
Citation: Zhao, Y.; Lyu, J.; Han, X.;

Lin, S.; Zhang, P.; Yang, X.; Chen, C.

Geochronology and Geological

Implications of Paleoproterozoic

Post-Collisional Monzogranitic

Dykes in the Ne Jiao-Liao-Ji Belt,

North China Craton. Minerals 2023,

13, 928. https://doi.org/10.3390/

min13070928

Academic Editor: Aleksei V. Travin

Received: 10 May 2023

Revised: 27 June 2023

Accepted: 4 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Geochronology and Geological Implications of
Paleoproterozoic Post-Collisional Monzogranitic Dykes in the
Ne Jiao-Liao-Ji Belt, North China Craton
Yan Zhao 1,2,3 , Junchao Lyu 1,*, Xu Han 4, Shoufa Lin 2, Peng Zhang 1,3, Xueming Yang 5 and Cong Chen 1,3

1 Shenyang Centre, China Geological Survey, Shenyang 110034, China; zhaoyan@mail.cgs.gov.cn (Y.Z.)
2 Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
3 Key Laboratory of Deep Mineral Resources Exploration and Evaluation, Department of Natural Resource of

Liaoning Province, Shenyang 110032, China
4 School of Resources and Civil Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China
5 Manitoba Geological Survey, Winnipeg, MB R3C 0V8, Canada
* Correspondence: lvjunchao@mail.cgs.gov.cn

Abstract: Hardly any previous studies have focused on the granitic dykes which intrude into the Pa-
leoproterozoic Liaohe Group in the Liaodong Peninsula, northeast of the North China Craton. In situ
zircon U-Pb dating, Lu-Hf isotopic and geochemical analyses on three representative monzogranite
dykes were taken in this study. These dykes have relatively high content of SiO2 (72.20%–74.78%)
and K2O (2.83%–6.37%), and have characteristics of high-K calc-alkaline to shoshonite series. Two
dyke samples have I-type granite features and have high Sr/Y ratios and positive Eu anomalies,
showing an adakitic feature. Another dyke has a high ratio of Ga/Al, but has a low Zr saturation
temperature, which differs from the typical A-type granite. Zircon grains from these three dykes
have typical magmatic zoning in CL images and yield consistent U-Pb ages of ~1859–1852 Ma, which
are interpreted as the crystallization ages of these dykes. Hf isotopic analyses yield mainly negative
εHf(t) values and TDM2 ages of 2782–2430 Ma, similar to those of the 2.2–2.1 Ga granitoids and meta-
sedimentary rocks (the Liaohe Group), indicating these monzogranitic dykes may have been sourced
from melting of Paleoproterozoic granitoids and meta-sedimentary rocks. The monzogranitic dykes
were generated under a post-collisional geological setting after the Jiao-Liao-Ji orogeny process.

Keywords: monzogranitic dykes; U-Pb zircon dating; Lu-Hf isotopes; post-collisional granites;
Jiao-Liao-Ji Belt; North China Craton

1. Introduction

As one of the oldest cratons in the world, the North China Craton (NCC) is considered
to be composed of the Eastern Block, the Western Block and Trans-North China Orogen [1,2].
Three major Paleoproterozoic orogenic belts have been recognized within the NCC [3],
of which the Jiao-Liao-Ji Belt (JLJB) in the Eastern Block extends more than 1000 km ([4];
Figure 1). Great attention had been paid to the debate on the early Paleoproterozoic
tectonic evolution model of the JLJB, and up to four tectonic models have been proposed as
follows: an intra-continental rift opening and closing model [5,6], an arc–continent collision
model [7–11], a rifting ocean followed by late subduction and collision model [6,12,13] and
a back-arc basin (or retro-arc foreland basin) opening and closure model [14–17].
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Figure 1. Simplified geological map of the Liaodong Peninsula (b) and part of the Jiao-Liao-Ji Belt in
the North China Craton (a). (Modified after [18,19]). Locations of the monzogranitic dykes of this
study are indicated.

Compared to the controversy regarding the early stage of its tectonic evolution, studies
on the late Paleoproterozoic JLJB orogenic processes are not as well developed. Previous
research has focused on the porphyritic granites [20], syenite [21,22], granitic leucosomes in
granulites [23], metamorphic rocks [24] and pegmatite veins [25] from ~1880 Ma to 1860 Ma.
The granitoids may have been distributed under a geological setting related to the JLJB
complex and long-term evolvement of the orogeny process. Although some granitoids
are interpreted as originating under a post-collisional setting after the orogeny process,
hardly any robust field evidence with corresponding geochronological evidence has been
provided.

