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Abstract: To ascertain the Early-to-Middle Jurassic tectonic setting in the central Great Xing’an Range,
this study investigated the Early and Middle Jurassic granitoids exposed in the Chaihe area in the
central Great Xing’an Range based on isotopic chronology and petrogeochemistry. The results of this
study show that the Early and Middle Jurassic granitoids have emplacement ages of 179–172 Ma.
Moreover, the Early and Middle Jurassic granitoids are high-K calc-alkaline unfractionated I-type
granitoids and high-K calc-alkaline fractionated I-type granitoids, respectively. The magma sources
of the Early and Middle Jurassic granitoids both originated from the partial melting of newly accreted
lower crustal basaltic rocks. Meanwhile, the Middle Jurassic magma sources were mixed with
mantle-derived materials or ocean-floor sediments formed by the dehydration and metasomatism
of subducted slabs. The Early and Middle Jurassic granitoids in the study area were formed in
the subduction environment of the oceanic crust, in which the Mongol-Okhotsk oceanic plate was
subducted southward beneath the Eerguna and Xing’an blocks. Moreover, the Siberian plate began
to collide and converge with northeast China during the Middle Jurassic.

Keywords: central Great Xing’an Range; Early and Middle Jurassic; granitoids; petrogenesis;
southward subduction of the Mongol-Okhotsk oceanic plate

1. Introduction

The Great Xing’an Range of China is located in the eastern part of the Central Asian
Orogenic Belt (CAOB) between the Siberian Craton in the north and the North China
Craton in the south [1–8]. It has been suggested that this orogenic segment has undergone
two stages of tectonic evolution, of which the earlier stage was related to the subduction
and closure of the Paleo-Asian Ocean [9–15], whereas the later stage was related to the sub-
duction of the Pacific Ocean [16–19]. Volcanic rocks and granitoids are widely distributed
throughout the Great Xing’an Range, and an understanding of the timing and stages of
emplacement of these granitoids is critical for reconstructing the tectonic and magmatic
evolution of northeastern China. A large number of existing studies have found that most
of the volcanic rocks and granitoids in the region were emplaced during Mesozoic time,
with only a few during Neoproterozoic and Paleozoic times [20–22].

The Late Mesozoic volcanic rocks and granitoids in the Great Xing’an Range are an
important part of the large-scale Late Mesozoic magmatism in northeast China. Their
petrogenesis and tectonic setting have been hot research topics for geologists. However, the
tectonic setting of the large-scale Late Mesozoic magmatic rocks in northeast China remains
controversial and is believed to be related mainly to (1) the mantle plume structure [23];
(2) the closure and post-orogenic collapse of the Mongol-Okhotsk Ocean [24,25]; (3) the
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subduction of the Paleo-Pacific plate [26]; and (4) both the closure of the Mongol-Okhotsk
Ocean and the subduction of the Paleo-Pacific plate [27]. The interaction mode related to
the mantle plume structure can almost be excluded based on the non-annular distribution
of volcanic rocks in the Great Xing’an Range and its adjacent areas [24,28]. However, no
consensus has been reached on the other three views. The central Great Xing’an Range,
located between the Mongol-Okhotsk tectonic belt in the northwest and the Paleo-Pacific
plate in the east, is a key area for research on this scientific problem. Therefore, it is
necessary to conduct a systematic and in-depth study of the Early-Middle Jurassic granitic
rocks in the central Great Xing’an Range. Based on field geological surveys, this study
investigated the Early-Middle Jurassic granitic rocks exposed in the study area through
systematic petrological, geochronological, and petrogeochemical studies. Accordingly, this
study determined the petrogenetic characteristics of these granitic rocks and explored their
tectonic setting.

