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Abstract

:

In this manuscript, I introduce a convenient method to convert the Euler angles (complete crystal orientations) obtained with EBSD (electron back-scattered diffraction) to the azimuth and inclination angle of crystallographic axes to reconstruct the pole figures. This method, which is subsequently coupled with the rotation of the pole figures, is particularly useful for the analyses of quartz c-axis fabrics in the deformed rocks, where the foliation and/or lineation is not clear or unknown. Although we arbitrarily choose the sample coordinates (Xs-Ys-Zs) in such cases, it is often possible that we can rotate the quartz c-axis pole figures so that they will exhibit a well-defined intrinsic symmetry in the rotated sample frame. The rotated XsYs-plane and Xs-direction can be now called the foliation and lineation, respectively, inversely defined by the quartz c-axis fabrics. On the other hand, the foliation and lineation clearly defined by the shape-preferred orientations (SPOs) of platy or columnar minerals can be oblique to those defined by the quartz c-axis fabrics. In this case, the former foliation and lineation could represent the total strain, while the latter ones could represent the last incremental strain, indicating triclinic deformation symmetry (e.g., triclinic transpression).
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1. Introduction


For microstructural studies in deformed tectonites, quartz microstructures have been extensively studied, not only because quartz is ubiquitous in crustal rocks but because quartz can be plastically deformed at relatively low-temperature conditions (>300 °C, e.g., [1,2,3,4]) compared to other mineral phases. In particular, a wealth of data on quartz c-axis fabrics in deformed tectonites have been published, which are useful to infer kinematics (e.g., sense of shear) and deformation conditions (e.g., [2,5,6,7,8,9,10,11]). Nowadays, EBSD techniques have been widely used to measure complete crystallographic orientations in minerals such as quartz [12], making possible the acquisition and analysis of quartz crystallographic-preferred orientations (CPOs) for a very short time (e.g., [13]), which had been manually measured with a universal stage (U-stage).



While studies of quartz CPOs have become very popular and readily completed with the modern instruments such as EBSD, quartz CPOs, in particular, quartz c-axis CPOs (referred to as quartz c-axis fabrics hereafter), have been sometimes misinterpreted in the literature, which resulted from the lack of basic knowledge on the formation processes and mechanisms of quartz CPOs. One of the most important aspects in interpreting quartz CPOs is their symmetries, which have not been often fully analyzed, leading to serious misinterpretations in some of the literature. Furthermore, the foliation and lineation in rocks are not necessarily obvious in plastically deformed rocks, depending on the rock type. In these cases, quartz CPOs are often plotted with respect to an ill-defined foliation and lineation, or they are even abandoned to be measured.



In this manuscript, I will first briefly review the concept of deformation symmetries. Then, I will present a method to dispose of quartz CPOs (essentially quartz c-axis fabrics) obtained with EBSD measurements in the proper coordinates, where the foliation and lineation is inversely defined by the symmetry of quartz c-axis fabrics. To convert the quartz c-axis fabrics obtained with EBSD measurements to the ones in the proper coordinates, we first convert the Euler angles obtained with EBSD measurements to the input data for pole figures (azimuth λ and inclination angle θ). Then, we replot the quartz c-axis pole figures, which are rotated to proper orientations using a stereonet program such as the one by Allemendinger [14]. In this manuscript, I will show that this method nicely works to rotate the quartz c-axis fabrics obtained with EBSD measurements to the proper orientation, and to check the internal symmetry of quartz c-axis fabrics. I believe that this analysis will be very useful in analyzing quartz c-axis fabrics in plastically deformed rocks with an ill-defined foliation and lineation, and even those where these orientations are unknown.




2. Deformation Symmetries, Fabric Attractor, and Origin of CPOs


The concept of deformation symmetries was founded by Sander [15] and later summarized and further developed by Paterson and Weiss [16]. It has been known that the symmetries of ductile deformation are reflected in those of final fabrics, including CPOs after deformation. Therefore, we can analyze deformation symmetries based on CPOs caused by ductile deformation. On the other hand, the initial or inherited CPOs are also reflected in the final CPOs. For example, even though the deformation symmetry is orthorhombic, and the initial symmetry of CPO is also orthorhombic, the final symmetry of CPO can be triclinic (see Figures 10–12 after Turner and Weiss [17]). Therefore, the symmetries of final CPOs are generally lower than those of the initial CPOs. However, if the initial or inherited symmetry of CPOs is random (spherical symmetry K∞h by Paterson and Weiss [16]), the symmetry of final CPOs is the same as the one of ductile deformation. In this paper, we assume that the initial symmetry of CPOs is random, or the amount of strain is so large to completely obliterate the initial non-random CPOs so that the symmetry of ductile deformation will be completely recorded in the symmetry of final CPOs.



Another important point that should be borne in mind in dealing with CPOs caused by ductile deformation is the difference between the internal and external symmetries (Figure 1). Even some professional structural geologists have still misunderstood this concept and misinterpreted the sense of shear based on the symmetry of quartz CPOs. As clearly stated by Law [2], the determination of the sense of shear in ductile flow must be based on the internal asymmetry of quartz CPOs, not the external asymmetry. Here, the external symmetry indicates the one of fabric elements with respect to the external coordinates (Figure 1a,b), while the internal symmetry is the symmetry of the fabric elements themselves (Figure 1c). According to Law [2], the sense of shear on the XY foliation plane is in the direction from a trailing edge to a leading edge of quartz c-axis fabric skeleton (Figure 1d,e), which has been completely verified by simulated, experimental, and natural quartz c-axis fabrics (e.g., [2,8,18,19,20]).