The Paleoproterozoic granitoid dykes, which were newly discovered during recent
geological mapping fieldwork in the Liaodong Peninsula in Northeast China, enable us
to better understand the post-collision process of the JLJB. Here, we report results of
geochemical, zircon U-Pb ages, and Hf isotope studies of the three dykes in the Kuandian
and Dandong areas (Figure 1), aiming to constrain the age and petrogenesis of post-
collisional granites and to better understand the tectonic evolution process of the JLJB.

2. Geological Settings

The JLJB in the Eastern Block of the NCC is located between the Archean Longgang
and the Liaonan-Nangrim blocks and extends into the Jiaodong Peninsula to the south-
west (Figure 1a; [1,26,27]). Voluminous sedimentary rocks, granitoids, volcanic rocks
and metamorphic rocks were involved in the intense orogenic process in ~1.9 Ga and
experienced related deformation [28–33]. The Liaohe Group in the Liaoning Province is
correlated with the Laoling and Ji’an groups in the Jilin Province and the Fenzishan and
Jingshan groups in the Shandong Province. The Liaohe Group consists of meta-sedimentary
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rocks and some meta-volcanic rocks and is subdivided into the Langzishan, Lieryu, Gao-
jiayu, Dashiqiao, and Gaixian formations [4,5,34]. Previous researchers summarized the
widely distributed igneous rocks data and distinguished five magmatic episodes [20,21]
as follows: ca. 2190–2160 Ma A2-type granites with minor basaltic dykes and tuffs, ca.
2160–2110 Ma tholeiitic rocks, ca. 2110–2080 Ma mafic rocks and aluminous A2-type
granites, ca. 2010–1885 Ma adakitic granites related to regional metamorphism and ca.
1875–1850 Ma post-collisional granites.

Post-collisional granites are represented by the biotite-bearing and garnet-bearing
porphyritic granites in the Kuandian and Huanren areas [20], syenite in the Kuangdonggou
area [22], and quartz diorite in the Qinghe area [24]. These undeformed granitoids intruded
into the deformed Paleoproterozoic meta-sedimentary rocks and early gneissic granitoids.
In addition, hardly any reliable post-collisional contemporary mafic intrusion or dykes are
reported at this period within the JLJB.

3. Sample Materials and Analytical Methods
3.1. Sample Materials

The granitic dykes from the Kuandian and Dandong areas, eastern Liaodong Peninsula,
had a width of one to two meters and a length of tens of meters. Unlike the leucosomes
in granulites and gneiss, which had a width of a few centimeters and paralleled the
foliation of granulites as [23] reported, these granitic dykes are observed to intrude into the
Paleoproterozoic Gaixian and Gaojiayu formations either cutting through or following the
foliation of gneiss (Figure 2).
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Figure 2. Field photographs and sketches of the studied monzogranitic dykes in the Kuandian and
Dandong areas within the Jiao-Liao-Ji Belt: (a,b) sample 18XM, (c,d) sample 18HX, (e,f) sample
18HS ((a): a monzogranitic dyke intrudes into the Paleoproterozoic Gaixian Formation gneiss and
cuts the foliation of the gneiss near Kuandian County; (c): a monzogranitic dyke intrudes into the
Paleoproterozoic Gaojiayu Formation granulite in the Hushan area; (e): a granitic dyke intrudes into
the Gaixian Formation schist and gneiss near the Hongshi area) Pt1g: Paleoproterozoic Gaojiayu
Formation granulite; Pt1gx: Paleoproterozoic Gaixian Formation schist and gneiss.

Sample 18XM (40◦53′11′′ N, 125◦8′40′′ E) was collected from a 1 m wide monzogranite
dyke that intrudes into the Gaixian Formation schist and gneiss (Figure 2a). Sample 18HX
(40◦22′41′′ N, 124◦43′40′′ E) was collected from a 2 m wide dyke that intrudes into the
Gaojiayu Formation granulite near Hushan Town (Figure 2c). Sample 18HS is a coarse-
grained granite (40◦41′00′′ N, 125◦9′01′′ E) collected from a 1.5 m wide dyke that intrudes
into the Gaixian Formation schist and gneiss near Hongshi Town (Figure 2e).

3.2. Thin Section Petrography

The thin sections of the studied granitoids were prepared for optical petrography at
the Shenyang Institute of Geology and Mineral Resources, Shenyang, China. Small pieces
of rock were cut from the field samples with a diamond blade, and then mounted on a
petrography carrier glass (~27 mm × 47 mm). The mounted sections were polished by
using a range of ever-finer abrasive powders down to a thickness of 50 µm. Based on the
polished thin sections, the microstructure, texture and mineral modal contents in vol% were
estimated by point counting using an optical petrography microscope in both transmitted
and polarized light.