2. Geological Setting and Geological Characteristics of Plutons

The Great Xing’an Range lies in the Xing’an-Mongolian orogenic belt, east of the
Central Asian Orogenic Belt. In terms of geotectonic position, it is located between the
Siberian and North China Cratons (Figure 1) [29,30]. From the end of the Paleozoic to
the Early Mesozoic, with the collision and convergence of several microblocks such as
Eerguna, Xing’an, and Songnen [1,20], the Paleo-Asian Ocean was completely closed,
and the southern part of the Xing’an-Mongolian orogenic belt and the North China plate
collided and converged along the Xilamulun-Changchun-Yanji suture belt, forming a
unified Asian continent [31]. Since the Jurassic, the tectonic framework of northeast China
has undergone dramatic changes from EW-trending structures to NE- and NNE-trending
structures, entering the evolutionary stage of the Circum-Pacific and Mongol-Okhotsk
tectonic systems [32].Minerals 2023, 13, x FOR PEER REVIEW 3 of 20 
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Figure 1. Tectonic map of NE China in the eastern CAOB (modified from references [29,30]) and
the position of Figure 2. It consists of several microcontinental blocks and/or terranes, including
the Jiamusi block and its northern extension in Bureya (Russia), the Songliao terrane, the Xing’an
terrane, and the Erguna Massif. Major faults: F1: Mudanjiang fault; F2: Dunhua–Mishan Fault
(northern branch of the Tanlu Fault); F3: Yitong–Jiamusi Fault; F4: Xar Moron–Changchun–Yanji
Fault; F5: Hegenshan–Zhalantun–Heihe Fault; F6: Tayuan–Xiguitu Fault; F7: Derbugan–Southern
Mongolia Fault.
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The Chaihe area is located on the Xing’an block. The Late Mesozoic Jurassic-Cretaceous
strata in this area are dominated by continental volcanic rocks and continental clastic
sedimentary rocks. They primarily include the Middle Jurassic Wanbao Formation, the
Upper Jurassic Tamulangou and Manketouebo formations, and the Lower Cretaceous
Manitu, Baiyingaolao, Meiletu, and Damoguaihe formations. The Late Mesozoic intrusions
were mainly active during the Early-to-Middle Jurassic (179–172 Ma), the Late Jurassic
(152–149 Ma), and the Early Cretaceous (137–120 Ma) [21]. The Early and Middle Jurassic
granitoids in the Chaihe area are distributed locally and mostly occur as stocks. Field
surveys have revealed that these granitoids intrude into Paleozoic strata and are uncon-
formably overlain by the volcanic rocks of the Late Jurassic Manketouebo Formation
(Figure 2) [33]. Early Jurassic granitoids mainly include porphyritic quartz monzonites.
The Middle Jurassic granitoids are dominated by monzogranites, with a small quantity of
granodiorites and quartz monzonites. The details are shown in Table 1.Minerals 2023, 13, x FOR PEER REVIEW 4 of 20 
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Figure 2. Geological sketch map of the Chaihe area in the central Great Xing’an Range (Modified
from reference [33]).

Table 1. Petrographic features of the Early and Middle Jurassic granitoids in the Chaihe area.

Age Rock Type Texture Mineral Content and Characteristics Samples No.

Early
Jurassic

Quartz
monzonite

Porphyritic textures,
about 70% phenocrysts and

about 30% matrix with
aplitic textures and
massive structures

Quartz (15%±), plagioclase (45%±),
alkali feldspars (35%±), and mafic
minerals (5%±) such as primary

biotite, augite, and secondary epidote
(Figure 3a,b). The main types of

plagioclase are andesine and
labradorite. Quartz grains are

anhedral, plagioclase grains show
polysynthetic twins, and some alkali
feldspar grains have Carlsbad twins.

Zircon U-Pb and Hf
Isotope: Z11-80

Whole-Rock:
Z11-80, B1245-1, B4239-2,
B4239-3, B4241-1, B4246-1

B4246-2, B4247-1

Middle
Jurassic

Quartz
monzonite

Fine-grained granitic
textures, and massive

structures

Alkali feldspars (30%±), plagioclase
(45%±), quartz (15%±), and a small
amount of hornblende (5%±) and

biotite (5%±). Their mafic minerals
have undergone intense chlorite

alteration and carbonation
(Figure 3c,d).
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Table 1. Cont.

Age Rock Type Texture Mineral Content and Characteristics Samples No.

Granodiorite
Medium-to fine-grained

granitic textures, and
massive structures

Alkali feldspar (15%±), plagioclase
(45%±), quartz (28%±), and a small

amount of mafic minerals (12%±)
such as biotite and hornblende
(Figure 3e,f). In addition, their

accessory minerals include sphene,
apatite, and magnetite. Quartz grains
are anhedral, plagioclase grains have
polysynthetic twins, and hornblende

grains are generally
euhedral.

Monzogranite

Medium- to fine-grained
granitic textures, massive

structures, and local
cataclastic structures

Quartz (30%±), plagioclase (35%±),
perthite (20%±), orthoclase (10%±),

and biotite (5%±) (Figure 3g,h).
Quartz grains are anhedral and fill

between other mineral particles;
perthite grains show striated twins;

orthoclase grains have Carlsbad twins.

