.C. Anaerobiosis and a Theory of Growth Line Formation. Available online: https://www.science.org/doi/10.1126/science.198.4323.1222 (accessed on 21 February 2023).
- Crenshaw, M.A. The Inorganic Composition of Molluscan Extrapallial Fluid. Biol. Bull. 1972, 143, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Littlewood, D.T.J.; Young, R.E. The Effect of Air-Gaping Behaviour on Extrapallial Fluid pH in the Tropical Oyster Crassostrea Rhizophorae. Comp. Biochem. Physiol. A Physiol. 1994, 107, 1–6. [Google Scholar] [CrossRef]
- Clark, G.R. Daily Growth Lines in Some Living Pectens (Mollusca: Bivalvia), and Some Applications in a Fossil Relative: Time and Tide Will Tell. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 228, 26–42. [Google Scholar] [CrossRef]
- Rodríguez-Tovar, F.J. Orbital Climate Cycles in the Fossil Record: From Semidiurnal to Million-Year Biotic Responses. Annu. Rev. Earth Planet. Sci. 2014, 42, 69–102. [Google Scholar] [CrossRef]
- Richardson, C.A.; Crisp, D.J.; Runham, N.W. An Endogenous Rhythm in Shell Deposition in Cerastoderma Edule. J. Mar. Biol. Assoc. U. K. 1980, 60, 991–1004. [Google Scholar] [CrossRef]
- Poulain, C.; Lorrain, A.; Flye-Sainte-Marie, J.; Amice, E.; Morize, E.; Paulet, Y.-M. An Environmentally Induced Tidal Periodicity of Microgrowth Increment Formation in Subtidal Populations of the Clam Ruditapes Philippinarum. J. Exp. Mar. Biol. Ecol. 2011, 397, 58–64. [Google Scholar] [CrossRef]
- Richardson, C.A. Exogenous and Endogenous Rhythms of Band Formation in the Shell of the Clam Tapes Philippinarum (Adams et Reeve, 1850). J. Exp. Mar. Biol. Ecol. 1988, 122, 105–126. [Google Scholar] [CrossRef]
- Chapman, E.C.; Bonsor, B.J.; Parsons, D.R.; Rotchell, J.M. Influence of Light and Temperature Cycles on the Expression of Circadian Clock Genes in the Mussel Mytilus Edulis. Mar. Environ. Res. 2020, 159, 104960. [Google Scholar] [CrossRef]
- Ditty, J.L.; Williams, S.B.; Golden, S.S. A Cyanobacterial Circadian Timing Mechanism. Annu. Rev. Genet. 2003, 37, 513–543. [Google Scholar] [CrossRef] [Green Version]
- Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular Architecture of the Mammalian Circadian Clock. Trends Cell Biol. 2014, 24, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Merrow, M.; Roenneberg, T. Photoperiodism in Neurospora Crassa. J. Biol. Rhythms 2004, 19, 135–143. [Google Scholar] [CrossRef]
- Comeau, L.A.; Babarro, J.M.F.; Longa, A.; Padin, X.A. Valve-Gaping Behavior of Raft-Cultivated Mussels in the Ría de Arousa, Spain. Aquac. Rep. 2018, 9, 68–73. [Google Scholar] [CrossRef]
- Tran, D.; Perrigault, M.; Ciret, P.; Payton, L. Bivalve Mollusc Circadian Clock Genes Can Run at Tidal Frequency. Proc. R. Soc. B 2020, 287, 20192440. [Google Scholar] [CrossRef] [Green Version]
- Aschoff, J. Freerunning and Entrained Circadian Rhythms. In Biological Rhythms; Aschoff, J., Ed.; Springer: Boston, MA, USA, 1981; pp. 81–93. [Google Scholar] [CrossRef]