3.3. Major and Trace Elements

After removal of altered surfaces, fresh whole-rock samples were crushed and ground
to 200 mesh size in an agate mill. Chemical analyses were conducted at the Shenyang
Institute of Geology and Mineral Resources, Shenyang, China. X-ray fluorescence (XRF,
PANALYTICAL, Almelo, Holland) (AXIOS-Minerals) using fused glass disks and induc-
tively coupled plasma mass spectrometry (ICP–MS, Agilent company, Santa Clara, CA,
USA) (Agilent 7500a with a shield torch) were used to measure major and trace element
compositions, respectively. The detailed sample-digesting procedure is as follows: Sample
powder (200 mesh) was placed in an oven at 105 ◦C and dried for 12 h, then ~1.0 g dried
sample was accurately weighted and placed in the ceramic crucible and then heated in a
muffle furnace at 1000 ◦C for 2 h. After cooling to 400 ◦C, this sample was placed in the
drying vessel and weighted again in order to calculate the loss on ignition (LOI). Sample
powder (0.6 g) was mixed with 6.0 g cosolvent (Li2B4O7:LiBO2:LiF = 9:2:1) and 0.3 g oxidant
(NH4NO3) in a Pt crucible, which was placed in the furnace at 1150 ◦C for 14 min. Then,
this melting sample was quenched with air for 1 min to produce flat discs on the fire brick
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for the XRF analyses. Fe2O3 and FeO content were measured directly, while the FeOT was
calculated (Supplementary Table S1). The detection limit of XRF differs from 0.001% to
1% following GB/T 14506.1-2010 standard. For trace element analysis, (1) 50 mg sample
powder was accurately weighed and placed in a Teflon bomb; (2) 1 mL HNO3 and 1 mL
HF were slowly added into the Teflon bomb; (3) Teflon bomb was placed in a stainless
steel pressure jacket and heated to 190 ◦C in an oven for >24 h; (4) after cooling, the Teflon
bomb was opened and placed on a hotplate at 140 ◦C and evaporated to incipient dryness,
and then 1 mL HNO3 was added and evaporated to dryness again; (5) 1 mL of HNO3,
1 mL of MQ water and 1 mL internal standard solution of 1 ppm In were added, and the
Teflon bomb was resealed and placed in the oven at 190 ◦C for >12 h; (6) the final solution
was transferred to a polyethylene bottle and diluted to 100 g by the addition of 2% HNO3.
Precision and accuracy were better than 5% for major elements and 10% for trace elements
based on repeated analyses of the USGS standards BHVO-1, BCR-2, and AGV-1 [35]. The
detection limit of ICP-MS differed from 0.003 to 1 × 10−6 following GB/T 14506.30-2010
standard.

3.4. Zircon LA-ICP-MS U-Pb Dating

Zircon grains from the granitoid samples were extracted using heavy-liquid and mag-
netic separation, and purified by hand-picking under a binocular microscope. Zircons
were mounted and polished before cathodoluminescent (CL) images were taken to exam-
ine the internal structure and potential inclusions of individual grains. U-Pb dating and
trace element analysis of zircon were simultaneously conducted by LA-ICP-MS (Agilent
company, Santa Clara, CA, USA) (Agilent 7700e) at the Wuhan Sample Solution Analytical
Technology Co., Ltd., Wuhan, China. Laser sampling was performed using a GeolasPro
laser ablation system that consists of a COMPexPro 102 ArF excimer laser (wavelength
of 193 nm and maximum energy of 200 mJ) and a MicroLas optical system. Helium was
applied as a carrier gas. Argon was used as the make-up gas and was mixed with the carrier
gas via a T-connector before entering the ICP system. The laser beam diameter was 35 µm
and the repetition rate was 5 Hz. Each spot analysis consisted of a ~5 s background mea-
surement and a 45 s sample measurement. The 207Pb/206Pb, 206Pb/238U, 207Pb/235U and
208Pb/232Th values were corrected for instrumental isotopic and elemental fractionation ef-
fects using zircon standard 91500. An Excel-based software, ICPMSDataCal (ICPMSdatacal
Excel2016, Redmond, WA, USA), was used to perform off-line selection and integration of
the background. It also analyzed signals, time–drift correction and quantitative calibration
for trace element analysis and U-Pb dating [36]. Concordia diagrams and weighted mean
calculations were made using Isoplot/Ex_ver3 (Ludwig, Berkeley, CA, USA) [37].