Zircon U-Pb and Hf
Isotope: Z11-67, Z11-72

Whole-Rock:
Z11-72, B1227-1
B3230-4, B3234-1
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Figure 3. Field photographs and microphotographs of the Early and Middle Jurassic granitoids
in the Chaihe area. (a) Field photograph of the Early Jurassic quartz monzonite; (b) Microphoto-
graph of the Early Jurassic quartz monzonite; (c) Field photograph of the Middle Jurassic quartz
monzonite; (d) Microphotograph of the Middle Jurassic quartz monzonite; (e) Field photograph
of the Middle Jurassic granodiorite; (f) Microphotograph of the Middle Jurassic granodiorite;
(g) Field photograph of the Middle Jurassic monzogranite; (h) Microphotograph of the Middle
Jurassic monzogranite. Qtz—quartz; Pl—plagioclase; Kfs—k-feldspar; Pth—perthite; Aug—augite;
Hbl—hornblende; Bt—biotite.
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3. Analytical Methods
3.1. Zircon U-Pb Dating

Zircon U-Pb dating was performed on three selected samples: Z11-80 (Early Jurassic
quartz monzonite), Z11-67, and Z11-72 (Middle Jurassic monzogranite). Zircons with
sound crystal morphology and no or few fractures were selected from rock samples and
placed in resin for preparing targets and polishing. The cathodoluminescence (CL) images
of zircon were obtained at the Beijing SHRIMP Center, Chinese Academy of Geological
Sciences. Zircon U-Pb dating was conducted at the Tianjin Institute of Geology and Mineral
Resources using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
MS), with a laser spot size of 35 µm and high-purity He being used as the carrier gas for
denudation. In the calculations of Zircon ages, GJ-1 zircon reference material was employed
as the external standard for isotopic fractionation corrections, and synthetic glass NIST
SRM610 was used as the external standard for instrument optimization. The concordant
ages of the samples were calculated using ISOPLOT (version 3.0).

3.2. In Situ Zircon Hf Isotope Analysis

On the basis of zircon U-Pb dating, in situ zircon Hf isotope analysis was performed at
the Tianjin Institute of Geology and Mineral Resources using a multi-collector inductively
coupled plasma mass spectrometer (MC-ICP-MS, NEPTUNE) and a 193-nm laser ablation
system with a laser spot size of 50 µm. The detailed experiment and analysis process are
stated in Geng et al. [34]. The decay constant of 176Lu was set at 1.865 × 10−11 year−1

for calculation [35]. To calculate the εHf(t) values, the 176Lu/177Hf and 176Hf/177Hf ratios
of the depleted mantle were set at 0.0384 and 0.28325, respectively [36]. The Hf model
ages were calculated according to studies by Griffin et al. [36], Nowell et al. [37], and
Amelin et al. [38].

3.3. Whole-Rock Major- and Trace-Element Analysis

Twelve fresh samples (eight Early Jurassic quartz monzonites and four Middle Jurassic
monzogranites) were selected, washed, dried, and ground into powders (<200 mesh) for the
analysis of major and trace elements. The analysis and tests were completed at the Tianjin
Institute of Geology and Mineral Resources. The major elements were analyzed using X-ray
fluorescence spectrometry (XRF) on fused glasses. Both Fe2O3 and FeO were analyzed by
the potassium dichromate volumetric method. The trace elements were analyzed using
inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion of samples in
Teflon bombs. Detailed sample preparation and analytical procedures followed Li et al. [39].
The precision of the major element analyses is within ±2% for the oxides greater than
0.5 wt.% and within ±5% for the oxides greater than 0.1 wt.%. The uncertainties for the
trace element analyses are within 5%.

4. Analytical Results
4.1. Zircon U-Pb Ages

The zircon U-Pb dating results of the Early and Middle Jurassic granitoids are shown
in Supplementary Table S1.

Sample Z11-80 is a porphyritic quartz monzonite, and 40 zircon grains in this sample
were dated. These zircons are mostly short and prismatic, and some of them are granular,
with grain sizes of 100–200 µm and length/width ratios of 1:1–2:1. The cathodolumines-
cence (CL) images (Figure 4a) show that these zircon grains have typical zonal textures
and Th/U ratios of 0.3722–1.1914, suggesting magmatic zircons. All 40 zircons have highly
concentrated U-Pb ages, except for one, which has a U-Pb age of 308 ± 2 Ma. As shown in
the concordia diagram (Figure 4b), all the zircon U-Pb ages lie on or near the concordant
curve, and the concordant age is obtained at 179 ± 1 Ma (MSWD = 1.4). This Early Jurassic
age represents the emplacement age of quartz monzonite, and the age of 308 ± 2 Ma is the
age when the zircon grain was trapped in or inherited by quartz monzonite.
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granitoids in the Chaihe area. (a) CL image of zircons from sample Z11-80, (b) Zircon U-Pb age
concordia diagram from sample Z11-80, (c) CL image of zircons from sample Z11-67, (d) Zircon U-Pb
age concordia diagram from sample Z11-67, (e) CL image of zircons from sample Z11-72, (f) Zircon
U-Pb age concordia diagram from sample Z11-72. Note: solid circles indicate the positions for zircon
U-Pb isotopic dating; dotted circles indicate positions for zircon Lu-Hf isotopic compositions.