Further, the concept of fabric attractor (FA) proposed by Passchier and Trouw [21] will be explained here. In the case of two-dimensional pure shear, general, and simple shear flow, there are two orientations of the irrotational material lines in ductile deformation, except for simple shear flow. In pure shear flow, the orientations of the instantaneous shortening and extension axes coincide with these orientations of the irrotational material lines. The material lines always rotate toward the orientation of the instantaneous extension axis, which is the stable orientation of the irrotational material lines in pure shear flow. In general flow, the rotation of material lines converges at one of these orientations, but it diverges at the other. Therefore, only at the former orientation, the material lines cannot rotate anymore and are stable. In simple shear flow, the material lines always rotate toward the orientation of the shear plane, which is a unique and stable orientation of the irrotational material lines. In all modes of plane strain, pure shear, general, and simple shear flow, columnar minerals such as amphibole and epidote are rotated toward the stable orientation by passive rotation, thereby forming the lineation, while platy minerals such as mica are rotated toward the stable orientation, thereby forming the foliation in the ductile matrix. This is the reason why the stable orientation of the irrotational material lines is called the fabric attractor.



For the case of quartz CPOs, the concept of fabric attractor cannot be applicable because the responsible mechanisms for the formation of them are different from the passive rotation of columnar or platy rigid objects in ductile matrix. CPOs in mineral aggregates such as quartz and olivine ones could form by lattice rotation induced by an intracrystalline slip or oriented nucleation and growth during dynamic recrystallization, or both (e.g., [22,23,24]). It should be, first of all, noted that the orientations of foliation and lineation defined by the shape-preferred orientations (SPOs) of deformed quartz grains formed in a different way from those defined by SPOs of rigid objects (e.g., mica and amphibole). As noted by Lister and Snoke [25], under shear dominant deformation, the foliation and lineation defined by SPOs of recrystallized quartz grains are oblique to those defined by SPOs of rigid objects such as mica (these foliation and lineation are simply called foliation and lineation hereafter) and are continuously rotated towards the foliation and lineation, respectively, with increasing strain. This oblique relationship between quartz and mica SPOs is now called oblique foliation by Passchier and Trouw [21]. The fact indicates that the foliation and lineation defined by the SPOs of recrystallized quartz grains formed during an incremental strain, while those defined by the SPOs of rigid objects formed during a total strain.



Crossed or single-girdle distributions of quartz c-axis orientations (e.g., Type-I, Figure 1a and Type II-crossed girdles by Lister [26]), which are oblique at high angles with the foliation, often develop in deformed and recrystallized quartz-rich aggregates (e.g., [27,28,29,30]). Numerical simulations show that the crossed girdles of quartz c-axis fabrics are rotated against the sense of shear relative to the normal orientation of the shear plane, which becomes nearly parallel to the foliation at a very large strain, if quartz c-axis fabrics are formed solely by an intracrystalline slip [20]. On the other hand, in nature and experiments, the crossed girdles, or single girdle, of quartz c-axis fabrics are often rotated with the sense of shear relative to the normal orientation of foliation or the shear plane (e.g., [24]), where both the intracrystalline slip and dynamic recrystallization in quartz operated. Therefore, it is, in principle, not possible to infer the orientations of foliation and lineation based on the quartz c-axis fabric pattern. Nevertheless, in this paper, it is assumed that the foliation is perpendicular to the orientation of the leading edge of asymmetric crossed girdles (or single girdles), and the lineation is parallel to the normal orientation of the girdle in sheared rocks. This assumption is approximately valid because the single girdle or leading edge of asymmetric crossed girdles is approximately perpendicular to the shear plane in both natural (e.g., [2,31]) and simulated [20] quartz c-axis fabric.
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Figure 1. (a) Type I crossed-girdle quartz c-axis fabric almost shows an orthorhombic symmetry, which is called a symmetrical c-axis fabric. (b) Fabric skeleton of (a), showing both internal and external symmetries. (c) A rotated fabric skeleton of (b), which shows the internal symmetry, but no longer shows the external one relative to the sample coordinates (Xs-Ys-Zs). (d) Type I crossed-girdle quartz c-axis fabric almost shows a monoclinic symmetry (180° rotation symmetry about the Y-axis), which is called an asymmetrical c-axis fabric. (e) Fabric skeleton of (a), showing neither internal nor external symmetry. A sense of shear shown by a pair of arrows is from a trailing to a leading edge of the skeleton of the asymmetric Type I crossed-girdle quartz c-axis fabric [2]. Contour intervals are 1% per 1% area and shaded above 1% per 1% area for samples (a) and (c) for the quartz c-axis fabric analysis, which are collected from the Sambagawa metamorphic rocks, Southwest Japan ((a), sample No. 12 of [28]; (d), sample 7 of [19]). 
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3. Methods: Conversion of the Euler Angles to Input Data for Pole Figures


In this section, we will describe how we can convert quartz c-axis fabrics obtained with EBSD measurements to the ones in the proper coordinate. We will first convert the Euler angles obtained with EBSD measurements to the input data for pole figures (azimuth and inclination, which are denoted as λ and θ, respectively). Then, we replot the quartz c-axis pole figures, which must be the same as the pole figures created by a software (e.g., Aztec software, Oxford Instruments, Abingdon, the United Kingdom) attached to the EBSD instrument. Finally, the replotted pole figures are rotated to a proper orientation using a stereonet program such as the one by Allemendinger [14].