3.5. Zircon Lu-Hf Ratio Analyses

The in situ Lu–Hf isotope analyses (n = 42) were also conducted by MC-ICP-MS at
the Wuhan Sample Solution Analytical Technology Co., Ltd. (Wuhan, China). A stationary
spot used a beam diameter of ~55 µm. Helium was used to transport the ablated sample
aerosol mixed with argon from the laser-ablation cell to the MC-ICP-MS torch by a mixing
chamber. 176Lu/175Lu = 0.02658 and 176Yb/173Yb = 0.796218 ratios were determined to
correct for the isobaric interferences of 176Lu and 176Yb on 176Hf [38]. The 176Hf/177Hf and
176Lu/177Hf ratios of the 91500 standard zircon were 0.282270 ± 0.000023 (2σ, n = 15) and
0.00028, similar to the commonly accepted 176Hf/177Hf ratio of 0.282284 ± 0.000003 (1σ)
measured using the solution method [39]. Zircon international standard GJ-1 was used
as the reference standard, with a weighted mean 176Hf/177Hf ratio of 0.282006 ± 32 (2SD,
n = 24).

4. Results
4.1. Petrography

The 18XM sample has a fine- to medium-grained texture and a grey to light-brown
color (Figure 3a,b). Minerals in the monzogranite include quartz (~30 vol%), plagioclase
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(~30 vol%), orthoclase (~35 vol%) and biotite (<5 vol%). The 18HX sample has a character-
istic medium-grained texture and a grey color (Figure 3c). Quartz (~30 vol%), plagioclase
(~33 vol%), orthoclase (~25 vol%), biotite (~10 vol%) and minor muscovite (~2 vol%)
comprise the minerals in this monzogranite. The 18HS sample has a characteristic coarse-
grained texture and a grey to brown color (Figure 3d). Plagioclase (~40 vol%), orthoclase
(~35 vol%), quartz (~23 vol%) and minor biotite (~2 vol%) comprise this monzogranite.
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(images are without analysator). (a,b) Sample 18XM, (c) sample 18HX, (d) sample 18HS (Bt: biotite;
Or: orthoclase; Pl: plagioclase; Qz: quartz).

4.2. Major and Trace Elements

The 18XM samples have a relatively high content of SiO2 (72.81–74.78 wt%) and
K2O (5.52–5.70 wt%), and plot into the metaluminous and peraluminous field (Figure 4b).
The 18HS and 18HX granitic dyke samples also have a relatively high content of SiO2
(72.20–74.08 wt%) and K2O (2.83–6.37 wt%) and plot into the fields of high-K calc-alkaline
to shoshonite series. These two samples have medium Al2O3 contents, and in the A/NK ver-
sus A/CNK diagram they are mainly metaluminous to weakly peraluminous
(Figure 4b). Major and trace element content of the three analyzed granitoid dykes are
given in Supplementary Table S1 and Figure 5. The 18HS and 18HX samples exhibit similar
chondrite-normalized rare earth element (REE) patterns with marked positive Eu anomalies
(Eu/Eu* = 2.16–4.70). The 18XM samples are also enriched in light REE but with strong
negative Eu anomalies (Eu/Eu* = 0.31–0.53).

4.3. Zircon U-Pb Geochronology

CL images of representative zircons from the three samples are listed in Supplementary
Table S2 and Figure 6. Zircon grains have similar euhedral to subhedral shape and are
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about 70 to 200 µm long. Th/U ratios of the testing grains range from 0.11 to 0.86, indicating
an igneous origin. Fifteen spots from sample 18XM and thirty spots from sample 18HS are
analyzed, yielding intercept U-Pb age of 1859 ± 33 Ma (MSWD = 2.1) and 1852 ± 10 Ma
(MSWD = 1.02), respectively. Twenty-five spots from sample 18HX yield weighted mean
207Pb/206Pb ages of 1856 ± 12 Ma (MSWD = 1.3) (Figure 6).
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Figure 5. CI chondrite-normalized REE (a) and primitive mantle-normalized trace elements distri-
bution (b) patterns for the monzogranitic dykes in the Jiao-Liao-Ji Belt (CI chondrite and primitive
mantle values are from [42]).

4.4. Zircon Lu-Hf Isotopic Characteristics

Zircon analytical spots with concordant U-Pb ages are analyzed for their Lu-Hf isotope
contents. Results are listed in Supplementary Table S3 and Figure 7. Sample 18HX yielded
negative εHf(t) values, ranging between −4.0 and −0.9. The initial 176Hf/177Hf ratios
ranged from 0.281482 to 0.281607, with calculated TDM1 ages of 2447–2302 Ma and TDM2
ages of 2782–2566 Ma. Sample 18XM also yielded negative εHf(t) values, ranging between
−2.8 and −6.8. The initial 176Hf/177Hf ratios ranged from 0.281484 to 0.281540, with
calculated TDM1 ages of 2377–2452 Ma and TDM2 ages of 2696–2826 Ma. Similarly, initial
176Hf/177Hf ratios of zircons from 18HS were from 0.281573 to 0.281669, with calculated
TDM1 ages of 2338–2206 Ma and TDM2 ages of 2640–2430 Ma. The εHf(t) values for 18HS
ranged from −2.5 and +1.2.
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Figure 7. Zircon207Pb/206Pb ages versus εHf(t) values of the monzogranitic dykes in the Jiao-Liao-Ji
Belt (a,b). Lu-Hf evolution line for depleted mantle is constrained by a present-day 176Hf/177Hf ratio
of 0.28325 [43] and 176Lu/177Hf ratio of 0.0384 [38]. The gray polygon is the Paleoproterozoic Hf
isotopic data from [20]. Legend is similar with that in Figure 5.
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5. Discussion
5.1. U-Pb Ages of the Monzogranitic Dykes and the Granitoids Geochronology within the JLJB

