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Abstract: In a deep geological disposal system, bentonite buffer material is an important barrier used
to protect the disposal canister from the inflow of groundwater and prevent the outflow of radionu-
clides. This study aimed to characterize the mineralogical and chemical reactions of bentonite caused
by copper corrosion of the canister in a radioactive waste repository. We investigated the d-spacings
of montmorillonite in Gyeongju bentonite (Ca-type, KJ-I) under groundwater-saturated conditions
over 10 years and compared their characteristics with those of Wyoming bentonite (Na-type, MX-80)
in the Korea Atomic Energy Research Institute Underground Research Tunnel. Mineralogical investi-
gations using X-ray diffraction and focused ion beam energy-dispersive spectroscopy indicated that
no transformation of smectite or neo-formed clay phases occurred. In the Ca-type bentonite (KJ-I),
the swelling was observed when it was in contact with rolled plate (RP) and cold-spray-coated (CSC)
copper, with d-spacing expansions of 2.9% and 3.8%, respectively. In contrast, the Na-type bentonite
(MX-80) showed d-spacing expansions of 17.6% and 19.6% when it was in contact with the RP and
CSC Cu, respectively. The Cu concentration and distribution indicated that the corrosion products
dissolved and then diffused into the surrounding bentonite, with maximum penetration depths of
2.0 and 0.5 mm over 10 years, respectively.

Keywords: bentonite buffer; d-spacing; copper canister corrosion product; penetration depth; KURT

1. Introduction

The core concept of deep geological disposal is to prevent the leakage of radionuclides
for several thousands of years using a disposal canister and then to delay the movement
of the radionuclides using engineered and natural barriers including buffer materials.
To dispose of high-level radioactive waste via deep geological disposal, buffer materials
that can act as a buffer against external factors, such as the intrusion of groundwater and
earthquakes, and metal canisters that can cover high-level spent fuel rods are required [1,2].
The buffer material filled between the disposal canister and the hole in a deep geological
disposal system fixes the disposal canister to the hole and protects it from physical impacts,
such as the shearing behavior of the surrounding rock and oxidizing agents such as oxygen
or hydrogen sulfide that could corrode the disposal canister. Furthermore, it serves as an
intrusion prevention system. In addition, even if the disposal canister loses airtightness
and radionuclides are leaked, the buffer can slow or even immobilize their diffusion [3].

Buffer materials acting as a barrier for a repository should have a high swelling
property that can fix the disposal canister during external vibrations without shaking, low
hydraulic conductivity to suppress the material’s movement, and high ion adsorption
power to immobilize metal ions in the form of cations. Additionally, it should have a
low organic matter content to inhibit the growth of microorganisms and high thermal
conductivity to dissipate heat from the disposal canister [2,4–9]. Therefore, it is important
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to ensure that these properties are preserved under real repository conditions for hundreds
of thousands of years.

Bentonite is divided into Ca- and Na-type bentonite according to the species of ex-
changeable cations present between the layers, and volume expansion is achieved via
swelling through interlayer hydration [10–14]. The swelling ability of bentonite acts as a
seal of the space between the disposal canister and disposal hole and blocks the inflow
of groundwater from the surrounding host rock [15]. Upon closure of the repository, the
surrounding bentonite is gradually saturated with the influx of natural porewater from the
surrounding parent rock, while simultaneously experiencing a temperature rise owing to
the radioactive decay of the waste [3,7,16].

As copper (Cu) canister corrosion occurs, mobile dissolved Cu species are released
through the reaction with the bentonite buffer [7,17]. The mechanism and corrosion prod-
ucts of corrosion reactions in the disposal canister change as the disposal environment
evolves, and the resulting corrosion products may remain in the form of sediments at the
interface between the disposal canister and buffer or penetrate the buffer via transformation,
resulting in changes in buffer performance.

Under aerobic conditions, Cu corrosion is dominated by chloride ions, and when Cu
is oxidatively dissolved, oxygen is reduced to produce OH−. Cu does not dissolve directly
into Cu(II) in the Cl− solution but exists as CuCl2− and remains a major chemical species
in the repository area, even after 10,000 years [18,19]. Corrosion reactions in anaerobic
environments are dominated by sulfide (HS−) [20]. When HS− is present at the interface of
the Cu canister, Cu is dissolved in the form of a CuS2 precipitate. This corrosion reaction is
accompanied by HS− or H2O reduction reactions to produce H2. Cu2O produced under
aerobic conditions reacts with HS− and is converted into Cu2S. The Cu corrosion rate under
anaerobic conditions is governed by HS− mass transfer [8,21,22]. The present study was
conducted under aerobic conditions, and S concentration was measured (Table 1).