From EBSD measurements, we can obtain the complete crystal orientations (i.e., orthogonal crystal coordinates) with respect to the sample orientations (i.e., orthogonal sample coordinates). The complete crystal orientations can be expressed by the Euler angles, which are the angles of three successive rotations (    ϕ   1    ,   Φ  ,     ϕ   2    ) about one of the crystallographic axes (Xc, Yc, and Zc). Starting from the coincidence orientation of the sample and crystal axes, the crystal is first rotated counterclockwise by     ϕ   1     about Zx (or Zc), then by   Φ   about Xc, and finally by     ϕ   2     about Zc (definition by Bunge [32], see Figure 2). Each of the transformation matrices of the three successive rotations is expressed as:


    R   1   =        cos  ⁡    ϕ   1         sin  ⁡    ϕ   1       0     −   sin  ⁡    ϕ   1         cos  ⁡    ϕ   1       0     0   0   1       



(1)






    R   2   =      1   0   0     0     cos  ⁡  Φ       sin  ⁡  Φ       0   −   sin  ⁡  Φ       cos  ⁡  Φ         



(2)






    R   3   =        cos  ⁡    ϕ   2         sin  ⁡    ϕ   2       0     −   sin  ⁡    ϕ   2         cos  ⁡    ϕ   2       0     0   0   1       



(3)







Therefore, the transformation matrix of the combined rotation is expressed as:


    R   c   =   R   3   ∗   R   2   ∗   R   1   =        cos  ⁡    φ   1       cos  ⁡    φ   2     −   sin  ⁡    φ   1       sin  ⁡    φ   2       cos  ⁡  Φ       sin  ⁡    φ   1       cos  ⁡    φ   2     +   cos  ⁡    φ   1     sin  ⁡    φ   2         cos  ⁡  Φ       sin  ⁡    φ   2     sin  ⁡  Φ           − cos  ⁡    φ   1       sin  ⁡    φ   2     −   sin  ⁡    φ   1       sin  ⁡    φ   2       cos  ⁡  Φ     −   sin  ⁡    φ   1       sin  ⁡    φ   2     +   cos  ⁡    φ   1     cos  ⁡    φ   2         cos  ⁡  Φ       cos  ⁡    φ   2       sin  ⁡  Φ         sin  ⁡    φ   1     sin  ⁡  Φ       −   cos  ⁡    φ   1       sin  ⁡  Φ       cos  ⁡  Φ         



(4)







In Equation (4), each of the row vectors corresponds with the unit vector of each of the crystallographic axes (Xc, Yc, and Zc right-handed orthogonal coordinate system) in the sample coordinates (Xs-Ys-Zs, ibid.), which has the three components (x, y, and z). In the case of quartz crystal, the a-axis is taken as Xc, the axis perpendicular to both the a-axis and c-axis is taken as Yc, and the c-axis is taken as Zc in the EBSD measurement. On the other hand, for the sample coordinates (Xs-Ys-Zs), the Xs-axis and Zs-axis are generally defined as parallel to the orientation of the lineation and the one perpendicular to the foliation, which are assumed to be the maximum and minimum principal axes of finite-strain ellipsoid, respectively, in deformed tectonites. Therefore, the Ys-axis is perpendicular to the Xs-axis in the foliation plane. However, it is common that the EBSD measurement of quartz c-axis orientations is conducted on the XZ section of deformed rocks because the characteristic features of the quartz c-axis fabrics are best exhibited in the XZ projection (e.g., [21]). In this case, the sample coordinates are Xs-Zs-Ys, not Xs-Ys-Zs. Therefore, note that the three components (x, y, and z) of the unit vector of each of the crystallographic axes (Xc, Yc, and Zc) are those in the sample coordinates Xs-Zs-Ys in the equations described below.



From Equation (4), the unit vector in the quartz c-axis orientation (    c  →   ) is expressed as follows, using the measured Euler angles.


    c  →  =      x   y   z      = {      sin  ⁡    φ   1     sin  ⁡  Φ       −   cos  ⁡    φ   1       sin  ⁡  Φ       cos  ⁡  Φ      }  



(5)







In Equation (5), the z component of the unit vector     c  →    (    cos  ⁡  Φ    ) is calculated as either a positive or negative value. Here, quartz crystal is assumed to exhibit center symmetry, and thus the upward and downward quartz c-axis orientations parallel to the same line are physically equivalent, although in low-temperature α-quartz, these orientations are distinguished (left- and right-handed quartz, e.g., [33]). In this paper, we simply select the lower-hemisphere projection of the quartz c-axis orientation. Hence, we first convert the quartz c-axis orientation pointing upward, which is shown by a positive z component of the unit vector     c  →    (    cos  ⁡  Φ    ) to the one pointing downward. In this way, we plot all the c-axis orientations only on the lower hemisphere. However. note that there is no requirement that the quartz c-axis pole figures must be plotted on the lower hemisphere, which is the case for the projection of mesoscopic structures (bedding, fault, etc.) measured at outcrops. In fact, the lower-hemisphere projections are the same as the upper-hemisphere ones rotated 180° about the vertical axis in the pole figures, indicating that only one of the projections can be arbitrarily chosen for the case of projections of crystallographic orientations in minerals with center symmetry such as quartz. Therefore, the inclination of the quartz c-axis orientation (θ) is expressed as follows:


  θ =     sin   − 1    ⁡      cos  ⁡  Φ        



(6)







For the azimuth of the quartz c-axis orientation (λ), which is used for the input data for Allemendinger’s software, we divide it into the following four cases, depending on which quadrant the projection of the unit vector     c  →    pointing downward lies on. Here, note that the quartz c-axis orientation pointing upward shown by a positive z component of the unit vector     c  →    (    cos  ⁡  Φ    ) is converted to the negative one as mentioned above. So, if z is positive, x and y are converted to -x and -y, which are denoted as x’ and y’, respectively. Also, in Allemendinger’s software, a clockwise rotation is taken as positive for the azimuth (λ) starting from the N-axis at λ = 0° (y-axis) in the projection of the c-axis orientation (Figure 3). Keeping these things in mind, we first calculate the angle α, which the projection of the unit vector in the quartz c-axis orientation (    c  →   ) on the xy-plane makes with the x-axis as follows.


  α =     tan   − 1    ⁡      y  /  x        



(7)







Then, the azimuth of the quartz c-axis orientation (λ) used for the input data for Allemendinger’s software is calculated for the following four cases.