Three monzogranitic dykes were observed cutting through foliation of the deformed
Liaohe Group meta-sedimentary rocks during the fieldwork (Figure 2). Zircon grains from
these dykes exhibit typical oscillatory zoning in CL images, with most Th/U ratios greater
than 0.2, indicating a magmatic origin [44]. These zircon grains yield consistent U-Pb ages
of ~1859 to 1852 Ma (Supplementary Table S2, Figure 6), showing that these monzogranitic
dykes crystallized ~1860–1850 Ma.

Previous researchers have summarized igneous rocks and their relations with the
tectonic evolution process of the JLJB, and established different evolution stages [4,18,19].
Here, we also list Late Paleoproterozoic granitoids types and available ages in Liaoning and
Jilin provinces in Table 1. Taking these studies into consideration, three stages of granitoids
could be recognized as follows. An early magmatic event of ~2200 to 2140 Ma, indicated by
A-type and I-type granites, which are also known as the Liaoji Granites [26,45–47]. A mid-
dle period consisting of ~1890 to 1860 Ma biotite-bearing and garnet-bearing porphyritic
granites, pegmatite and adakitic granites. They were believed to be accompanied by peak
metamorphism in the JLJB [16,25,33] or by Paleoproterozoic oceanic slab subduction [48].
A post-collisional magmatic event at ~1855 to 1840 Ma, is represented by the monzogran-
ite dykes in this study, syenite in the Kuangdonggou area, and sporadically pegmatite
dykes [21,25].

Table 1. Geological characteristics and chronological results of Late Paleoproterozoic granites in the
Liao-Ji region.

Intrusion
Location Location/GPS Lithology Methods Testing

Spots Age/Ma Interpretation Reference

Sanjiazi 40◦44′22′′ N
123◦15′32′′ E Pegmatite LA ICP-MS 30 1814 ± 20 Ma Crystallization

age [25]

Sanjiazi 40◦51′11′′ N
123◦19′27′′ E Pegmatite LA ICP-MS 26 1869 ± 22 Ma Crystallization

age [25]

Sanjiazi 40◦42′06′′ N
123◦13′30′′ E Pegmatite LA ICP-MS 37 1873 ± 17 Ma Crystallization

age [25]

Yangmugan 40◦38′16′′ N
125◦07′20′′ E Pegmatite LA ICP-MS 41 1842 ± 7 Ma Crystallization

age [25]

Yangmugan 40◦38′01′′ N
125◦07′43′′ E Pegmatite LA ICP-MS 30 1866 ± 13 Ma Crystallization

age [25]

Xiaomiao Dyke 40◦53′11′′ N
125◦08′40′′ E Monzogranite LA ICP-MS 15 1859 ± 33 Ma Crystallization

age
This

paper

Hongshi Dyke 40◦22′41′′ N,
124◦43′40′′ E Monzogranite LA ICP-MS 30 1852 ± 10 Ma Crystallization

age
This

paper

Hushan Dyke 40◦41′00′′ N,
125◦9′01′′ E Monzogranite LA ICP-MS 29 1856 ± 12 Ma Crystallization

age
This

paper

Dadingzi Eastern Qingchegnzi
Town, Dandong City Monzogranite SIMS 12 1869 ± 16 Ma Crystallization

age [49]

Nantaizi 40◦31′42′′ N,
122◦48′37′′ E Monzogranite LA ICP-MS 31 1851 ± 11 Ma Crystallization

age [50]

Housongshu 40◦28′12′′ N,
122◦56′12′′ E Trondhjemite LA ICP-MS 16 1892 ± 16 Ma Crystallization

age [50]

Taipingshao
10 km north of

Taipingshao Town
Dandong City

Granite LA ICP-MS 28 1892 ± 38 Ma Crystallization
age [51]

Taipingshao
12 km north of

Taipingshao Town
Dandong City

Granite LA ICP-MS 27 1859 ± 36 Ma Crystallization
age [51]