Sample Z11-67 is a monzogranite, and 25 zircon grains in this sample were dated.
These zircons are mostly short, prismatic, and granular, with grain sizes of 100–250 µm
and length/width ratios of 1:1–2.5:1. The CL image (Figure 4c) shows that these zircons
have typical zonal textures and Th/U ratios of 0.8121–1.5717, suggesting magmatic zircons.
As shown in the concordia diagram (Figure 4d), all the zircon U-Pb ages are located on
or near the concordant curve, with a weighted average 206Pb/238U age of 172 ± 1 Ma
(MSWD = 2.8). This Middle Jurassic age represents the emplacement age of granites.

Sample Z11-72 is a monzogranite, and 27 zircon grains in this sample were dated.
These zircons are mostly short prismatic and granular, with grain sizes of 70–150 µm and
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length/width ratios of 1:1–3:1. The CL images (Figure 4e) show that these zircons have
typical zonal textures and Th/U ratios of 0.7237–1.8152, suggesting magmatic zircons.
As shown in the concordia diagram (Figure 4f), all the zircon U-Pb ages are located on
or near the concordant curve, with a weighted average 206Pb/238U age of 174 ± 1 Ma
(MSWD = 2.5). This Middle Jurassic age represents the emplacement age of granites.

4.2. In Situ Zircon Hf Isotopic Composition

Based on the LA-ICP-MS zircon U-Pb dating for the Early and Middle Jurassic grani-
toids in the study area, this study conducted in situ zircon Hf isotope analysis of some zir-
cons from the dating samples. The analytical results are shown in Supplementary Table S2.

Twenty zircons that were taken from Early Jurassic quartz monzonite porphyry sample
Z11-80 and represented the formation age of this sample had initial 176Hf/177Hf ratios of
0.282824–0.282956 and εHf(t) values of +5.64–+10.33 (weighted average: +7.09–0.59). They
had single-stage Hf model ages TDM1 (Hf) and two-stage Hf model ages TDM2 (Hf) of
421–602 Ma and 515–775 Ma, respectively.

Twenty zircons from Middle Jurassic monzogranite sample Z11-67 had initial
176Hf/177Hf ratios of 0.282898–0.283064 and εHf(t) values of +8.12–+14.06 (weighted aver-
age: +9.51 ± 0.57). Their TDM1 (Hf) and TDM2 (Hf) ages were 268–508 Ma and 303–633 Ma,
respectively. 20 zircons from Middle Jurassic monzogranite sample Z11-72 had initial
176Hf/177Hf ratios of 0.282856–0.282995 and εHf(t) values of +6.64–+11.55 (weighted average:
+8.5 ± 0.66). Their TDM1 (Hf) and TDM2 (Hf) ages were 365–560 Ma and
440–715 Ma, respectively.

Overall, zircons of the Early and Middle Jurassic granitoids in the Chaihe area have
positive εHf(t) values and young TDM2 (Hf) ages, which are concentrated in the Neopro-
terozoic and the Paleozoic. As shown in the εHf(t)-t diagram (Figure 5) [40], the zircon
Hf isotope data of the Early and Middle Jurassic granitoids all fall between the evolution
lines of the depleted mantle and chondrite and within the eastern part of the Xing’an-
Mongolian orogenic belt. This result indicates that the magmas of the Early and Middle
Jurassic granitoids originate from newly accreted crustal materials. In addition, the Middle
Jurassic granitoids have higher zircon εHf(t) values and approach the depleted mantle
evolution line, suggesting that the Middle Jurassic magma source might be mixed with
mantle-derived components.
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4.3. Major and Trace Elements

The analytical results of the whole-rock major and trace elements in the Early and
Middle Jurassic granitoids in the study area are shown in Supplementary Table S3.

The Early Jurassic quartz monzonite samples from the Chaihe area have a SiO2 content
of 63.3%–67.85%, a TiO2 content of 0.51%–0.803%, an Al2O3 content of 14.8%–16.3%, a FeOT

content of 3.01%–4.39%, a MgO content of 0.83%–1.74%, a CaO content of 1.66%–3.19%, a
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Na2O content of 4.20%–5.45%, and a K2O content of 3.65%–4.17%. Their Na2O/K2O ratios
are 1.09–1.43, indicating that they are relatively enriched in sodium (Na) and depleted in
potassium (K). Their Rittmann index σ (3.00–4.22) suggests calc-alkaline—alkaline charac-
teristics. As shown in the rock series discrimination diagram (Figure 6a), the samples all
fall into the high-K calc-alkaline zone. Moreover, the rock samples have an aluminum satu-
ration index A/CNK of 0.91–1.02 and fall into the meta-aluminous—weakly peraluminous
zone in the A/CNK-A/NK diagram (Figure 6b).
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Figure 6. The SiO2-K2O rock series discrimination diagram ((a); [41,42]) and aluminum saturation
index diagram ((b); [43]) of the Early and Middle Jurassic granitoids.