  Case   1 :   I f   x ≥ 0   a n d   y ≥ 0   o r    x ′  ≥ 0   a n d    y ′  ≥ 0 ,   then   λ   =   90   −   α  



(8)






  Case   2 :   I f   x ≥ 0   a n d   y < 0   o r    x ′  ≥ 0   a n d    y ′  < 0 ,   then   λ   =   90   +   α  



(9)






  Case   3 :   I f   x < 0   a n d   y < 0   o r    x ′  < 0   a n d    y ′  < 0 ,   then   λ   =   270   −   α  



(10)






  Case   4 :   I f   x < 0   a n d   y ≥ 0   o r    x ′  < 0   a n d    y ′  ≥ 0 ,   then   λ   =   270   +   α  



(11)







Inputting the azimuth (λ) and inclination (θ) of the c-axis orientation for a number of quartz grains to Allemendinger’s software, which are calculated from the Euler angles measured with an EBSD, the c-axis pole figure can be reconstructed.



The Excel program, which calculates the input data for quartz c-axis pole figures used in Allemendinger’s software from the Euler angles obtained with EBSD measurements, is stored as the Supplementary Materials of the paper (Table S1), which is open for use to everyone. In the next section, I will show how we can reconstruct the c-axis pole figure from the data of the Euler angles measured for quartz grains in a naturally deformed rock and then rotate it to a proper orientation.




4. Results


4.1. Sample Description


The deformed sample, which is used for the demonstration of the reconstruction of the quartz c-axis pole figure from the data of the Euler angles is an ultramylonite derived from tonalite (T-01), which occurs along the Median Tectonic Line (MTL), Mie Prefecture, Southwest Japan (only 14 m from the MTL, [34]). The ultramylonite occurs as a clast in a 70 m-thick cataclasite zone along the Median Tectonic Line [34,35]. However, the cataclasite from which the ultramylonite sample was collected appears as a massive silicified rock at outcrops, and no outline of the ultramylonite clast is discerned as observed by Jefferies et al. [35] at the outcrop along the Nishinotani River located c. 10 km east of the present outcrop. Further, since no foliation and lineation are visible at the present outcrop, the ultramylonite sample was cut in an arbitrary orientation, and a standard thin section was made.



Under an optical microscope, the foliation and lineation defined by the elongation of recrystallized quartz grains are visible in the ultramylonite clasts (note that the thin section is not cut perpendicular to the foliation), which are cut by microfaults (Figure 4). The recrystallized grain size of quartz in the quartz aggregates is measured with an EBSD following the method by Cross et al. [13], which is determined to be 6.8 μm [34]. Further, anastomosing pressure solution seams are well developed accompanied by the preferential growth of very fine-grained muscovite parallel to them during the formation of cataclasite (Figure 4). Therefore, the cataclasite could be more appropriately called as a foliated cataclasite, which experienced pervasive pressure solution after dislocation creep in the quartz [34].




4.2. Quartz c-Axis Fabrics


EBSD analysis was conducted on carbon-coated samples using a JEOL JSM6390A SEM at Hiroshima University, using a voltage of 15 kV and at a working distance of approximately 25 mm. EBSD patterns were measured using an Oxford Instruments detector and indexed and processed using the Aztec software package (Oxford Instruments, Abingdon, the United Kingdom). We measured the quartz crystallographic orientations in a small part of a quartz-rich layer in a thin section from the ultramylonite sample (T-01, Figure 4a,b) using an automatic mode with an EBSD and indexed 13,288 points in the quartz crystals, which were converted to the c [0001]-axis, m<10-10>-axis and a<11-20>-axis pole figures through the Aztec software (Figure 5). Among these pole figures, the c-axis pole figure clearly shows a non-random pattern (i.e., a preferred c-axis orientation), although the fabric intensity is not high with the maximum concentration of 2.51 m.u.d. (multiples of uniform distribution). At first glance, the quartz c-axis pole figure plotted in the sample coordinates, which are defined by the orientations of the long and short dimensions of the arbitrarily cut thin section, looks peculiar. However, experienced structural geologists familiar with various quartz c-axis fabric patterns could probably note that the quartz c-axis pole figure exhibits a Type I crossed-girdle pattern with two R-maxima (explained below), which is rotated from the one projected on the proper sample coordinates (Xs-Zs-Ys). Here, the girdle that connects the two maxima is considered to be part of the great circle girdle passing through the Ys-axis of a Type I crossed-girdle quartz c-axis fabric pattern.



Following the expectation mentioned above, we rotate the quartz c-axis pole figure to the one in the proper coordinates (Xs-Zs-Ys). To do that, we first convert the Euler angle data collected with an EBSD to the input data for Allemendinger’s software for stereographic projection, as mentioned above. Once this conversion is completed, we can rotate the quartz c-axis pole figure about an axis oriented in any direction. Unfortunately, since it is not possible to plot more than c. 10,000 data using Allemendinger’s software, we projected 10,000 quartz c-axis orientation data (called data T-01) on an equal-area net (Figure 6a). The quartz c-axis pole figure projected on an equal-area net using the input data (i.e., azimuth and inclination angles of individual quartz crystallographic orientations) recalculated from the Euler angles from EBSD measurements is nearly identical to the one obtained using the Aztec software (compare Figure 6a with Figure 5). This testifies that the reconstruction of the quartz c-axis pole figure is successful. Then, we divided the indexed 13,288 points into three groups: the first had 4429 points, the second had 4429 points, and the third had 4430 points (Groups 1, 2, and 3). Each of the c-axis pole figures was then replotted separately (Figure 6b–d). It should be noted that all of the three c-axis pole figures are similar with similar outlines and intensities, which indicates that the quartz c-axis fabric is penetrative. However, it should be also noted that not only the orientation of the central great-circle girdle is rotated clockwise by c. 20° from Group 1 to 3, but also the fabric intensity of Group 1 is slightly lower than those of Groups 2 and 3 (Table 1), the implications of which will be discussed below.