Kuangdonggou
Kuangdonggou

Town
Gaizhou City

Syenite LA ICP-MS 19 1879 ± 17 Ma Crystallization
age [22]

Kuangdonggou
Kuangdonggou

Town
Gaizhou City

Syenite LA ICP-MS 17 1874 ± 18 Ma Crystallization
age [22]

Kuangdonggou
5 km west of

Kuangdonggou
Town Gaizhou City

Diorite LA ICP-MS 12 1870 ± 18 Ma Crystallization
age [22]

Sizhanggunzi Sizhanggunzi village
Gaizhou City Granodiorite LA ICP-MS 19 1871.2 ± 9.3 Ma Crystallization

age [52]

Qinghe
Qianjin Village
Qinghe Town

Ji’an City
Quartz diorite SIMS 12 1877 ± 15 Ma Crystallization

age [21]
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Table 1. Cont.

Intrusion
Location Location/GPS Lithology Methods Testing

Spots Age/Ma Interpretation Reference

Shuangcha Shuangcha Village
Ji’an City

Garnet-bearing
porphyritic granite LA ICP-MS 30 1890 ± 21 Ma Crystallization

age [53]

Wuleishan Northwest of Sanjiazi
Town Anshan City Porphyritic granite SIMS 12 1830.5 ± 5.9 Ma Crystallization

age [49]

Shuangcha Huangweizi Village
Ji’an City

porphyritic biotite
mozogranite SIMS 17 1872 ± 9 Ma Crystallization

age [21]

Shuangcha Zhongxing Village
Ji’an City Rapakivi granite SIMS 18 1867 ± 13 Ma Crystallization

age [21]

Lujiapuzi Pulepu Town Fushun
City Rapakivi granite SIMS 19 1847 ± 40 Ma Crystallization

age [21]

13th Gou
13th Gou Baishan

City
Jilin Province

Garnet-bearing
porphyritic granite LA ICP-MS 20

11
1868 ± 9 Ma

1848 ± 13 Ma

Crystallization
age,

Metamorphic
age

[20]

12th Gou
12th Gou Baishan

City
Jilin Province

Garnet-bearing
porphyritic granite LA ICP-MS 42

9
1872 ± 6 Ma

1851 ± 14 Ma

Crystallization
age,

Metamorphic
age

[20]

Huadian
Huadian Town Ji’an

City
Jilin Province

Garnet-bearing
porphyritic granite LA ICP-MS 26

13
1871 ± 7 Ma

1850 ± 12 Ma

Crystallization
age,

Metamorphic
age

[20]

Huadian
Huadian Town Ji’an

City
Jilin Province

Garnet-bearing
porphyritic granite LA ICP-MS 26

10
1866 ± 2 Ma
1850 ± 4 Ma

Crystallization
age,

Metamorphic
age

[20]

Huadian
Taishang Town Ji’an

City
Jilin Province

Garnet-bearing
porphyritic granite LA ICP-MS 35

11
1869 ± 2 Ma
1850 ± 4 Ma

Crystallization
age,

Metamorphic
age

[20]

Laoheishan
Laoheishan Village

Dandong City
Liaoning Province

Garnet-bearing
porphyritic granite LA ICP-MS 25

11
1872 ± 8 Ma

1851 ± 12 Ma

Crystallization
age,

Metamorphic
age

[20]

Jiguanshan
Jiguanshan Town

Dandong City
Liaoning Province

Garnet-bearing
porphyritic granite LA ICP-MS 31

13
1870 ± 7 Ma

1850 ± 11 Ma

Crystallization
age,

Metamorphic
age

[20]

Laoheishan
Laoheishan Village

Dandong City
Liaoning Province

Garnet-bearing
porphyritic granite LA ICP-MS 27

11
1868 ± 3 Ma
1846 ± 5 Ma

Crystallization
age,

Metamorphic
age

[20]

Jiguanshan
Jiguanshan Town

Dandong City
Liaoning Province

Garnet-bearing
porphyritic granite LA ICP-MS 25

12
1870 ± 3 Ma
1842 ± 4 Ma

Crystallization
age,

Metamorphic
age

[20]

12th Gou
12th Gou Baishan

City
Jilin Province

Biotite-bearing
porphyritic granite LA ICP-MS 34

8
1868 ± 6 Ma

1849 ± 13 Ma

Crystallization
age,

Metamorphic
age

[20]

11th Gou
11th Gou Baishan

City
Jilin Province

Biotite-bearing
porphyritic granite LA ICP-MS 20

14
1872 ± 7 Ma
1849 ± 9 Ma

Crystallization
age,

Metamorphic
age

[20]