The Middle Jurassic monzogranites samples have a SiO2 content of 73.70%–76.98%,
a TiO2 content of 0.13%–0.23%, an Al2O3 content of 12.18%–13.70%, a FeOT content of
1.09%–1.54%, a MgO content of 0.18%–0.31%, a CaO content of 0.36%–0.86%, a Na2O
content of 3.7%–4.62%, and a K2O content of 4.20%–4.82%. Their Na2O/K2O ratios are
0.77–1.03, indicating that they are relatively enriched in K and depleted in Na. Their
Rittmann index σ (2.14–2.82) suggests calc-alkaline characteristics. As revealed by the rock
series discrimination diagram (Figure 6a), the samples all fall into the high-K calc-alkaline
zone. Moreover, the rock samples have an aluminum saturation index A/CNK of 0.95–1.04
and fall into the weakly peraluminous zone in the A/CNK-A/NK diagram (Figure 6b).
CIPW norm mineral calculations for the Early and Middle Jurassic granitoids match modal
abundances estimated by petrographic observation (Supplementary Table S3 and Figure 3).

As shown in the total alkali-silica (TAS) diagram of the rock samples (Figure 7) [44,45],
the Early Jurassic quartz monzonite samples fall near the boundary between the zones
of the alkaline and subalkaline series and are primarily projected into the zone of the
subalkaline series. Therefore, these samples are primarily composed of quartz monzonite.
The TAS diagram also shows that the Middle Jurassic granitoids samples are all projected
into the subalkaline series zone, indicating that they were composed of granites. As shown
in the Harker diagram (Figure 8), the Early-Middle Jurassic granitoids samples all showed
significant correlations. Specifically, the TiO2, Al2O3, FeOT, CaO, MgO, Na2O, and P2O5
contents decrease with an increase in the SiO2 content, while the K2O content and the
K2O/Na2O ratio increase with an increase in the SiO2 content. These results suggest
that the magma evolution underwent the fractional crystallization of mafic minerals and
plagioclase, implying that the Early and Middle Jurassic granitoids had the same (or similar)
source rocks.
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As shown in the primitive mantle-normalized trace element spider diagram (Figure 9a),
the Early Jurassic granitoids samples are relatively enriched in large-ion lithophile elements
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(LILEs; e.g., Rb, U, K, and LREEs) and Zr and Hf and are depleted in high-field-strength
elements (HFSEs; e.g., Nb, Ta, P, and Ti) and Sr. Similar to the Early Jurassic granitoids sam-
ples, the Middle Jurassic granitoids samples are also relatively enriched in LILEs (e.g., Rb,
Th, U, K, and LREEs) and Zr and Hf and are depleted in HFSEs (e.g., Nb, Ta, P, and Ti) and
Ba and Sr. However, the Early and Middle Jurassic granitoids samples exhibit significantly
different degrees of enrichment and depletion of these elements. Specifically, the Middle
Jurassic granitoids samples were more significantly depleted in Sr, P, and Ti; the Early Juras-
sic granitoids samples do not exhibit Ba anomalies, while the Middle Jurassic granitoids
samples show strong negative Ba anomalies; and the Early Jurassic granitoids samples
exhibit weakly negative Th anomalies, while the Middle Jurassic granitoids samples show
significantly positive Th anomalies.
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Figure 9. The primitive mantle-normalized trace element spider diagram (a) and chondrite-
normalized REE patterns (b) of the Early and Middle Jurassic granitoids in the Chaihe area. The
normalization values for the primitive mantle and chondrite are from reference [46].

The Early Jurassic granitoids samples have a total rare earth element (ΣREE) content
of 130.85–191.02 µg/g, a LREE/HREE ratio of 6.59–9.74, an (La/Yb)N ratio of 7.92–11.12,
and δEu values of 0.70–0.86. In contrast, the Middle Jurassic granitoids samples have
a ΣREE content of 82.05–133.69 µg/g, a LREE/HREE ratio of 7.49–13.55, an (La/Yb)N
ratio of 5.79–18.10, and δEu values of 0.22–0.51. As shown in the chondrite-normalized
REE patterns (Figure 9b), the Early and Middle Jurassic granitoids samples exhibit similar
rightward trends, suggesting that they are relatively enriched in LREEs and depleted
in HREEs. Compared with the Early Jurassic granitoids samples, the Middle Jurassic
granitoids samples have a lower ΣREE content, a higher LREE/HREE fractionation degree,
and more significant negative Eu anomalies.