4.3. Rotation of Quartz c-Axis Fabrics to the Ones in the Proper Sample Coordinates


The rotation of the quartz c-axis pole figure to the one in the proper sample coordinates can be conducted in the following way. We first calculate the eigenvectors of the orientation tensor (e.g., [36]) for the recalculated c-axis orientations (data T-01) using the plot function called the “Cylindrical Best Fit” in Allemendinger’s software. Then, the eigenvectors of the orientation tensor for data T-01 are calculated as shown in Figure 7a. Here, the great circle (plane), including the maximum (1) and intermediate (2) axes of the eigenvectors, can define the central great circle girdle of the c-axis pole figure, and the minimum (3) eigenvector is perpendicular to the great circle, the orientation of which is calculated as (λ, θ) = (52.6°, 29.1°).



The first rotation that we should make on the c-axis pole figure is to rotate the great circle (1–2 plane) to the N–S orientation. This can be done by rotating it clockwise by 37.4° (90°−52.6°) about the vertical axis, the orientation of which is expressed as (λ, θ) = (0°, 90°) using Allemendinger’s software (Figure 7b). The second rotation is the one that brings the great circle (1–2 plane) to the N–S and vertical orientation. This can be done by rotating it counterclockwise by 29.1°about the N–S axis, the orientation of which is expressed as (λ, θ) = (0°, 0°) (Figure 7c). Here, it should be noted that a clockwise rotation looking into the orientation of the rotation axis is taken as positive in Allemendinger’s software. Unfortunately, it can be found by the naked eyes that the central great circle girdle defined by the 1–2 plane is not parallel to the real central great circle girdle of the quartz c-axis pole figure connecting the two maxima (labelled as A and B in Figure 7). Therefore, we further rotate the quartz c-axis pole figure clockwise by 14° about the vertical axis, so that the central great circle girdle, which connects the two maxima, will become parallel to the N–S and vertical orientation (Figure 7d). Here, we simply assume that the point of the northern maximum (A) is located at the center of the 1.5% contour (Figure 7d). Further, note that although the maximum located at the southern side (B) is very strong, the one located at the northern side (A) is weak.



At this stage, we note that the angle between the two maxima (A and B) along the great circle girdle is 73° (Figure 7d). Since half of this angle (36.5°) is not much different from the one 38° between the prismatic and rhombohedral planes (either r-rhomb or z-rhomb for the case of α quartz, Figure 8), we can reasonably infer that many of the quartz crystals are oriented in the following orientation. Presumably, many of the rhombohedral planes are preferentially oriented parallel to the XY-plane so as to make two c-axis maxima disposed 38° from it in the YZ-plane perpendicular to the a-axis (Figure 8). In fact, the a-axis is preferentially oriented in the direction perpendicular to the great circle of the c-axis pole figure (Figure 5). Knowing this fact, we further rotate the quartz c-axis pole figure about the X-axis, (λ, θ) = (90°, 0°) so that the two c-axis maxima will become nearly symmetrically disposed in the central girdle about the sample Y-axis (Figure 7e). By this rotation, the northern and southern maxima (A and B) are located at 35° and 38° from the sample Y-axis, respectively. Here, since the central point of the southern maximum (B) is well constrained, we locate it at the special orientation as mentioned above.



Certainly, the quartz c-axis pole figure is properly oriented in the sample coordinates (Xs-Ys-Zs) in this configuration, which is similar to a Type I crossed-girdle quartz c-axis fabric pattern reported in much of the literature (e.g., [27,28,37]). Another way to say this is that the foliation (Xs-Ys plane) and lineation (Xs-axis) could be inversely defined by the reconstructed quartz c-axis pole figure, even though these are unknown from the hand samples. Also, the quartz c-axis pole figure nearly shows monoclinic symmetry (180° rotation symmetry), where the leading and trailing edges of the fabric skeleton [2] are also clear, indicating a sense of shear (in this case sinistral sense of shear, Figure 7e). Furthermore, in the quartz crystals constituting the two quartz c-axis maxima, the rhombohedral planes are oriented parallel to the foliation (XY-plane), with the a-axis oriented parallel to the lineation (Figure 8). Therefore, in such oriented quartz crystals, the rhomb<a> slip systems are suitably oriented for shearing in rocks and thus inferred to have been dominantly activated in the quartz. Here, r-rhomb and z-rhomb are not distinguished, although they are distinct in low-temperature α quartz. This is the reason why I called these two quartz c-axis maxima located 38° from the sample Y-axis in the YZ plane R-maxima.





5. Discussion


5.1. Application to Other Quartz c-Axis Fabric Patterns and Limitation of the Present Method


Here, we described the method to infer the foliation and lineation for an asymmetric Type I crossed-girdle quartz c-axis fabric pattern, which formed under shear-dominant flow at low temperatures (e.g., [30]). However, quartz c-axis fabric patterns vary not only as the dominant slip systems vary with changing the deformation temperature but also as the deformation geometries change (e.g., [5]). Further, the same pattern of quartz c-axis fabrics is either symmetric or asymmetric as the kinematic vorticity number (i.e., the relative magnitude of shear-induced rotation to the bulk strain) changes (e.g., Figure 1). First, as the temperature changes, Type I, Type II, and X-maximum (e.g., [6]) crossed-girdle c-axis fabric patterns form at low-, medium-, and high-temperature conditions, respectively, under plane strain geometry (e.g., [7,30]). For a Type II crossed-girdle c-axis fabric pattern, if it is formed as a symmetric pattern showing orthorhombic symmetry, the present method can be still applied using the acute bisector of the two great circle girdles as the central great circle girdle for a Type I crossed-girdle pattern and placing the intersection of them at the center of the pole figure (Y-direction). On the other hand, for the case of an asymmetric Type II crossed-girdle or single-girdle quartz c-axis fabric pattern, the present method can be again used assuming that the single girdle or leading edge of asymmetric crossed girdles is perpendicular to the foliation (shear plane in this case). However, it must be remembered that there has not been any consensus about how these girdles are disposed of relative to the foliation or shear plane, as mentioned above, which remains to be investigated. On the other hand, for the X-maximum quartz c-axis fabric pattern (e.g., [6]), only the lineation is constrained by the X-maximum, but the foliation is not.



