
Citation: Geng, Q.; Han, G.; Wen, S.

Flotation of Copper Sulfide Ore Using

Ultra-Low Dosage of Combined

Collectors. Minerals 2024, 14, 1026.

https://doi.org/10.3390/

min14101026

Academic Editor: Dave Deglon

Received: 23 August 2024

Revised: 28 September 2024

Accepted: 11 October 2024

Published: 13 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of
Combined Collectors
Qing Geng 1,2, Guang Han 1,2,* and Shuming Wen 1,2,*

1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource
Engineering, Kunming University of Science and Technology, Kunming 650093, China; 15924838674@163.com

2 Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, Kunming
University of Science and Technology, Kunming 650093, China

* Correspondence: ghkmust@126.com (G.H.); shmwen@126.com (S.W.)

Abstract: Copper sulfide ores frequently co-occur with pyrite, presenting a significant challenge
for their selective separation during beneficiation processes. Despite advancements in flotation
technology, there remains a critical need for efficient methods to enhance copper recovery while
suppressing pyrite interference, particularly without compromising the associated precious metals
such as gold and silver. Current practices often struggle with achieving high selectivity and recovery
while maintaining environmental sustainability. Here, we investigate the efficacy of a ternary collector
mixture consisting of ammonium dibutyl dithiophosphate (ADD), butyl xanthate (BX), and ethyl
xanthate (EX) for the selective flotation of copper sulfide from a complex ore containing 0.79% Cu
and associated precious metals (0.233 g/t Au and 5.83 g/t Ag). A combination of lime and hydro-
gen peroxide as inhibitors was employed to suppress pyrite effectively under alkaline conditions
(pH = 11.33). The results demonstrate that the optimized ternary collector system (ADD:BX:EX at
a ratio of 1:0.5:0.5) significantly improves the copper grade and recovery at an ultra-low dosage
of 10 g/t. The optimized flotation method using the combined collectors and inhibitors effectively
separated chalcopyrite from pyrite, achieving a copper concentrate with 20.08% Cu content and a
recovery of 87.73%. Additionally, the process yielded notable recoveries of gold (9.22%) and silver
(26.66%). These findings advance the field by providing a viable and environmentally conscious
approach to the beneficiation of sulfide ores, potentially serving as a blueprint for processing similar
mineral deposits while minimizing reagent usage and costs.

Keywords: copper sulfide ore; process mineralogy; ultra-low dosage; combined collectors; flotation
separation

1. Introduction

The selective separation of copper sulfide minerals from pyrite has always been a
technical challenge that urgently needs to be solved in flotation plants. Flotation is the
most widely used technique for separating and enriching metallic minerals [1]. If the pyrite
content of a copper sulfide ore is low (<5%), the pH values of the grinding condition and
flotation pulp are generally increased, which depresses pyrite flotation [2–6]. A previous
study revealed that the addition of depressants could be used to control the oxidation
state of the pyrite surface, which is the key to making it hydrophilic, by the formation of
secondary iron minerals, such as ferric hydroxide [7]. High pH is conducive to the oxidation
of the pyrite surface, releasing ferrous and sulfate ions into solution. These hydrophilic
oxidation products react with cations, like with Ca2+, Mg2+, Fe3+, and others, thereby
enabling the effective separation of pyrite and chalcopyrite [8–13]. Hu et al. [14] found
that the formation of hydrophilic precipitates, such as calcium hydroxide, calcium sulfate,
and ferric hydroxide, in a high-alkali lime process is primarily responsible for depressing
pyrite floatability. However, chalcopyrite often coexists closely with pyrite (a common
gangue mineral) and precious metals such as gold and silver. Under high pH conditions,
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the surface of chalcopyrite is easily eroded by OH– ions, resulting in the formation of iron
oxides and a decrease in floatability. And it is not conducive to the recovery of associated
precious metals such as gold and silver [15,16].

However, in ores with high pyrite contents, the anodic effect of chalcopyrite and pyrite
is enhanced, promoting the oxidative dissolution of chalcopyrite and generating copper
ions that adsorb onto the pyrite surface, enhancing its floatability [17–20]. Under highly
alkaline conditions, oxidants can further promote the formation of hydrophilic components
on the pyrite surface to reduce its floatability, thereby achieving the flotation separation of
copper sulfide minerals and obtaining a high-grade copper concentrate [21]. Therefore, the
floatability of pyrite can be synergistically depressed by the addition of lime and oxidants
(H2O2, Ca(ClO)2, Na2SO3) at high pH (pH > 8) [22–25]. In addition, the hydrophobicity of
chalcopyrite depends on surface oxidation, which dissolves copper and iron ions and forms
a polysulfide layer under alkaline conditions [15,26]. Khoso et al. [27] studied the effect of
H2O2 oxidation treatment on the flotation separation of chalcopyrite and pyrite collected
by xanthate. They found that at pH 9, chalcopyrite treated with hydrogen peroxide had a
stronger adsorption capacity for butyl xanthate than pyrite, and the recovery of chalcopyrite
was as high as 84%. Therefore, it is necessary to use a combined inhibitor of lime and
oxidant to suppress pyrite in the flotation of sulfide copper ore with high sulfur content.

