Influence of Steel and Poly Vinyl Alcohol Fibers on the Development of High-Strength Geopolymer Concrete
Abstract
:1. Introduction
2. Materials and Methods
- P is maximum applied load;
- L is span between supports;
- b is width of the specimen;
- d is depth of the specimen.
3. Results and Discussion
3.1. Flowability
3.2. Compressive Strength
3.3. Flexural Strength
3.4. Drying Shrinkage
3.5. Resistance to Acid Attacks
3.6. Microstructural Analysis
4. Conclusions
- (a)
- Blast furnace slag, as the only precursor (all mixes denoted by HS1) for geopolymer, yielded the highest strength and is the geopolymer when subjected to ambient curing.
- (b)
- The compressive strength of 3% steel fiber geopolymer with only slag as a precursor (HS1S3) yielded 107 MPa after 28 days of ambient curing, making it the optimum mix for achieving the highest mechanical performance. The same mix with PVA fiber (HS1P3) yielded a compressive strength of 82 MPa. The high strength of the steel fiber-reinforced geopolymer is due to the high tensile strength and modulus of steel fiber compared to PVA fiber.
- (c)
- Although PVA fibers did not yield compressive and flexural strengths greater than steel fibers, their performance against resisting sulphuric acid attack was observed to be superior to steel fibers. All the mixes with PVA fibers displayed a lesser drop (an average of 5.6%) in compressive strength compared to their counterparts with steel fibers which displayed a drop of 8.1% in compressive strength.
- (d)
- Geopolymer mixes with blast furnace slag as the precursor displayed the most shrinkage, followed by mixes with quartz sand. The presence of fibers mitigated most of the shrinkage, reducing it significantly. Steel fibers have been observed to display better resistance to shrinkage compared to PVA fibers. Also, the inclusion of silica fume has enhanced the shrinkage resistance of the geopolymer composites.
- (e)
- Blast furnace slag as a precursor and 3% steel fibers (HS1S3) based geopolymer displayed the highest flexural strength of 16.4 MPa. Steel fibers were crucial in mitigating the crack propagation and bridging crack widths, thereby enhancing the flexural strength.
- (f)
- Mixes that had slag displayed the least flowability, more so with fibers in them. The geopolymer mixes with PVA displayed the least flowability (HS1P3). Mixes with fly ash in them showed better flowability due to spherical particles of fly ash and reduced friction between particles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Shi, C.; Wu, Z.; Xiao, J.; Huang, Z.; Fang, Z. A Review on Ultra High Performance Concrete: Part II. Hydration, Microstructure and Properties. Constr. Build. Mater. 2015, 96, 368–377. [Google Scholar] [CrossRef]
- Singla, R.; Senna, M.; Mishra, T.; Alex, T.C.; Kumar, S. High Strength Metakaolin/Epoxy Hybrid Geopolymers: Synthesis, Characterization and Mechanical Properties. Appl. Clay Sci. 2022, 221, 106459. [Google Scholar] [CrossRef]
- Sekkal, W.; Zaoui, A. High Strength Metakaolin-Based Geopolymer Reinforced by Pristine and Covalent Functionalized Carbon Nanotubes. Constr. Build. Mater. 2022, 327, 126910. [Google Scholar] [CrossRef]
- Said, A.; Elsayed, M.; El-Azim, A.A.; Althoey, F.; Tayeh, B.A. Using Ultra-High Performance Fiber Reinforced Concrete in Improvement Shear Strength of Reinforced Concrete Beams. Case Stud. Constr. Mater. 2022, 16, e01009. [Google Scholar] [CrossRef]
- ACI Committee. ACI PRC-363-10 Report on High-Strength Concrete; ACI Committee: Farmington Hills, MI, USA, 2010. [Google Scholar]