The quartz c-axis fabric pattern varies from a small circle, crossed girdle to cleft girdle, as the strain geometry changes from axisymmetric shortening, plane strain to axisymmetric elongation (e.g., [5]). For the case of purely axisymmetric small circle and cleft-girdle patterns, only the foliation for the former pattern and the lineation for the latter pattern can be determined as the S2–S3 plane and S3 direction of the normalized eigenvectors of the orientation tensor of the quartz c-axis fabrics, respectively, using the present method. However, for a general flattening (S > L fabric) and general elongation (L > S fabric) between these extreme cases and plane strain, the crossed girdles could be discerned, and thus the present method could be still used. For the asymmetric patterns of these quartz c-axis fabrics, the same thing could be applied as mentioned above.




5.2. Non-Centered Quartz c-Axis Pole Figures and Triclinic Transpression


Although the method presented here is very attractive, the foliation and/or lineation in deformed quartz-rich rocks is not clear in some cases. In particular, the lineation is often not clear, even though the foliation is strongly developed in deformed quartz-rich rocks, which is, in fact, the case for the three quartz schist samples (GQS1, 2, and 3) reported in Figure 9 of Takeshita et al. [38]. These quartz c-axis pole figures are measured with a U-stage using the thin sections cut perpendicular to the foliation, and thus the sample Z-axis is properly aligned, but the sample X- and Y-axis are arbitrary. In fact, the original quartz c-axis pole figures are non-centered and thus do not show monoclinic symmetry (180° rotation symmetry about the sample Y-axis). Therefore, I have rotated the original quartz c-axis pole figures about the axis perpendicular to the foliation until monoclinic symmetry is attained and inferred the orientations of the lineation inversely defined by the quartz c-axis fabric pattern for the three quartz schist samples.



In some of the literature that reports the quartz c-axis pole figures, not only are the positions of the maximum, such as a Y-maximum and R-maxima, not in the proper orientations, but also the central great circle of a Type I crossed-girdle quartz c-axis fabric pattern is not aligned in the YZ plane (or does not pass through the center Y-axis). In these cases, if the quartz c-axis fabrics that are non-centered or do not show monoclinic symmetry are correct, they have important tectonic implications, as discussed below. However, another possibility is that the occurrences simply result from the misplaced foliation and/or lineation (or miscutting them). Therefore, if it is not certain that such misplaced quartz c-axis pole figures truly represent the real ones, or other quartz c-axis pole figures from the same area are centered, the authors should rotate the non-centered quartz c-axis pole figures to the proper orientations so that the interpretations on kinematics and deformation conditions become easier.



On the other hand, if the non-centered quartz c-axis pole figures truly represent the real ones, it would suggest triclinic deformation in orogens or shear zones. In particular, triclinic transpression is a probable tectonic deformation style in tectonic belts, on which a number of studies on structural analyses in fields and numerical modelling have been conducted (e.g., [37,39,40,41]). One of the main characteristics of triclinic transpression is that the lineation directions vary greatly on the foliation plane from place to place in deformed belts, and thus it is common that the lineation makes high angles with the shear direction [37,41] in contrast to plane strain simple shear where they almost coincide. In the context of triclinic transpression, Xypolias et al. [37] reported many non-centered quartz c-axis fabrics in the sample coordinates (Xs-Zs-Ys, conventional frame) from a transpressional shear zone (Fellos Shear Zone, FSZ, Greece). They rotated these quartz c-axis fabrics by 25 to 85° around the axis normal to the foliation until the central great circle girdle passed through the center of the pole figure. As a result, they could show a well-defined Type I crossed-girdle quartz c-axis fabric pattern in the rotated sample coordinates. Xypolias et al. [37] interpreted that the quartz c-axis fabrics were formed during the last increment of strain following the idea by MacCredy [42], and the orientation of the incremental elongation was rotated by the same angles from the mineral or stretching lineation, which could represent the total strain, supporting the idea of triclinic transpression. The idea and procedure by Xypolias et al. [37] are exactly the same as the ones proposed by this study “Foliation and lineation defined by quartz c-axis fabrics”, which testifies that the present method is also very effective in analyzing the kinematics in deformed belts with complex geometries and prolonged histories such as a triclinic transpressional zone.




5.3. Applications to Other Studies


5.3.1. Domanial Fabric


In the present study, it has been shown that the quartz c-axis fabric exhibiting a Type I crossed-girdle quartz c-axis fabric pattern with the R-maxima is penetrative in the quartz aggregates from the ultramylonite sample. However, it has been also shown that not only the orientation of the central great-circle girdle is significantly rotated, but also the fabric intensity is slightly different among the three groups (Groups 1, 2, and 3), which are simply divided so as to have an equal number of measured points (Table 1). Based on these differences in the intensity and orientation of the central great-circle girdle of the quartz c-axis pole figure, it could be inferred that the domanial quartz c-axis fabrics exist in the sample. When this kind of domanial fabric is inferred, trial and error searches must be conducted to find how many fabric domains exist in each of which the orientation distribution is homogeneous, and also where the domain boundaries are located. Apart from quartz c-axis fabrics, El-Fakharani and Takeshita [43] have analyzed the orientations of the D3 fold axis in the Sambagawa metamorphic rocks, Southwest Japan using the S-pole (i.e., pole to the schistosity) diagram, and found that these orientations are rotated by more than 40° between the adjacent domains A and B in the Kokuryo River. This finding of block rotation after the formation of the D3 fold axis was made possible by trial and error searches, where the S-pole data belonging to domains A and B are replaced at each trial until the best fit great circle perpendicular to the fold axis in each of domains A and B is drawn. In the present case, the rigid-body rotation between microscopic domains after the formation of the quartz c-axis fabric could be responsible for the rotation of the central great-circle girdle of the quartz c-axis pole figure, consistent with the fact that the ultramylonite was pervasively fractured resulting in the rotation of fragments during the cataclasis (more clearly seen in Figure 4c,d). The difference in fabric intensity among the domains might be explained by the degree of dissolution and precipitation of quartz grains during pressure solution creep, by which the existent quartz c-axis fabric was weakened (e.g., [44]). This is also consistent with the fact that the ultramylonite was deformed by pressure solution after the formation of the quartz c-axis fabric [34]. Although any trial and error searches to determine the microscopic domains and domain boundaries are not conducted, which are out of the scope of the present work, it would be very convenient to have the input orientation data in Excel spreadsheets for a stereonet program in order to analyze domanial fabrics. In fact, since different kinds of domanial quartz c-axis fabrics have been reported in much of the literature (e.g., [45,46,47]), it would be recommended that they will be more rigorously analyzed applying the present method in the future.