In copper sulfur flotation separation, low-grade and difficult-to-select copper sulfide
ores are often accompanied by precious metals such as gold and silver, so the selection of
collectors is particularly crucial. Compared with the traditional flotation method of high-
dosage xanthate, the combined collector is widely used in the field of mineral flotation due
to its advantages of high-efficiency collection and low dosage [28–30]. Dhar [31] conducted
a systematic study on Nussir copper ore, using a DBD and mixed collectors (SIBX and
DBD) system. The results show that compared with using the DBD collector alone, the
xanthate-dithiophosphate mixed collector (ratio of 1:3) improved copper grade and recovery.
Subsequently, Dhar [32] conducted a feasibility study on the selective flotation of sulfides
using SIBX, BBT, DBD, and their mixtures as collectors. Compared to a single collector,
the mixed collector of BBT and SIBX (with a ratio of 3:1) improved the copper grade and
recovery of flotation products. At the same time, the order of adding combined collectors
will also affect the results of copper flotation. Most flotation experiments use binary
combination collectors and new collectors, but there is little research on the combined use
of the three traditional collectors of ammonium dibutyl dithiophosphate (ADD), butyl
xanthate (BX) and ethyl xanthate (EX).

The purpose of this work was to develop an efficient copper flotation process using
an ultra-low dosage of combined collectors for the flotation separation and enrichment
of a copper sulfide ore. Ultra-low dosage (<20 g/t) refers to using minimal amounts of
flotation reagents while maintaining high flotation efficiency. The process mineralogy of
the ore was first assessed to provide a theoretical basis for determining the appropriate
flotation process. Flotation separation of the copper sulfide minerals was then carried out
and the best reagent system and process flowsheet was explored. A high-quality copper
concentrate product was obtained using a closed-circuit test.

2. Materials and Methods

The copper sulfide ore was sourced from Pu’er, Yunnan, China, and was sampled
at different supply points by field personnel according to the prevailing production and
deposit conditions. Representative ore blocks were subjected to process mineralogy analysis.
The remaining ore samples were crushed to below 2.0 mm by a jaw crusher and cone crusher,
mixed and prepared for sample preparation, and used for ore sample detection analysis and
mineral processing. The crushed ore was ground to an appropriate particle size by a rod
mill, and then uniformly sampled for multi-element chemical analysis, phase analysis, and
X-ray diffraction (XRD). The XRD results are shown in Figure 1. The gangue minerals in the
ore were mainly silicates, carbonates (quartz, calcite, muscovite, dolomite, and clinochlore)
and pyrite. The contents of copper sulfide minerals were low, and these are not reflected
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in the XRD analysis. In the flotation experiments, lime is used as a pH regulator, and
combined with hydrogen peroxide and sodium sulfite as inhibitors of pyrite. The collector
for copper flotation was a combination of ammonium dibutyl dithiophosphate (ADD),
butyl xanthate (BX), and ethyl xanthate (EX) in a ratio of 1:0.5:0.5; terpineol oil was used as
a foaming agent. All reagents were chemically pure and purchased from Zhuzhou Flotation
Reagent Factory. Before conducting flotation tests, we diluted the reagent in water to a
concentration of 0.02%–1%. The types and dosages of reagents ranged in the flotation tests,
as shown in Table 1.
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Figure 1. X-ray diffraction pattern of raw ore.

Table 1. Types and dosage ranges of flotation reagents.