5. Discussion
5.1. Distribution of the Early and Middle Jurassic Granitoids in the Great Xing’an Range

The Early-to-Middle Jurassic magmatic activity in northeast China occurred pri-
marily in the Great Xing’an Range and Manzhouli areas and the Lesser Xing’an Range–
Zhangguangcai Range area at 198–164 Ma and 199–166 Ma [32], respectively, and is dis-
tributed locally in the Songliao Basin (granitic basement rocks) and the eastern areas of
the Jilin and Heilongjiang provinces [32,47] (Figure 1). The Early and Middle Jurassic
granitoids in the Great Xing’an Range are distributed mainly in the Eerguna block in the
north, where many Early-to-Middle Jurassic granitic rocks have also been discovered [20].
The formation of these rocks is related to the subduction of the Mongol-Okhotsk oceanic
plate beneath the Eerguna block. However, there are few reports on the Early and Middle
Jurassic granitoids in the central Great Xing’an Range. According to the latest geological
survey results, a few Early-to-Middle Jurassic granitic rocks are distributed in the central
Great Xing’an Range, and most of them occur as small stocks. Ge et al. [48] identified the
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Early-to-Middle Jurassic Dashizhai and Jingyang plutons in the Ulanhot area, which have
zircon U-Pb ages of 174 ± 4 Ma and 182 ± 3 Ma, respectively. Wu et al. [20] concluded that
no Jurassic plutons have been discovered in the Xing’an block in the central Great Xing’an
Range but that Jurassic plutons with ages of 179–157 Ma are exposed in the Songnen block
in the south. Yu et al. [49] discovered a set of Middle Jurassic granitoids with zircon ages
of 173–166 Ma in the northern Taerqi area. This study revealed that the Early-to-Middle
Jurassic granitic rocks in the study area had emplacement ages of 179–172 Ma. Since there
are few Early-to-Middle Jurassic granitoids exposed in the central Great Xing’an Range,
this new discovery of the Early-to-Middle Jurassic granitoids in the Chaihe area provides
a solid foundation for research on the tectonic-magmatic evolution process in the Great
Xing’an Range.

5.2. Petrogenesis of the Early and Middle Jurassic Granitoids
5.2.1. Petrogenetic Types of Granitoids

Granitoids can be commonly divided into I, S, M, and A types based on the nature
of their protolith and their genesis [50,51]. The Early and Middle Jurassic granitoids in
the Chaihe area do not contain primary muscovite. The dark minerals in them include
augite, hornblende, and biotite, with the mineral assemblage exhibiting the characteristics
of I-type granitoids. Regarding the major element characteristics, the Early-Middle Jurassic
granitoids samples are meta-aluminous to weakly peraluminous, with an A/CNK ratio
of less than 1.1. Moreover, there is a negative correlation between the P2O5 and SiO2
contents, as shown in the Harker diagram. CIPW-normalized corundum content is less
than 1.0 vol%. These characteristics are inconsistent with those of S-type granitoids. In the
discrimination diagram for the SiO2-K2O rock series, the granitoids samples all fall into
the zone of the high-K calc-alkaline series. In the petrogenetic discrimination diagrams
(Figure 10) [52], the Early Jurassic granitoids samples mostly fall into the zone of unfrac-
tionated granitoids, and the Middle Jurassic granitoids samples are all projected onto the
zone of fractionated granitoids.
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The early crystallization temperature of magmas can be estimated using a zircon
saturation thermometer, and accordingly, the formation temperature of granitoids can be
obtained [53]. The calculational equation is as follows:

TZr(◦C) = {10,108/[0.32 + 1.16M + ln(500,000/Zrmelt)]} − 273.15

where M = (2Ca + K + Na)/(Si × Al) (mole fraction was set at Si + Al + Fe + Mg + Ca + Na
+ K + P = 1), and Zrmelt is approximately replaced with the whole-rock Zr content.
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As shown by the calculation results, the Early and Middle Jurassic granitoids in the
Chaihe area have an average zircon saturation temperature of about 750 ◦C and 725 ◦C,
respectively, both of which are lower than the primitive magma temperature of A-type
granitoids (generally >830 ◦C) and approximate the primitive magma temperature of I-type
granitoids [54,55]. The zircon saturation temperature of the Middle Jurassic granitoids is
about 25 ◦C less than that of the Early Jurassic granitoids on average, implying that the
formation of the Middle Jurassic granitoids might be related to fluid mixing [56]. To sum
up, The Early and Middle Jurassic granitoids are high-K calc-alkaline I-type granitoids.