Table 1. S concentration of KJ-I, MX-80, and bentonite in contact with copper (Cu) materials (rolled
plate [RP] and cold-spray-coated [CSC] Cu).

Samples Oxides
(wt%) KJ-I MX-80 RP Cu CSC Cu

Ca-B Na-B Ca-B Na-B

S (wt%) 1.76 (µg/mL) <0.24

The Korea Atomic Energy Research Institute (KAERI) has been developing copper
canisters using a low-temperature spray-coating technique for the disposal of high-level
nuclear waste. We intended to examine the long-term corrosion behavior of the canister
materials at 30 ◦C. This study aims to understand the interaction of bentonite buffer in
contact with a cold-spray-coated (CSC) Cu canister for use as a high-level radioactive
waste disposal canister by investigating the chemical and mineralogical changes in Ca- and
Na-type bentonite caused by corrosion products.

2. Materials and Methods
2.1. Sample

The buffer material was manufactured as a compressed block using two types of
bentonite: Ca-type Gyeongju bentonite (i.e., KJ-I) and Na-type Wyoming bentonite (i.e.,
MX-80) (water content of approximately 11–12 wt%). The dry density of the bentonite
block was approximately 1.6 g/cm3; it had a swelling pressure of approximately 5–7 MPa
at room temperature (25 ◦C) and a hydraulic conductivity of 7.6 × 10−14 m/s [23]. The
compressed block was cylindrical, with a diameter of 30 mm and a height of 10 mm. The
upper plate was also cylindrical, and the lower plate had a groove in the center, which was
15 mm in diameter and 1.0 mm in depth so that a metal specimen could be inserted.
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The bentonite used in this experiment was produced at a mine in Yangnam-myeon,
Gyeongju, South Korea. Currently, most of the bentonite mined outdoors in Korea is
Ca-type bentonite, and Gyeongju bentonite, which is relatively rich in montmorillonite
(approximately 60%), has been proposed as a standard buffer material for high-level waste
repositories. As of 2015, KAERI has been conducting research with the bentonite used
in the previous test (KJ-I) and the new bentonite used subsequently (KJ-II). However, as
Gyeongju bentonite is no longer produced, the new bentonite, which has been researched
since 2022, is named Bentonil-WRK. The Gyeongju bentonite used in this experiment was
KJ-I. Na-type Wyoming bentonite, with a montmorillonite content of approximately 80%,
was purchased from a commercial source.

The Cu specimens were CSC and rolled plate (RP) Cu. For the CSC Cu, the speci-
men was processed so that the coating obtained via the cold spray coating of domestic
Changseong copper powder (purity 99.5 wt%, oxygen content 0.41 wt%) on the cast iron
surface appeared coin-shaped, parallel to the coating surface. The cold-spray-coating
conditions were as follows: the main injection gas temperature was 600 ◦C, the powder
preheating temperature was 400 ◦C, and the injection pressure was 30 bar. Commercially
available rolled Cu plates were used.

2.2. Corrosion Cell Using the Long-Term In Situ Experiment

Using the Advanced-Korea Reference disposal system for spent nuclear waste (A-
KRS) developed by KAERI, a unit corrosion experiment cell for the KAERI Underground
Research Tunnel (KURT) long-term test was constructed, as shown in Figure 1. A coin-type
Cu specimen was positioned at the center between two compact bentonite blocks and was
inserted into a titanium test cell. The Cu specimen represents the disposal canister, the
compact bentonite block represents the buffer material, and the titanium test cell represents
the borehole at the underground bedrock.
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Figure 1. Assembly of the long-term cell in situ.

The test cell consists of a short body tube with a male threaded through both ends
and two female screw caps blocking both ends of the body tube. In addition, each cap
has 12 holes with a 3.0 mm diameter so that external water can permeate through the cell.
Titanium filters with a pore size of 10 µm were placed on both sides to prevent the internal
compact bentonite buffer from escaping through the perforated hole. Using this cell, the
experiment was conducted over 10 years under aerobic conditions at KURT.