Inhibitor Dosage (g/t) Collector Dosage (g/t)

Lime 300–3000 Ammonium dibutyl dithiophosphate 1.5–50
Hydrogen peroxide 0–600 Butyl xanthate 1.5–90

Sodium sulphite 300–700 Ethyl xanthate 1.5–90

XFD single-cell flotation machines (Jilin Exploring Machinery Plant, Changchun,
China), the scraper speed is 15 r/min, the spindle speed is 1999 r/min, and the aeration rate
is 0.2 m3/h) were used for the laboratory flotation experiments, at scales of 1.5 L, 0.75 L,
0.5 L, and 0.2 L. Tap water was employed. A sample of 250 g ore was taken each time. It
was added to a rod mill and ground for 96 s. The final grinding product had a particle size
of –0.074 mm and a content of 70%. Roughing flotation tests were carried out under the
condition of a 33% solids content in the pulp. Firstly, the pulp mixing time was 2–3 min,
then the inhibitor (the pH of pulp was 11.33) was added and stirred for 5 min; then the
collector was added and stirred for 3 min. Finally, 84 g/t of terpineol oil was added and
allowed to react for 1 min, followed by 5 min of scraping. The resulting flotation products
were filtered, dried, and weighed separately, and the copper grade was analyzed using the
AAS (Atomic Absorption Spectroscopy) chemical analysis method. Each experiment was
repeated three times, and the average was taken as the final result.

3. Results and Discussion
3.1. Process Mineralogy
3.1.1. Multi-Element Chemical and Phase Analysis

The results of multi-element chemical analysis and copper phase analysis of the raw
ore are shown in Tables 2 and 3, respectively. The results in Table 1 show that the main
valuable metal in the ore was Cu, at a content of 0.79%. The Pb and Zn contents were low,
so these elements were not considered for recovery. The gangue minerals mainly comprised
silicates and pyrite, with the SiO2 content of 61.92%, and Fe was present at 11.64%. In
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addition, the associated precious metals contents were appreciable, at 0.233 g/t Au and
5.83 g/t Ag, and may have had value for recovery. The results in Table 2 show that copper
mainly existed in the form of copper sulfide minerals (88.60%), of which the proportions
of primary and secondary copper sulfides were 68.35% and 20.25%, respectively. The
remaining copper was present as an oxide (11.39%): the contents of free and combined
copper oxides were 6.96% and 4.43%, respectively.

Table 2. Multi-element chemical analyses of copper ore.

Element Cu Pb Zn Fe S SiO2

Content/% 0.79 0.028 0.25 11.64 11.64 61.92

Element CaO MgO Al2O3 As Au * Ag *

Content/% 4.91 1.12 8.20 0.025 0.233 5.83
* Unit g/t.

Table 3. Phase analysis of copper ore.

Phase Free Copper
Oxide

Bonded
Copper Oxide

Secondary
Copper Sulfide

Primary
Copper Sulfide

Total
Copper

Content/% 0.055 0.035 0.16 0.54 0.79
Distribution/% 6.96 4.43 20.25 68.35 100

3.1.2. Mineral Composition and Liberation Characteristics of the Ore

Quantitative analysis on the ore was performed using the Maps Mineralogy fully
automated mineral analysis system, as shown in Figure 2. Ore samples were examined
using optical and scanning electron microscopy (SEM, FEI quanta-650, Portland, OR, USA),
as shown in Figures 3 and 4. The ore comprised 31 kinds of minerals in seven categories.
The main component was silicates (62.01%), followed by sulfides (34.45%), oxides (1.05%),
carbonates (0.64%), phosphates (0.13%), sulfates (0.06%), and halides (0.01%). The metal-
containing minerals were mainly pyrite, followed by chalcopyrite, and small amounts
of sphalerite and covellite. Pyrite exhibited a high degree of liberation; the liberation
of other minerals was poor, and a relatively wide range of liberated particle sizes was
apparent. The minerals were not highly enriched. Pyrite was liberated to an extent of
79.10%; the remaining 20.90% occurred in allotriomorphic–semi-automorphic granular
form or associated with chalcopyrite and embedded in the gangue minerals, thereby
forming pyrite–chalcopyrite and chalcopyrite–pyrite–gangue intergrowths (Figure 3b–d).
The liberation of chalcopyrite was poor, at only 21.30%; the remaining 78.70% was mainly in
allotriomorphic granular form adjacent to and embedded in the gangue minerals (Figure 4c),
or it occurred as network veins embedded in pyrite to form intergrowths. The mineral
particles were fine, and the embedded particle size was mainly 0.02–0.05 mm. Most covellite
occurred as single grains or in the form of fine particles associated with chalcopyrite: the
embedded particle size was mainly 0.005–0.02 mm.