Qinghe
Qinghe Town Ji’an

City
Jilin Province

Biotite-bearing
porphyritic granite LA ICP-MS 24

19
1865 ± 7 Ma
1849 ± 9 Ma

Crystallization
age,

Metamorphic
age

[20]

Sipingxiang
Sipingxiang Fushun

City Liaoning
Province

Biotite-bearing
porphyritic granite LA ICP-MS 28

10
1872 ± 7 Ma

1850 ± 13 Ma

Crystallization
age,

Metamorphic
age

[20]

Taipingshao
West of Taipingshao
Town Dandong City
Liaoning Province

Biotite-bearing
porphyritic granite LA ICP-MS 17

11
1867 ± 10 Ma
1842 ± 12 Ma

Crystallization
age,

Metamorphic
age

[20]

Yahe
East of Yahe Town

Dandong City
Liaoning Province

Biotite-bearing
porphyritic granite LA ICP-MS 33

16
1865 ± 6 Ma
1849 ± 8 Ma

Crystallization
age,

Metamorphic
age

[20]

Gulouzi
North of Gulouzi

Town Dandong City
Liaoning Province

Biotite-bearing
porphyritic granite LA ICP-MS 18

14
1864 ± 8 Ma
1844 ± 9 Ma

Crystallization
age,

Metamorphic
age

[20]

11th Gou
11th Gou Baishan

City
Jilin Province

Biotite-bearing
porphyritic granite LA ICP-MS 28

11
1864 ± 2 Ma
1846 ± 4 Ma

Crystallization
age,

Metamorphic
age

[20]
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Table 1. Cont.

Intrusion
Location Location/GPS Lithology Methods Testing

Spots Age/Ma Interpretation Reference

Qinghe
Qinghe Town Ji’an

City
Jilin Province

Biotite-bearing
porphyritic granite LA ICP-MS 40

27
1867 ± 2 Ma
1847 ± 3 Ma

Crystallization
age,

Metamorphic
age

[20]

Taipingshao
West of Taipingshao
Town Dandong City
Liaoning Province

Biotite-bearing
porphyritic granite LA ICP-MS 38

14
1869 ± 3 Ma
1849 ± 3 Ma

Crystallization
age,

Metamorphic
age

[20]

11th Gou
11th Gou Baishan

City
Jilin Province

Flesh-red
porphyritic granite LA ICP-MS 30

24
1868 ± 8 Ma
1849 ± 8 Ma

Crystallization
age,

Metamorphic
age

[20]

Taipingshao
West of Taipingshao
Town Dandong City
Liaoning Province

Flesh-red
porphyritic granite LA ICP-MS 39

8
1866 ± 6 Ma

1846 ± 13 Ma

Crystallization
age,

Metamorphic
age

[20]

5.2. Genesis of the Monzogranitic Dykes

The monzogranite dykes in this study have a similar high SiO2 content and alkalis
and have low content of MgO, FeOT and CaO (Supplementary Table S1). In the primitive
mantle-normalized trace element diagram (Figure 5b), the 18HS and 18HX samples are
enriched in large ion lithosphere elements (LILEs) with positive Eu (Figure 5a) and Ba, U
anomalies and depleted in some high field-strength elements (HFSEs). The 18HS and 18HX
samples also exhibit high Sr/Y ratio, indicating an adakitic granite feature (Figure 8a). The
18XM samples show relatively high content of U and HREE, but exhibit similar overall
trace elements to those in 18HS and 18HX. The 18 XM samples have A-type granite features
as their high ratios of Ga/Al, while the 18 HS and 18 HX samples show I-type granite
characteristics (Figure 9). Further Zr saturation calculation results reveal that 18XM samples
have the lowest temperature of 688 ◦C to 770 ◦C (Supplementary Table S1), rather than the
high temperature of typical A-type granites [54–57]. Considering the distribution of the
studied monzogranitic dykes within the JLJB, they should have been generated under a
thickened crust tectonic setting.
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Figure 8. Sr/Y vs. Y diagram for the monzogranitic dykes in the Jiao-Liao-Ji Belt (a, after [58]
and Rb-(Y + Nb) diagrams (b, after [59,60]). The circle in Figure 8a represents a post-collisional
geodynamic setting of Pearce et al. [60] (MORB: mid ocean ridge basalt; ORG: orogenic granite;
syn-COLG: syn-collisional granite; COLG: collisional granitoids; OA: oceanic arc; VAG: volcanic arc
granite; WPG: within-plate granite). Legend is similar to that in Figure 5.
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Figure 9. Y (a), Nb (b) versus 10,000 × Ga/Al plots and (Na2O + K2O)/CaO (c), FeOT/MgO (d)
versus Zr + Nb + Ce + Y plots (after [54]) A, I and S = A-, I- and S-type granites, respectively;
FG = fractionated felsic granites; OGT = unfractionated M-, I- and S-type granites, legend is similar to
that in Figure 5.