- Li, J.; Wu, C.; Hao, H.; Liu, Z. Post-Blast Capacity of Ultra-High Performance Concrete Columns. Eng. Struct. 2017, 134, 289–302. [Google Scholar] [CrossRef]
- Meng, Q.; Wu, C.; Su, Y.; Li, J.; Liu, J.; Pang, J. Experimental and Numerical Investigation of Blast Resistant Capacity of High Performance Geopolymer Concrete Panels. Compos. B Eng. 2019, 171, 9–19. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Su, Y. Development of Ultra-High Performance Concrete against Blasts: From Materials to Structures; Woodhead Publishing: Sawston, UK, 2018; ISBN 0081024967. [Google Scholar]
- Sameer, H.; Weber, V.; Mostert, C.; Bringezu, S.; Fehling, E.; Wetzel, A. Environmental Assessment of Ultra-High-Performance Concrete Using Carbon, Material, and Water Footprint. Materials 2019, 12, 851. [Google Scholar] [CrossRef]
- Azmee, N.M.; Shafiq, N. Ultra-High Performance Concrete: From Fundamental to Applications. Case Stud. Constr. Mater. 2018, 9, e00197. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Li, H. Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials. Adv. Mater. Sci. Eng. 2017, 2017, 4563164. [Google Scholar] [CrossRef]
- Prakasan, S.; Palaniappan, S.; Gettu, R. Study of Energy Use and CO2 Emissions in the Manufacturing of Clinker and Cement. J. Inst. Eng. (India) Ser. A 2020, 101, 221–232. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study. Appl. Sci. 2020, 10, 339. [Google Scholar] [CrossRef]
- Shi, C.; Qu, B.; Provis, J.L. Recent Progress in Low-Carbon Binders. Cem. Concr. Res. 2019, 122, 227–250. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mohammed, A.S.; Faraj, R.H.; Qaidi, S.M.A.; Mohammed, A.A. Compressive Strength of Geopolymer Concrete Modified with Nano-Silica: Experimental and Modeling Investigations. Case Stud. Constr. Mater. 2022, 16, e01036. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Fly Ash-Based Geopolymers: The Relationship between Composition, Pore Structure and Efflorescence. Cem. Concr. Res. 2014, 64, 30–41. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mohammed, A.A.; Rafiq, S.; Mohammed, A.S.; Mosavi, A.; Sor, N.H.; Qaidi, S.M.A. Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. Sustainability 2021, 13, 13502. [Google Scholar] [CrossRef]
- Shi, C.; Roy, D.; Krivenko, P. Alkali-Activated Cements and Concretes; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780429180712. [Google Scholar]
- Li, N.; Shi, C.; Wang, Q.; Zhang, Z.; Ou, Z. Composition Design and Performance of Alkali-Activated Cements. Mater. Struct. 2017, 50, 178. [Google Scholar] [CrossRef]
- Qaidi, S.M.A. Behavior of Concrete Made of Recycled PET Waste and Confined with CFRP Fabrics; University of Duhok: Duhok, Iraq, 2021. [Google Scholar]
- Davidovits, J. High-Alkali Cements for 21st Century Concretes. Spec. Publ. 1994, 144, 383–398. [Google Scholar]
- Buchwald, A. What Are Geopolymers? Current State of Research and Technology, the Opportunities They Offer, and Their Significance for the Precast Industry. Betonw. Und Fert.-Tech./Concr. Precast. Plant Technol. 2006, 72, 42–49. [Google Scholar]