5.2.2. Magma Source

The origin of the granitic magmas has been more of a matter of debate, including:
(1) fractional crystallization of mantle-derived basaltic magmas [57,58]; (2) mixing of crust
and mantle-derived components [59]; (3) partial melting of an infracrustal source [55,60].
The Chaihe area does not contain associated mafic rocks, which suggests that these Early
and Middle Jurassic granitoids were not generated by fractional crystallization of a parental
basaltic magma. In addition, the mixing of crust- and mantle-derived melts would generate
rocks containing mafic enclaves, whereas samples from the study area are free of mafic
enclaves. The ratio of incompatible elements with similar properties can represent the
characteristics of the magma source because they are consistent with the source region
in the partial melting process and are not affected by fractional crystallization. First, the
average Nb/Ta and Ce/Pb ratios of Early and Middle Jurassic granitoids are 12.78 and
3.42, respectively, which are similar to the average crust values [61,62]. Then, the Early
Jurassic granitoids have a Zr/Hf ratio of 31.33–35.28 (except for a value of 15.59), which is
also similar to the average Zr/Hf ratio (33) of the crust [63]. In contrast, the Middle Jurassic
granitoids have a significantly lower Zr/Hf ratio of 16.13–26.20, suggesting that the magma
source was mixed with another component during the Middle Jurassic. Compared with
the Early Jurassic granitoids, the Middle Jurassic granitoids have a significantly higher Th
content, which implies that the magma source might have been contaminated by subduction
fluids or ocean-floor sediments during the Middle Jurassic [64,65]. As a result, the Early and
Middle Jurassic granitoids should be derived from the partial melting of a crustal source;
subsequently, another component was added to the magma source during the Middle
Jurassic. This conclusion is also supported by the Hf isotopic composition of zircons. The
Early and Middle Jurassic granitoids in the Chaihe area have positive zircon εHf(t) values
(+5.64~+14.06) and TDM2 (Hf) ages dominated by the Neoproterozoic-Paleozoic, indicating
that their magmas are likely to have originated from the partial melting of the lower crustal
materials that were newly accreted from the depleted mantle, which is consistent with the
Sr-Nd isotopic feature of contemporaneous granitoids in Northeast China [66]. Moreover,
the Middle Jurassic granitoids have higher zircon εHf(t) values and approach the depleted
mantle evolution line (Figure 5), suggesting that the magma source might be injected with
mantle-derived materials, which might be the fluid-metasomatized mantle wedge caused
by the dehydration of subducted slabs during the Middle Jurassic.

5.2.3. Magma Evolution

The Early and Middle Jurassic granitoids exhibit a generally linear trend between
SiO2 and other oxide contents (Figure 8). These geochemical variations can be attributed
to mineral fractional crystallization during magma processes. First, the decreases in CaO,
MgO, and FeOT with an increase in SiO2 content can be attributed to fractional crystal-
lization of mafic minerals such as biotite and hornblende. Second, separation of accessory
minerals such as apatite and Fe–Ti oxides may be responsible for the observed reductions
in P2O5 and TiO2 with increasing SiO2 content (Figure 8). Third, plagioclase fractional
crystallization could explain the decreases in Al2O3 and CaO contents as well as the increas-
ingly negative Eu anomalies (Figure 9b). In addition, the Middle Jurassic granitoids have
lower Ba, Sr, P, and Ti contents and more obvious negative Eu anomalies than the Early
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Jurassic granitoids (Figure 9). Taken together, the Early and Middle Jurassic granitoids
have experienced various degrees of fractional crystallization during magma processes.

5.3. Tectonic Setting for the Formation of the Early and Middle Jurassic Granitoids and Its
Constraints on the Southward Subduction of the Mongol-Okhotsk Oceanic Plate