Hf isotope analysis also illustrated similar conclusions. Hf isotope data show TDM2
ages of 2640–2430 Ma, and reveal that most of the negative εHf(t) values plot near the 2.5 Ga
crustal evolution line with a few positive values (Supplementary Table S3;
Figure 7). These results are similar to those of the 2.2–2.1 Ga granitoids by previous
studies [20,28,30,51]. These granitic dykes have low Mg# and variable LILE/HFSE ratios
(Supplementary Table S1), suggesting that they may have been derived from low-degree
partial melting of a thickened crust, rather than subduction of oceanic crust. This magmatic
event should have been triggered by delamination-induced extension at the late stage of
the orogenic process of the JLJB.

5.3. Implications to the Evolution Model of the JLJB

Although there are matters of debate on the early evolution model of the JLJB,
there is a consensus understanding on the orogenic process in Late Paleoproterozoic
(e.g., [14,61–64]). The Longgang block and the Liaonan-Nangrim block convergence began
at ~2.0 or 1.95 Ga [16,26,65], and widespread metamorphism and deformation are also
believed to have taken place at ~1.9 Ga [19,66–69] or ~1.88–1.85 Ga [70,71].

Termination time of the JLJB orogeny was only roughly defined by corresponding
granitoids geochronological studies. Garnet-bearing and biotite-bearing porphyritic gran-
ites (~1870–1865 Ma), rapakivi granites and alkaline syenite (~1872–1850 Ma) were reported
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within the JLJB as products of anorogenic magmatism by previous studies and interpreted
as representing the termination of the JLJB orogeny [20,22,72,73]. These geochronological
results also met previous metamorphic study results in the JLJB, as ~1.95–1.85 Ga HP and
MP granulites in the Jiaobei Block from the Jiaodong Peninsula, the South Liaohe Group in
Liaoning Province, and the Ji’an Group in Jilin Province were reported [23,68,69,74,75].

Monzogranitic dykes in this study provide robust constraint on post-collisional gran-
itoids in the JLJB orogeny process. Three granitic dykes observed in this study exhibit
manifested post-collisional granite field features by cutting through foliation of the Liaohe
Group meta-sedimentary rocks which deformed at ~1.9 Ga by previous studies [23,31,63]
(Figure 2). These granitic dykes have transitional features of I- to A-type granites, probably
distributing under a post-collisional tectonic setting as [76] illustrated. These monzo-
granite dykes show features of post-collisional granites in the model proposed by Pearce
et al. [59,60] (Figure 8b). Considering these features of the granitoid dykes, the whole-rock
geochemistry and Hf isotopic results, we believe these dykes represent exhumation and
extension in the final collisional of the orogeny process. The termination collisional time of
the JLJB orogen was constrained to be not later than 1860 Ma by these monzogranite dykes.

6. Conclusions

Based on a study of zircon U-Pb geochronology, Hf isotopes and whole-rock geochem-
istry of the monzogranitic dykes, the following conclusions can be drawn.

(1) The monzogranite dykes cut through the foliation of the Liaohe Group meta-sedimen-
tary rocks which deformed at ~1900 Ma. Zircons from the monzogranite dyke have
euhedral to subhedral shape and high ratio of Th/U, and yield a consistent zircon
U-Pb age of ~1859–1852 Ma.

(2) Two dyke samples have I-type granite and adakitic granite features; the other dyke has
a characteristic of A-type granite. Hf isotope data show TDM2 ages of 2640–2430 Ma
and reveal that most of the εHf(t) values plot near the 2.5 Ga crustal evolution line.
Such geochemistry and Hf isotope studies indicate they may have been generated
under a delamination of thickened crust tectonic setting.

(3) The termination collisional time of the JLJB orogen was constrained to be not later
than 1860 Ma by these monzogranitic dykes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13070928/s1, Table S1: Major(wt%) and trace (×10−6) element
data for representative samples of the Paleoproterozoic monzogranitic dykes from the Kuandian and
Dandong area within the Jiao-Liao-Ji Belt, (TZr(◦C): Zircon saturations temperatures by [77]) and
(δEu/Eu* = Eu N/(Sm N × Gd N)1/2, N denotes the chondrite normalization (Sun and McDonough,
1989) [42]). Table S2: LA-ICP-MS zircon U-Pb analyses for representative samples of Paleoproterozoic
monzograntic dykes from the Kuandian and Dandong area within the Jiao-Liao-Ji Belt, Table S3:
Lu-Hf isotopic compositions of the in situ zircons of Paleoproterozoic monzogranitic dykes in the
Kuandian and Dandong area within the Jiao-Liao-Ji Belt.
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