- Sharma, R.; Hussain, S.; Seetala, N.; Matthews, J.; Edwards, R.; Amritphale, S.; Matthews, E. Simultaneous Use of Bismuth Trioxide and Mill Scale for Ternary Blended Geopolymer Composite in Radiation Shielding Applications. Prog. Nucl. Energy 2024, 172, 105213. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Shaikh, F.U.A.; Hao, Y.; Hao, H. Effects of Curing Conditions and Sand-to-Binder Ratios on Compressive Strength Development of Fly Ash Geopolymer. J. Mater. Civ. Eng. 2018, 30, 04017267. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Shi, C.; Zhu, D.; Li, N.; Deng, Y. Development of Ultra-High Performance Geopolymer Concrete (UHPGC): Influence of Steel Fiber on Mechanical Properties. Cem. Concr. Compos. 2020, 112, 103670. [Google Scholar] [CrossRef]
- Xu, S.; Yuan, P.; Liu, J.; Pan, Z.; Liu, Z.; Su, Y.; Li, J.; Wu, C. Development and Preliminary Mix Design of Ultra-High-Performance Concrete Based on Geopolymer. Constr. Build. Mater. 2021, 308, 125110. [Google Scholar] [CrossRef]
- Nodehi, M.; Aguayo, F. Ultra High Performance and High Strength Geopolymer Concrete. J. Build. Pathol. Rehabil. 2021, 6, 34. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and Other Alkali Activated Materials: Why, How, and What? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Institut Géopolymère: Saint-Quentin, France, 2008. [Google Scholar]
- Fan, Y.; Yin, S.; Wen, Z.; Zhong, J. Activation of Fly Ash and Its Effects on Cement Properties11This Article Is Being Published without the Benefit of the Authors’ Review of the Proofs, Which Was Not Available at Press Time. Cem. Concr. Res. 1999, 29, 467–472. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Zhang, Z.; Wang, H.; Liu, Y. A review on mixture design methods for geopolymer concrete. Compos. Part B Eng. 2019, 178, 107490. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Marczyk, J.; Ziejewska, C.; Hordyńska, N.; Mikuła, J.; Hebda, M. Optimal design of pH-neutral geopolymer foams for their use in ecological plant cultivation systems. Materials 2019, 12, 2999. [Google Scholar] [CrossRef]
- Rickard, W.D.; Vickers, L.; Van Riessen, A. Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions. Appl. Clay Sci. 2013, 73, 71–77. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, J.; Yang, X.; Dong, Y.; Feng, T.; Liu, J. Enhancing the PVA Fiber-Matrix Interface Properties in Ultra High Performance Concrete: An Experimental and Molecular Dynamics Study. Constr. Build. Mater. 2021, 285, 122862. [Google Scholar] [CrossRef]
- Ambily, P.S.; Ravisankar, K.; Umarani, C.; Dattatreya, J.K.; Iyer, N.R. Development of Ultra-High-Performance Geopolymer Concrete. Mag. Concr. Res. 2014, 66, 82–89. [Google Scholar] [CrossRef]
- Gülşan, M.E.; Alzeebaree, R.; Rasheed, A.A.; Niş, A.; Kurtoğlu, A.E. Development of Fly Ash/Slag Based Self-Compacting Geopolymer Concrete Using Nano-Silica and Steel Fiber. Constr. Build. Mater. 2019, 211, 271–283. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Banthia, N. Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete: A Review. Cem. Concr. Compos. 2016, 73, 267–280. [Google Scholar] [CrossRef]
- Liu, J.; Wu, C.; Li, J.; Liu, Z.; Xu, S.; Liu, K.; Su, Y.; Fang, J.; Chen, G. Projectile Impact Resistance of Fibre-Reinforced Geopolymer-Based Ultra-High Performance Concrete (G-UHPC). Constr. Build. Mater. 2021, 290, 123189. [Google Scholar] [CrossRef]
- Wetzel, A.; Middendorf, B. Influence of Silica Fume on Properties of Fresh and Hardened Ultra-High Performance Concrete Based on Alkali-Activated Slag. Cem. Concr. Compos. 2019, 100, 53–59. [Google Scholar] [CrossRef]
- Liu, J.; Wu, C.; Liu, Z.; Li, J.; Xu, S.; Liu, K.; Su, Y.; Chen, G. Investigations on the Response of Ceramic Ball Aggregated and Steel Fibre Reinforced Geopolymer-Based Ultra-High Performance Concrete (G-UHPC) to Projectile Penetration. Compos. Struct. 2021, 255, 112983. [Google Scholar] [CrossRef]