- Dunlap, J.C. Molecular Bases for Circadian Clocks. Cell 1999, 96, 271–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, K.M.; Gracey, A.Y. Circadian Cycles Are the Dominant Transcriptional Rhythm in the Intertidal Mussel Mytilus Californianus. Proc. Natl. Acad. Sci. USA 2011, 108, 16110–16115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrigault, M.; Tran, D. Identification of the Molecular Clockwork of the Oyster Crassostrea Gigas. PLoS ONE 2017, 12, e0169790. [Google Scholar] [CrossRef] [Green Version]
- Pairett, A.N.; Serb, J.M. De Novo Assembly and Characterization of Two Transcriptomes Reveal Multiple Light-Mediated Functions in the Scallop Eye (Bivalvia: Pectinidae). PLoS ONE 2013, 8, e69852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrigault, M.; Andrade, H.; Bellec, L.; Ballantine, C.; Camus, L.; Tran, D. Rhythms during the Polar Night: Evidence of Clock-Gene Oscillations in the Arctic Scallop Chlamys Islandica. Proc. R. Soc. B 2020, 287, 20201001. [Google Scholar] [CrossRef] [PubMed]
- Surge, D.; Lohmann, K.C.; Dettman, D.L. Controls on Isotopic Chemistry of the American Oyster, Crassostrea Virginica: Implications for Growth Patterns. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 172, 283–296. [Google Scholar] [CrossRef]
- Tynan, S.; Dutton, A.; Eggins, S.; Opdyke, B. Oxygen Isotope Records of the Australian Flat Oyster (Ostrea Angasi) as a Potential Temperature Archive. Mar. Geol. 2014, 357, 195–209. [Google Scholar] [CrossRef]
- Owen, R.; Kennedy, H.; Richardson, C. Isotopic Partitioning between Scallop Shell Calcite and Seawater: Effect of Shell Growth Rate. Geochim. Cosmochim. Acta 2002, 66, 1727–1737. [Google Scholar] [CrossRef]
- Huyghe, D.; de Rafelis, M.; Ropert, M.; Mouchi, V.; Emmanuel, L.; Renard, M.; Lartaud, F. New Insights into Oyster High-Resolution Hinge Growth Patterns. Mar. Biol. 2019, 166, 48. [Google Scholar] [CrossRef]
- Trofimova, T.; Alexandroff, S.J.; Mette, M.J.; Tray, E.; Butler, P.G.; Campana, S.E.; Harper, E.M.; Johnson, A.L.A.; Morrongiello, J.R.; Peharda, M.; et al. Fundamental Questions and Applications of Sclerochronology: Community-Defined Research Priorities. Estuar. Coast. Shelf Sci. 2020, 245, 106977. [Google Scholar] [CrossRef]
- Jones, D.S. Annual Cycle of Shell Growth Increment Formation in Two Continental Shelf Bivalves and Its Paleoecologic Significance. Paleobiology 1980, 6, 331–340. [Google Scholar] [CrossRef]
- Epstein, S.; Buchsbaum, R.; Lowenstam, H.A.; Urey, H.C. Revised carbonate-water isotopic temperature scale. GSA Bull. 1953, 64, 1315–1326. [Google Scholar] [CrossRef]
- Jones, D.S.; Quitmyer, I.R. Marking Time with Bivalve Shells; Oxygen Isotopes and Season of Annual Increment Formation. Palaios 1996, 11, 340–346. [Google Scholar] [CrossRef]
- Burchell, M.; Cannon, A.; Hallmann, N.; Schwarcz, H.P.; Schöne, B.R. Refining Estimates for the Season of Shellfish Collection on the Pacific Northwest Coast: Applying High-Resolution Stable Oxygen Isotope Analysis and Sclerochronology. Archaeometry 2013, 55, 258–276. [Google Scholar] [CrossRef]
- Chute, A.S.; Wainright, S.C.; Hart, D.R. Timing of Shell Ring Formation and Patterns of Shell Growth in the Sea Scallop Placopecten Magellanicus Based on Stable Oxygen Isotopes. J. Shellfish Res. 2012, 31, 649–662. [Google Scholar] [CrossRef]