5.3.2. Foliation Defined by the CPOs of Amphibole c-Axis or Epidote b-Axis


So far, I have only explained the way to convert the Euler angles of quartz single crystals obtained with an EBSD to input data for quartz c-axis pole figures in deformed quartz aggregates, which is very useful to properly analyze the quartz c-axis fabrics. On the other hand, the method can be also useful for analyzing microfabrics in other mineral aggregates. Among them, I will introduce here the foliation defined by amphibole c-axis or epidote b-axis. It has been known that these minerals have a columnar shape; amphibole and epidote are elongated on the c-axis and b-axis, respectively. Based on the kinematic March [48] model, columnar minerals are passively rotated so that they will align along a great circle girdle at large strains except for the prolate strain, which can define foliation (e.g., [49]). On the other hand, in the oriented nucleation model under non-hydrostatic stress, columnar minerals also align along a great circle girdle except for the uniaxial extension, which can be defined as foliation [50]. Therefore, whatever the mechanism to form the preferred shape orientation (SPO), it has been known that the foliation can be defined by the SPOs of columnar minerals.



In our own previous paper [51], we have successfully applied the present method to infer the orientation of the internal foliation (Si) defined by the SPOs of epidote and amphibole in albite porphyroblasts in epidote-amphibolite schist from the Sambagawa metamorphic rocks (buried accreted complexes in the Cretaceous). In this study, we have found that the internal foliations (Si’s) were curved, which were successively rotated about an axis determined by the intersection of adjacent internal foliation planes (Figure 9), and thus the curved ones could indicate the successive overgrowth of albite porphyroblasts rotated during shear-dominant flow. Since the albite porphyroblasts grew during the prograde stage, the shear-dominant flow was related to subduction flow [51]. Whereas the internal foliations (Si’s) contained in the albite porphyroblasts are not continuous to the external foliation also defined by the aligned columnar epidote and amphibole grains which grew during the retrograde stage. The fact indicates that the albite porphyroblasts are inter-tectonic porphyroblasts as defined by Passchire and Trouw [21], which were in fact dissolved at the interface with the matrix consisting of epidote and amphibole grains grown during the retrograde stage (Figure 9a). Note also that the Li’s are at high angles to vertical to the external lineation (X) (Figure 9a), which might indicate that the subduction and return flows were nearly orthogonal. However, since in some of the plagioclase porphyroblasts the Li’s are nearly parallel to the external lineation (X), indicating that the plagioclase porphyroblasts were differently rotated by the return flow during exhumation and they no longer recorded the original orientation of the subduction flow [51].



In any case, since the inclusion epidote and amphibole grains in the albite porphyroblasts are very small, the size of which is mostly less than c. 30 μm (Figure 9a), it is only possible to measure the crystallographic orientations with an EBSD. Thus, the present method could be very effective to analyze microstructures and CPOs for these inclusion minerals. For the case of amphibole, the input data for the c-axis pole figure can be also calculated from the Euler angles measured with an EBSD as shown for the reconstruction of quartz c-axis pole figure. On the other hand, for the case of epidote, the b-axis pole figure must be reconstructed, and the input data for it can be similarly calculated from the Euler angles measured with an EBSD. The unit vector in the orientation of the b-axis is expressed using the Euler angles as shown in Equation (12).


    b  →  =      x   y   z      =      { − cos  ⁡    φ   1       sin  ⁡    φ   2     −   sin  ⁡    φ   1       sin  ⁡    φ   2       cos  ⁡  Φ     −   sin  ⁡    φ   1       sin  ⁡    φ   2     +   cos  ⁡    φ   1     cos  ⁡    φ   2         cos  ⁡  Φ       cos  ⁡    φ   2       sin  ⁡  Φ }       



(12)







Then, the inclination of the epidote b-axis orientation (θ) is expressed as follows.


  θ =     sin   − 1    ⁡      cos  ⁡    φ   2       sin  ⁡  Φ        



(13)







Subsequently, the readers can simply follow the Equations (7)–(11) to calculate the input data (azimuth λ and inclination angle   θ  ) for the Allemendinger’s stereonet software. The excel program, which calculates the input data for epidote b-axis pole figures used in the Allemendinger’s software from the Euler angles obtained with EBSD measurements, is also stored as the Supplementary Materials of the paper (Table S2), which is open for use to everyone.