Minerals 2023, 13, 898 4 of 12

2.3. KURT Groundwater

Groundwater that was naturally ejected from the exploration well at a depth of
approximately 150 m from KURT RG-1 was supplied to the chamber via groundwater
pressure alone, without using a separate pump. As the groundwater pressure varies
depending on the season, groundwater was supplied to the chamber through a water tank
at a certain height to maintain a constant water pressure. The flow rate of the groundwater
was kept constant at approximately 10–20 mL/min by controlling the valve attached to
the chamber outlet. The amount of dissolved oxygen in the supplied groundwater was
4–6 mg/L, and in the case of the 30 ◦C chamber used in this experiment, the amount was
measured to be approximately 3.0–4.5 mg/L. The hydrogen ion concentration was weakly
alkaline (pH 8.5), and the oxidation–reduction potential was between 100 and 200 mV. The
ion concentrations in the KURT groundwater were 8.2 ppm for Na, 0.48 ppm for K, 19 ppm
for Ca, 1.4 ppm for Mg, 9.6 ppm for Si, N.D. for Al and Fe, 3.1 ppm for Cl−, 1.9 ppm for F−,
10 ppm for NO3

−, and 4.3 ppm for SO4
2−.

2.4. Geochemical Analysis of Solid Samples

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray fluo-
rescence spectroscopy (XRF) were used to analyze the chemical composition of the bentonite
in contact with Cu. Samples were taken 0.5 mm from the surface of the bentonite block in
contact with the Cu corrosion specimen, and the major cations were quantitatively ana-
lyzed via ICP-AES according to thickness. The major compounds (SiO2, Al2O3, Fe2O3, CaO,
MgO, K2O, Na2O, TiO2, MnO, and P2O5 in %) were analyzed using an XRF spectrometer
from Shimadzu, Korea Institute of Geoscience and Mineral Resources (KIGAM). The major
elements (Ca, Na, Fe, K, Cu) were measured using ICP-AES (I-CAP Q, G

..
oteborg, Sweden,

KBSI Ochang center).

2.5. Mineralogical Analysis

The sealing properties of a buffer material are closely related to the interactions
between montmorillonite and water [23]. Therefore, mineral analysis is necessary to deter-
mine the montmorillonite content and swelling capacity. The composition and distribution
of minerals are known to influence the long-term geochemical evolution of buffer materials.

The bentonite in contact with Cu was analyzed using X-ray diffraction (XRD) at the
KIGAM, and the mineral composition and content were analyzed using the SIROQUANT
v4.0 program. The XRD pattern was obtained from random powders using a Philips X’Pert-
PRO MPD diffractometer and an anticathode Cu-Kα (λ = 1.54 Å) at 40 kV and 30 mA. The
samples were analyzed from 3◦ to 65◦ 2θ with a step size of 0.01◦ 2θ. The scan rate per step
was 0.04 s.

2.6. Cu Corrosion Analysis

Focused ion beam (FIB) scanning electron microscopy (SEM) and energy-dispersive
X-ray spectroscopy (EDS) were performed using a ZEISS Crossbeam 540 equipped with
the Bruker EDS system at Chungbuk National University (Oberkochen, German, Center
for Research Facilities).

3. Results
3.1. Cu Corrosion

The surface of the compacted KJ-I and MX-80 contained Cu corrosion products. The
possible chemical interaction between the corrosion products and bentonite indicated that
the Cu was most likely present as Cu2+ ions. Interactions between the Cu2+ ions and
the various bentonite components might thus include precipitation (with anions in the
pore water), adsorption on the outer montmorillonite surfaces, and diffusion into the
interlamellar montmorillonite spaces or in the free water between the bentonite particles.

Figures 2 and 3 show the SEM-EDS and mapping results of the FIB-prepared specimens.
Cu-rich corrosion products appear as bright areas in the SEM images, caused by electron
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density differences. These results indicate that the corrosion and penetration of Cu into
the bentonite were heterogeneous on a µm–mm scale. Figure 2A,C shows the corrosion-
product-dependent bentonite of the measured FIB-SEM images of Ca-bentonite (KJ-I) in
contact with the RP and CSC Cu. In the Ca-bentonite in contact with the RP Cu, Cu2O was
present in the intermediate layer at a thickness of approximately <1 µm. In the Ca-bentonite
in contact with the CSC Cu, CuO compounds were distributed in the upper layer, and
approximately 16.9 µm of the Cu2O and Cu metal was distributed in the middle layer
(Figure 2). On the other hand, the Cu metal in the middle area and CuO compound in the
upper layer were distributed in the Na-bentonite in contact with the RP and CSC Cu, and
Cu2O was absent. Overall, the ICP-AES data showed that fewer Cu corrosion products
were produced for Na-bentonite than for Ca-bentonite (Figure 4).