- Aisheh, Y.I.A.; Atrushi, D.S.; Akeed, M.H.; Qaidi, S.; Tayeh, B.A. Influence of Steel Fibers and Microsilica on the Mechanical Properties of Ultra-High-Performance Geopolymer Concrete (UHP-GPC). Case Stud. Constr. Mater. 2022, 17, e01245. [Google Scholar] [CrossRef]
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C109-20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C348-21; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C267-01; Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C311-11; Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- Kathirvel, P.; Sreekumaran, S. Sustainable Development of Ultra High Performance Concrete Using Geopolymer Technology. J. Build. Eng. 2021, 39, 102267. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Almeida, B.M.; Lucas, M.M.; Candido, V.S.; da Cruz, K.S.P.; Oliveira, M.S.; de Azevedo, A.R.G.; Monteiro, S.N. Fatigue behavior of steel fiber reinforced geopolymer concrete. Case Stud. Constr. Mater. 2022, 16, e00829. [Google Scholar] [CrossRef]
- Cândido, V.S.; da Silva, A.C.R.; Simonassi, N.T.; Lima, E.S.; da Luz, F.S.; Monteiro, S.N. Mechanical and microstructural characterization of geopolymeric concrete subjected to fatigue. J. Mater. Res. Technol. 2018, 7, 566–570. [Google Scholar] [CrossRef]
Precursor | Chemical Composition (%) | Physical Properties | ||||||
---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | LOI (%) | Specific Gravity | |
Fly ash | 2.10 | 61.70 | 24.60 | 4.38 | 1.22 | 0.18 | 0.29 | 2.27 |
Silica fume | 0.70 | 91.03 | 0.19 | 1.16 | 2.21 | 0.95 | 4.09 | 2.23 |
Blast furnace slag | 41.41 | 34.20 | 13.68 | 0.75 | 6.24 | 1.28 | 1.20 | 2.95 |
Property | Steel Fiber | PVA Fiber |
---|---|---|
Length | 13 mm | 13 mm |
Thickness | 200 µm | 40 µm |
Tensile Strength | 2000 MPa | 1600 MPa |
Density | 7850 kg/m3 | 1300 kg/m3 |
Mix | Blast Furnace Slag | Silica Fume | Fly Ash | Masonry Sand | Quartz Sand | Quartz Powder | Sodium Hydroxide | Sodium Silicate |
---|---|---|---|---|---|---|---|---|
HS1 | 39.2 | 0 | 0 | 39.2 | 0 | 0 | 6.1 | 15.5 |
HS2 | 33.32 | 5.88 | 0 | 39.2 | 0 | 0 | 6.1 | 15.5 |
HS3 | 33.32 | 5.88 | 0 | 19.6 | 9.8 | 9.8 | 6.1 | 15.5 |
HS4 | 31.36 | 7.84 | 20 | 39.2 | 0 | 0 | 6.1 | 15.5 |
Percentage Volume | Steel Fibers | PVA Fibers |
---|---|---|
1% | 78.5 | 13 |
2% | 157 | 26 |
3% | 235.5 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Matthews, J.; Amritphale, S.; Edwards, R.; Matthews, E.; Paul, N.; Kraft, J. Influence of Steel and Poly Vinyl Alcohol Fibers on the Development of High-Strength Geopolymer Concrete. Minerals 2024, 14, 1007. https://doi.org/10.3390/min14101007
Hussain S, Matthews J, Amritphale S, Edwards R, Matthews E, Paul N, Kraft J. Influence of Steel and Poly Vinyl Alcohol Fibers on the Development of High-Strength Geopolymer Concrete. Minerals. 2024; 14(10):1007. https://doi.org/10.3390/min14101007
Chicago/Turabian StyleHussain, Shaik, John Matthews, Sudhir Amritphale, Richard Edwards, Elizabeth Matthews, Niloy Paul, and John Kraft. 2024. "Influence of Steel and Poly Vinyl Alcohol Fibers on the Development of High-Strength Geopolymer Concrete" Minerals 14, no. 10: 1007. https://doi.org/10.3390/min14101007
APA StyleHussain, S., Matthews, J., Amritphale, S., Edwards, R., Matthews, E., Paul, N., & Kraft, J. (2024). Influence of Steel and Poly Vinyl Alcohol Fibers on the Development of High-Strength Geopolymer Concrete. Minerals, 14(10), 1007. https://doi.org/10.3390/min14101007