6. Conclusions


A convenient method to convert the Euler angles (complete crystal orientations relative to the sample ones) obtained with an EBSD (electron backscattered diffraction) to the azimuth and inclination angle of crystallographic axes to reconstruct the pole figure has been described. This method, which is subsequently coupled with the rotation of the pole figures, is particularly useful for the analyses of quartz c-axis fabrics in the deformed rocks, where the foliation and/or lineation is not clear or unknown. Although in such cases, we arbitrarily choose the sample coordinates (Xs-Ys-Zs), it is often possible that we can rotate the quartz c-axis pole figures, so that they will exhibit axial, orthorhombic or monoclinic symmetry in the new, rotated sample frame. In these cases, the rotated XsYs-plane and Xs-direction, which now constitute the new sample coordinates (X’s-Y’s-Z’s), can be called as the foliation and lineation, respectively, inversely defined by the quartz c-axis fabrics. Further, there are even many such quartz c-axis pole figures in deformed rocks published in the literatures, which intrinsically have a well-defined symmetry, but not symmetrical about the sample coordinates (Xs-Ys-Zs). For example, in some of the quartz c-axis pole figures, they are not centered, in others, the c-axis maximum or maxima such as an X-maximum, a Y-maximum and R-maxima are not in the correct orientations and thus axial, orthorhombic or monoclinic symmetry is not represented about the sample frame Xs-Ys-Zs. To avoid to publish such apparently non-symmetrical pole figures, the authors would be recommended to correct their pole figures using the present method.



In case that the foliation and lineation are clearly defined by the shape preferred orientations (SPOs) of platy mica or columnar amphibole (or epidote) grains which could represent the total strain in deformed rocks, the obliquity between the sample frame Xs-Ys-Zs and the one defined by the quartz c-axis fabric has an important implication. Since the quartz c-axis fabric formed during the last increment of strain, the obliquity, which is shown by the non-centered quartz c-axis fabric, could have formed in deformed belts which experienced e.g., triclinic transpression (e.g., [37]). However, in this case, the same exercise to rotate the non-centered quartz c-axis fabric about the sample Z-axis to the proper position is also important to know the strain geometry and history in deformed belts [37], and thus the foliation and lineation defined by the quartz c-axis fabric is also an important concept to analyze them. Further, I introduced some applications of the present method to other microstructural researches such as analyses of domanial quartz c-axis fabric and the internal foliation in plagioclase porphyroblasts defined by SPOs of columnar minerals (epidote and amphibole). Since I believe that there are many possible applications of the present method to microstructural analyses of other mineral aggregates, I hope that it will be useful for individual researches of other microstructural geologists in the future.
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Figure 2. The Euler angles (    ϕ   1    ,   Φ  , and     ϕ   2    ) from Bunge [32] defined by the three successive rotations. (a) Coincidence orientation. (b) The crystal is first rotated counterclockwise by     ϕ   1     about Zx (or Zc), (c) then by   Φ   about Xc, and (d) finally by     ϕ   2     about Zc. The sample and crystal coordinates are denoted as Xs-Ys-Zs and Xc-Yc-Zc, respectively. 






Figure 2. The Euler angles (    ϕ   1    ,   Φ  , and     ϕ   2    ) from Bunge [32] defined by the three successive rotations. (a) Coincidence orientation. (b) The crystal is first rotated counterclockwise by     ϕ   1     about Zx (or Zc), (c) then by   Φ   about Xc, and (d) finally by     ϕ   2     about Zc. The sample and crystal coordinates are denoted as Xs-Ys-Zs and Xc-Yc-Zc, respectively.



[image: Minerals 14 01018 g002]







[image: Minerals 14 01018 g003] 





Figure 3. Definition of the input data (azimuth λ and inclination angle θ) of Allemendinger’s stereonet software [14]. 
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Figure 4. Microphotograps of the ultramylonite samples from the Ryoke southern marginal shear zone along the Median Tectonic Line, Mie Prefecture, Southwest Japan. (a) Sample 14110401, denoted as T-01 in [34]. (b) Magnification of part of (a). (c,d) Sample 14110201 was collected at the locality 500 m east of the locality of sample (a). (a,b,d) are taken under a crossed-polarized light, (c) under plane polarized light. 
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Figure 5. The c [0001]-axis, m<10-10>-axis, and a<11-20>-axis pole figures were measured by an EBSD and processed through the Aztec software for sample T-01. 
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Figure 6. (a) Replotted quartz c-axis pole figure for 10,000 quartz c-axis orientation data from sample T-01. Replotted quartz c-axis pole figures from (b) the first 4429 points, (c) the second 4429 points, and (d) the third 4430 points from the measured indexed 13,288 points. Contour intervals are 0.5% per 1% area and shaded above 0.5% per 1% area. 
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Figure 7. Procedures to rotate the quartz c-axis pole figure from the unoriented sample (T-01) to the one with the proper symmetry with respect to the sample coordinates (Xs-Ys-Zs). (a) Initial quartz c-axis pole figure same as Figure 6a, where the best-fit great circle including the maximum (1) and intermediate (2) orientations, and the minimum (3) one perpendicular to the great circle of the eigenvectors of the orientation tensor (cylindrical best-fit of Allemendinger’s stereonet software [14]) are shown. (b) First rotated quartz c-axis pole figure about the vertical axis, so that the strike of the great circle will coincide with the NS orientation. (c) Second rotated quartz c-axis pole figure about the NS-axis, so that the dip of the great circle will become vertical. (d) Third rotated quartz c-axis pole figure about the vertical axis, so that the great circle connecting the two R-maxima will align along the NS orientation. (e) Fourth rotated quartz c-axis pole figure about the EW axis so that the two R-maxima will be disposed at the correct orientations. See text for details. Contour intervals are 0.5% per 1% area, and shaded above 0.5% per 1% area. 
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Figure 8. Morphology of quartz single crystals, which also shows the particular crystallographic orientation where the c-axis is oriented in the ones of the R-maxima. See text for explanations. 
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Figure 9. (a) Micophotograph (YZ section) of Si (internal foliation) in plagioclase porphyroblasts. (b) Determination of Si (internal foliation) in each subdomain (inner part, outer part S1, S2, N1, N2 and N3) indicated in (a). (c) Equal-area projection showing the rotation of Si’s in the subdivided outer parts relative to the Si in the inner part, which is plotted as the great circle girdle oriented in the E-W and vertical direction. The analyzed epidote-amphibolite schist sample is collected from the Sambagawa metamorphic rocks distributed in the Kokuryo River, central Shikoku, southwest Japan. 
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