Increased Cu concentrations were found at the interface of bentonite-Cu material (e.g.,
canister), probably indicating Cu corrosion. The changes in Cu concentration analyzed
based on the RP and CSC Cu thickness are shown in Figure 4 for the Ca- and Na-bentonite.
In the Ca-bentonite with RP and CSC Cu corrosion products, the concentration of Cu
cations dissolved from the Cu materials increased (approximately 0.99% and 2.46%) with
proximity to the surface in contact with Cu materials. However, the Cu concentration
decreased to that found 2 mm from the interface. In particular, the Cu cation concentration
was 2.5 times higher in the CSC Cu than in the RP Cu. This is consistent with the corrosion
thickness difference (3.94 µm for RP and 6.28 µm for CSC Cu) obtained using the weight
loss method.
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On the other hand, in the Na-bentonite with RP and CSC Cu corrosion products, the
concentration of Cu cations dissolved in the two materials was the same (approximately
0.29%) and appeared higher and closer to the surface in contact with the Cu materials.
However, the Cu cations were concentrated within 0.5 mm and did not diffuse beyond a
1 mm depth. Further away from the corrosion surface, both profiles dropped to values
close or equal to zero.

3.2. Geochemistry of the Solid Samples

The chemical compositions of the initial Ca-type bentonite (KJ-I) and Na-type bentonite
(MX-80) in contact with Cu materials over 10 years are shown in Table 1. Notably, the
concentration of CaO in KJ-I increased from 2.59% to 3.37% (RP Cu) and 3.31% (CSC Cu),
and that of Na2O increased from 1.25% to 1.78% (RP Cu) and 1.76% (CSC Cu). Furthermore,
in MX-80, the concentration of CaO increased from 1.49% to 2.81% (RP Cu) and 2.83% (CSC
Cu), whereas that of Na2O decreased from 2.25% to 0.42% (RP Cu) and 0.41% (CSC Cu)
(Table 2). These results suggest that changes in CaO and Na2O concentrations are due to
cation exchange between corrosion products and bentonite and groundwater or mineral
dissolution. The smectite surface has a high affinity for Cu(II). Therefore, the corrosion
products generated when the Cu disposal canister is corroded migrate to the bentonite
through diffusion and are then adsorbed on the bentonite.

Table 2. Chemical composition of KJ-I, MX-80, and bentonite in contact with copper (Cu) materials
(rolled plate [RP] and cold-spray-coated [CSC] Cu).

Samples Oxides (wt%) KJ-I * MX-80 RP Cu CSC Cu

Ca-B Na-B Ca-B Na-B

SiO2 56.80 63.93 63.59 63.76 63.92 64.13
Al2O3 19.96 18.49 15.79 17.73 15.78 17.72
Fe2O3 6.03 4.09 3.39 3.93 3.40 3.94
CaO 2.59 1.49 3.37 2.81 3.31 2.83
MgO 0.77 2.45 3.04 2.49 3.03 2.46
K2O 0.93 0.59 0.83 0.55 0.82 0.56

Na2O 1.25 2.25 1.78 0.42 1.76 0.41
TiO2 0.83 0.20 0.37 0.19 0.38 0.19
MnO 0.04 0.02 0.05 0.02 0.04 0.02
P2O5 0.11 0.06 0.08 0.07 0.08 0.07

FeO 0.15 - - - - -

Total, % (without Ig.loss) 89.46 93.57 92.29 91.97 92.52 92.33

Ig.loss 9.17 6.15 7.33 7.76 6.94 7.27
* Existing literature [5] measurements are cited.