- Kennedy, H.; Richardson, C.; Duarte, C.; Kennedy, D. Oxygen and Carbon Stable Isotopic Profiles of the Fan Mussel, Pinna Nobilis, and Reconstruction of Sea Surface Temperatures in the Mediterranean. Mar. Biol. 2001, 139, 1115–1124. [Google Scholar] [CrossRef]
- Klein, R.T.; Lohmann, K.C.; Thayer, C.W. Bivalve Skeletons Record Sea-Surface Temperature and δ18O via Mg/Ca and 18O/16O Ratios. Geology 1996, 24, 415–418. [Google Scholar] [CrossRef]
- Krantz, D.E.; Jones, D.S.; Williams, D.F. Growth Rates of the Sea Scallop, Placopecten Magellanicus, Determined from the 18o/16o Record in Shell Calcite. Biol. Bull. 1984, 167, 186–199. [Google Scholar] [CrossRef]
- Tan, F.C.; Cai, D.; Roddick, D.L. Oxygen Isotope Studies on Sea Scallops, Placopecten Magellanicus, from Browns Bank, Nova Scotia. Can. J. Fish. Aquat. Sci. 1988, 45, 1378–1386. [Google Scholar] [CrossRef]
- Balestra, B.; Rose, T.; Fehrenbacher, J.; Knobelspiesse, K.D.; Huber, B.T.; Gooding, T.; Paytan, A. In Situ Mg/Ca Measurements on Foraminifera: Comparison between Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Wavelength-Dispersive X-ray Spectroscopy by Electron Probe Microanalyzer. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009449. [Google Scholar] [CrossRef]
- Poitevin, P.; Chauvaud, L.; Pécheyran, C.; Lazure, P.; Jolivet, A.; Thébault, J. Does Trace Element Composition of Bivalve Shells Record Utra-High Frequency Environmental Variations? Mar. Environ. Res. 2020, 158, 104943. [Google Scholar] [CrossRef]
- Soldati, A.L.; Jacob, D.E.; Schöne, B.R.; Bianchi, M.M.; Hajduk, A. Seasonal Periodicity of Growth and Composition in Valves of Diplodon Chilensis Patagonicus (d’Orbigny, 1835). J. Molluscan Stud. 2009, 75, 75–85. [Google Scholar] [CrossRef] [Green Version]
Shell Weight (mg) (n = 36) | Shell Length (mm) (n = 36) | Axis of Maximum Growth (mm) (n = 36) | Number of Dark Growth Lines (n = 18) |
---|---|---|---|
121.7 ± 151.2 | 10.8 ± 3.3 | 9.3 ± 2.6 | 91 ± 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kempf, H.L.; Gold, D.A.; Carlson, S.J. Investigating the Relationship between Growth Rate, Shell Morphology, and Trace Element Composition of the Pacific Littleneck Clam (Leukoma staminea): Implications for Paleoclimate Reconstructions. Minerals 2023, 13, 814. https://doi.org/10.3390/min13060814
Kempf HL, Gold DA, Carlson SJ. Investigating the Relationship between Growth Rate, Shell Morphology, and Trace Element Composition of the Pacific Littleneck Clam (Leukoma staminea): Implications for Paleoclimate Reconstructions. Minerals. 2023; 13(6):814. https://doi.org/10.3390/min13060814
Chicago/Turabian StyleKempf, Hannah L., David A. Gold, and Sandra J. Carlson. 2023. "Investigating the Relationship between Growth Rate, Shell Morphology, and Trace Element Composition of the Pacific Littleneck Clam (Leukoma staminea): Implications for Paleoclimate Reconstructions" Minerals 13, no. 6: 814. https://doi.org/10.3390/min13060814
APA StyleKempf, H. L., Gold, D. A., & Carlson, S. J. (2023). Investigating the Relationship between Growth Rate, Shell Morphology, and Trace Element Composition of the Pacific Littleneck Clam (Leukoma staminea): Implications for Paleoclimate Reconstructions. Minerals, 13(6), 814. https://doi.org/10.3390/min13060814