The Early and Middle Jurassic granitoids in the study area are composed mainly
of quartz monzonites, granodiorites, and monzogranites. They are high-K calc-alkaline
series, and these TTGG-like (tonalities, trondhjemites, granodiorites, and granites) rock
assemblage characteristics indicate that they might have been formed in a subduction
zone environment [67]. As shown in the tectonic-setting discrimination diagram for trace
elements (Figure 11a,b) [68], all the Early and Middle Jurassic granitoids plot in the volcanic
arc granite field. In the Rb-Hf-Ta discrimination diagram (Figure 11c) [69], the Early
Jurassic granitoids also have the characteristics of volcanic arc granites, while the Middle
Jurassic granitoids tend to be collisional granites, with some samples falling into the zone
of collisional granites. This result indicates that oceanic crust subduction intensified during
the Middle Jurassic. The trace element characteristics also indicate that the formation of the
Early and Middle Jurassic granitoids was related to the subduction of oceanic crust. In the
tectonic-setting discrimination diagram for FeOT/(FeOT + MgO)-SiO2 (Figure 11d) [43], all
the Early Jurassic granitoids samples fall into the zone of arc-related granitoids, while the
Middle Jurassic granitoids samples fall into the zone of post-orogenic granites. Based on
these characteristics, it can be inferred that the Early and Middle Jurassic granitoids in the
Chaihe area might have been formed in a tectonic setting where subduction transitioned to
collision and collision began during the Middle Jurassic.
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Presently, it is primarily believed that the formation of the Mesozoic magmatic rocks in
the Great Xing’an Range is related to the closure and post-orogenic collapse of the Mongol-
Okhotsk Ocean [24,25], or the subduction of the Paleo-Pacific plate [26], or both [27]. The
subduction of the Paleo-Pacific plate beneath the Eurasian continent began during the
Early Jurassic, and the influence of subduction extended to the east of the Songliao Basin
in northeast China [20,32,70]. Meanwhile, Late Jurassic magmatic activity in northeast
China mainly occurred in the Great Xing’an Range and Manzhouli areas to the west of
the Songliao Basin but was absent in the Songliao Basin and the eastern areas of Jilin and
Heilongjiang. Therefore, the formation of the Early and Middle Jurassic granitoids in the
study area might be independent of the subduction of the Paleo-Pacific plate but is more
likely to be related to the closure of the Mongol-Okhotsk Ocean.

The Mongol-Okhotsk suture belt, located primarily within Mongolia and Russia, is a
suture belt with a long geological history between the Siberian plate and northeast China.
It is generally believed that the Mongol-Okhotsk Ocean was broad at the end of the Late
Paleozoic [71]. From the Late Triassic onward, this ocean underwent a scissor-like closure
from west to east, with its western part closing during the Late Triassic and its eastern part
closing from the Late Jurassic possibly until the Early Cretaceous [72–75]. Previous studies
mostly focused on the northward subduction of the Mongol-Okhotsk oceanic plate beneath
the Siberian plate, but there is a lack of studies on the southward subduction of this oceanic
plate. In recent years, increasing numbers of geologists have paid their attention to the
southward subduction of the Mongol-Okhotsk oceanic plate. According to the Mongolian
terrane division scheme, Permian-Triassic accreted terranes exist on the south side of the
Mongol-Okhotsk suture belt, implying that the Mongol-Okhotsk Ocean was subducted
southward during the Permian-Triassic [76]. Through the investigation of the Triassic-
Jurassic magmatic rocks exposed in the Eerguna block, Chinese geologists confirmed
the southward subduction of the Mongol-Okhotsk oceanic plate beneath the Eerguna
block [32,77,78]. Therefore, the formation of the Early and Middle Jurassic granitoids in
the study area is related to the subduction environment of the oceanic crust, in which the
Mongol-Okhotsk oceanic plate was subducted southward beneath the Eerguna and Xing’an
blocks. Moreover, the Siberian plate began to collide and converge with the central Great
Xing’an Range in northeast China during the Middle Jurassic. This study also indicates that
the southern subduction of the Mongol-Okhotsk oceanic plate at least affected the eastern
margin of the Xing’an block.

6. Conclusions

(1) The Early and Middle Jurassic granitoids in the Chaihe area are composed mainly
of quartz monzonites, granodiorites, and monzogranites. Zircon U–Pb dating of these
granitoids indicates that they were formed in 179–172 Ma.

(2) The Early and Middle Jurassic granitoids are high-K calc-alkaline unfractionated
I-type granitoids and high-K calc-alkaline fractionated I-type granitoids, respectively. They
were derived from the partial melting of newly accreted lower crustal basaltic rocks.
Meanwhile, the Middle Jurassic magma sources were mixed with mantle-derived materials,
which might be related to the partial melting of mantle wedges caused by the dehydration
and metasomatism of subducted slabs.

(3) They were formed in the subduction environment of the oceanic crust, in which
the Mongol-Okhotsk oceanic plate was subducted southward beneath the Eerguna and
Xing’an blocks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min13070917/s1, Table S1: LA-ICP-MS zircon U-Pb dating results
for the Early and Middle Jurassic granitoids in the Chaihe area; Table S2: Results from the Zircon Hf
isotope analysis of the Early and Middle Jurassic granitoids in the Chaihe area; Table S3: Analytical
results of the major (wt%) and trace (µg/g) element contents of the Early and Middle Jurassic
granitoids in the Chaihe area.
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