3.3. Mineralogy

The locations where Cu is sorbed are between the interlayer site in the bentonite and
the edge site [24–27]. In the case of the former, an outer surface complex is generated
via a reversible cation exchange reaction. Figure 5 shows the Cu-material-dependent
changes in the measured XRD patterns of the Ca-bentonite (KJ-I) and Na-bentonite (MX-80)
in contact with RP and CSC Cu under KURT groundwater-saturated conditions. The
broadness and position of the (001) peak of Ca-bentonite (KJ-I) changed. For comparison,
the position of the (001) peak of Na-bentonite (MX-80) changed, and the appearance
of a shoulder was observed. This indicates that the interlayer Na+ in the Na-bentonite
was easily exchanged with other ions [28]. In contrast, when Cu is sorbed at the edge
site, the inner surface complex is formed through the complex’s formation, which is not
desorbed even when treated with a weak acid. The chemical properties of adsorbed Cu vary
with the pH, Cu concentration, ionic strength, electrolyte composition, and experimental
time [27]. Lee et al. [29] reported that some characteristic ion exchange and cation release
phenomena occur in the bentonite clay interacting with aqueous Cu cations. Therefore,
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XRD was used to determine whether the presence of Cu in the bentonite could affect
the interlamellar spacing of the montmorillonite or the types of solids present. The six
diffractograms obtained exhibited no differences in mineral composition, indicating that
Cu2+ was present in quantities that were too small to have any detectable physicochemical
effects. The main constituent minerals were montmorillonite (C2/m(12), #13–0135), quartz
(P3221(154), #79–1910), cristobalite (P41212(92), #11–0695), albite(C1(15), #71–1150), and
calcite (R3c(161), #83–0578). The mineral composition showed no significant differences
between the reference materials.
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Figure 5. Changes in the X-ray powder diffraction patterns of Gyeongju bentonite (KJ-I) and Wyoming
bentonite (MX-80) in contact with copper materials. Rolled plate Cu: RP Cu. Cold-spray-coated Cu:
CSC Cu. M: montmorillonite, Q: quartz, Cr: cristobalite, A: albite, C: calcite.

To compare the behaviors of the Ca-bentonite (KJ-I) and Na-bentonite (MX-80) with Cu
corrosion products, Figure 6 shows the calculated and normalized d-spacings of the (001)
peak of montmorillonite. In the stacked graph (Figure 6b), the d(001) distance of the mont-
morillonite changed as a function of the Cu materials. KJ-I, the initial bentonite, showed
a d(001) distance of 14.9861(1) Å, which is normally observed for bentonites under initial
conditions. For the KJ-I mixed with RP Cu, d(001) changed to 15.4258(1) Å, showing a 2.9%
increase in the d-spacing. For KJ-I mixed with CSC Cu, d(001) increased continuously from
15.4258(1) to 15.5278(1) Å. MX-80 showed a d(001) spacing of 12.7727(1) Å. When mixed with
RP Cu, the d(001) changed dramatically to 14.9562(1) Å, exhibiting a 17.6% increase in the
d-spacing. When mixed with CSC Cu, d(001) increased steadily from 14.9562(1) to 15.2449(1)
Å. Finally, the d-spacings of KJ-I and MX-80 increased by 3.6% and 19.4%, respectively.

In KJ-I, the contents of the montmorillonite in contact with the RP and CSC Cu were
approximately 59.5% and 59.3%, respectively. In MX-80, the contents of montmorillonite
in contact with the RP Cu and CSC Cu were 76.7% and 76.0%, respectively. Major min-
erals other than montmorillonite were confirmed: albite, quartz, cristobalite, calcite, and
heulandite (Table 3). As the minerals in an underground disposal environment gradually
transition owing to geochemical reactions in the long term, their characteristics and roles
must also be examined from a long-term perspective.
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Figure 6. The d-spacing (Å) of montmorillonite (001) reflections as a function of copper (Cu) materials.
(A) The black squares show the calculated d-spacings of KJ-I in contact with rolled plate (RP) Cu and
cold-spray-coated (CSC) Cu, and the orange circles show those of MX-80. (B) Corresponding detailed
changes in the X-ray diffraction patterns of the (001) peak for KJ-I and MX-80 are shown for contact
with copper materials over 10 years. Changes in the interlayer basal distances, d(001), are shown with
black lines.

Table 3. Quantitative analysis of minerals, excluding montmorillonite, in the KJ-I, MX-80, and
bentonite in contact with copper (Cu) materials.

Minerals Volume (%)

KJ-I * MX-80 Rolled Plate Cu CSC

Ca-Type Bentonite Na-Type Bentonite Ca-Type Bentonite Na-Type Bentonite

Albite 25.6 10.3 23.5 7.4 23.0 7.4
Quartz 4.9 6.7 9.8 11.2 9.8 11.0

Cristobalite 3.0 3.3 5.0 4.6 5.9 5.7
Calcite 2.1 1.5 2.2 - 2.0 -

Heulandite † 1.8 miner miner - miner -

* The existing literature [30] is cited. † C2/m(12).

4. Discussion

In this study, a field experiment was conducted to confirm whether the performance
and characteristics of bentonite buffer materials surrounding a Cu disposal container for
high-level waste disposal are maintained in the long term following the corrosion of the
candidate materials in a deep geologic environment. After 10 years of operation, the
corrosion cell in the KURT in situ aerobic experiment was dismantled. The chemical and
mineralogical properties of Ca- and Na-type bentonite in contact with Cu materials, such as
RP and CSC Cu, were characterized using FIB-SEM-EDS, ICP, XRF, and XRD measurements.
The d-spacing expansion of montmorillonite is directly associated with the swelling ability
of the buffer material. Based on the d-spacing value, it can be seen whether the buffer
can be substituted with Ca, Na, or other cations (such as Cu) and how many water layers
are combined. Based on this, it can be determined whether the performance of the buffer
material as an engineered barrier is maintained.

The penetration thicknesses of the resulting corrosion products in the Ca- and Na-
bentonite were up to 2.0 and 0.5 mm over 10 years, with penetration rates of 0.2 and
0.05 mm/year, respectively. As the disposal environment evolves, the resulting corrosion
products also change. The difference in penetration depth between the two bentonites may
be due to various complex factors. The hydraulic conductivity of Na-bentonite (10−13 to
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10−14 m/s) [31] is lower than that of Ca-bentonite (10−12 to 10−13 m/s) [5], which affects the
diffusion of corrosion products. Furthermore, because Na-bentonite has a low layer charge
(<0.425 e/h.u.c., i.e., electrons per half unit cell) and a high viscous suspension [32,33], the
penetration of the corrosion products is considered to be lower than that of Ca-bentonite
with a high layer charge (>0.475 e/h.u.c.). Corrosion products may be present in the form
of precipitates on the surfaces of the disposal canister or migrate to the buffer material
surrounding the disposal canister depending on their properties. They can undergo a
sorption reaction with the buffer material. The penetration of such corrosion products into
the buffer can contaminate the buffer and change its performance.

Under KURT conditions at 30 ◦C over 10 years, the Ca- and Na-type bentonite showed
similar processes, such as continuous d-spacing expansion and CaO concentration increase.
However, they also showed several differences. The Na2O content of Na-bentonite (MX-
80) decreased from 2.25% to 0.41–0.42%. These results suggest that the increase in the
d-spacing of Na-bentonite was not simply due to a change in the two-layer hydration states
without ion exchange but was caused by the replacement of the Na ions with Ca ions in the
interlayer [33–35].

5. Conclusions

The increase in the d-spacing of Ca- and Na-bentonite is caused by the replacement
of Na ions with Ca ions in the intermediate layer, as well as changes in the hydration
state of the second layer without ion exchange. Whether Cu enters the interlayer via ion
exchange should be studied further. Because no temperature changes were observed under
an aerobic environment over 10 years, no changes were observed in the chemical and
mineral compositions of the Ca- and Na-bentonite blocks. However, if the concentration of
dissolved Cu cation increases as the temperature increases, Cu cations will tend to exchange
ions with interlayer cations; therefore, the interlayer spacing of bentonite will change,
resulting in the properties of the buffer material. The presence of either green Cu corrosion
products or cuprite on the bentonite did not notably affect the porewater chemistry.

This study has some limitations. However, we believe that this study provides basic
data for understanding the long-term stability and safety of deep geological disposal
systems. We conducted experiments over 10 years in an underground research laboratory.
We found that corrosion products were generated but the performance of the buffer material
was maintained, thus indicating the long-term safety of deep geological disposal systems.
However, as the experiment was conducted under aerobic conditions at 30 ◦C, it was
difficult to determine the effect of sulfide. In future studies, we plan to interpret the results
of an experiment conducted under anaerobic conditions at 70 ◦C. Future investigations into
the effects of volume and density changes on the safety, performance, and radionuclide
retardation ability of the buffer in relation to high temperatures are required.
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