3.1.3. Characteristics of Particle Size Distribution and Liberation Degree

The degree of monomer dissociation of valuable minerals with different particle
size ranges varied, as shown in Table 4. For grinding conditions that resulted in 70%
of particles passing 0.074 mm, the liberation of the main target minerals (chalcopyrite,
cubanite, digenite, covellite, bornite, tetrahedrite, and pyrite) was poor. Chalcopyrite
particles within the ore have a size range of 0.0037 to 0.0795 mm, with only 8.37% of
particles achieving complete dissociation, and the dissociation degree of the majority
of particles was below 80%. For cubanite, 90.41% of particles exhibited a dissociation
degree below 80%, with dissociation particle sizes ranging from 0.0026 to 0.1036 mm. Only
6.47% of cubanite particles achieved complete dissociation. The dissociation degree of
digenite, covellite, and bornite was less than 60%, with particle sizes of 0.0079–0.0118 mm,
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0.0059–0.0950 mm, and 0.0051–0.0408 mm, respectively. Among them, 17.9% of covellite
particles achieved complete dissociation. Tetrahedrite demonstrated a relatively good
dissociation property, with a particle size range of 0.0053–0.0447 mm. Further, 23.37% of the
particles were completely released, while the remaining dissociation degree was less than
80%. In comparison to copper minerals, pyrite exhibited better dissociation, with 42.69% of
particles having a dissociation degree greater than 80%. The particle size range for pyrite
was broader, ranging from 0.0026 to 0.3015 mm.
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Table 4. Relationship between dissociation degree and particle size of valuable minerals.

Target Minerals Particle Size/mm
Liberation Degree/%

[0–20) [20–40) [40–60) [60–80) [80–100) 100

Chalcopyrite 0.0037–0.0795 44.62 32.57 10.12 3.6 0.72 8.37
Cubanite 0.0026–0.1036 32.9 29.9 12.37 15.24 3.12 6.47
Digenite 0.0079–0.0118 13.62 37.91 48.47 0 0 0
Covellite 0.0059–0.0950 8.83 35.35 37.91 0 0 17.9
Bornite 0.0051–0.0408 82.16 17.84 0 0 0 0

Tetrahedrite 0.0053–0.0447 54.57 5.78 4.82 11.46 0 23.37
Pyrite 0.0026–0.3015 2.19 7.1 17.25 30.77 24.89 17.8

According to the process mineralogy results, the pyrite in the ore had a good degree
of single grain liberation, implying that it may have excellent floatability, which increases
the difficulty of its flotation separation from copper sulfide minerals. Therefore, it was
necessary to focus on the depression of pyrite in the flotation experiments, and consider
a depressant to decrease the pyrite floatability or reduce the collector dosage to enhance
flotation selectivity.

3.2. Flotation Experiments
3.2.1. Effect of Grinding Fineness

The appropriate fineness of the grind is a prerequisite for ensuring the effective
recovery of valuable minerals in a flotation process. The valuable minerals should be
liberated to single phases and have an appropriate particle size. If the ore particles are
too coarse, they will not float, even if the mineral particles are liberated, because their
weight will exceed the floating capacity of the bubbles [33]. The effect of grinding fineness
on the flotation index of copper sulfide ore is shown in Figure 5. The tests were carried
out by choosing the −0.074 mm particle size content to account for 65%, 70%, 75%, 80%,
and 85% of the ore mass. The flow chart is shown in Figure 5a. Lime (1000 g/t) was used
as a pH regulator and depressant to adjust the pH value of the pulp and depress pyrite
flotation, while butyl xanthate (50 g/t) and ammonium dibutyl dithiophosphate (20 g/t)
were used as collectors for the copper sulfide minerals, and terpenic oil (84 g/t) was used
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as a frother. The results are shown in Figure 5b. As the −0.074 mm particle size content
increased from 65% to 85%, the grade of the copper concentrate trended downward; copper
recovery showed a trend of rising, falling, and then rising again, but the overall change
was not significant. When the −0.074 mm particle size content was 70%, the grade and
recovery of the copper concentrate were relatively ideal; for finer particles, the copper
grade would be significantly reduced and the grinding cost would increase. Therefore, the
optimal grinding fineness was selected to be −0.074 mm particle size content, accounting
for 70% of the flotation feed.
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3.2.2. Effect of Reagent Dosage and Type

The effect of reagent dosage on the flotation index is shown in Figure 6. A lime dosage
test was first carried out under conditions of 70% of the feed passing the 0.074 mm particle
size, 50 g/t butyl xanthate, 20 g/t ammonium dibutyl dithiophosphate, and 84 g/t terpenic
oil. As shown in Figure 6a, when the lime dosage was insufficient, the copper grade in the
rougher concentrate was low. With an increase in lime, the grade first increased and then
decreased; copper recovery showed the opposite trend. The optimum grade (2.08%) and
recovery (90.42%) of the rougher were achieved at a lime dosage of 1500 g/t (pH = 11.33).
The lime dosage was fixed at 1500 g/t for subsequent experiments.

The collector performances of ethyl xanthate, butyl xanthate, and ammonium dibutyl
dithiophosphate on copper sulfide minerals were investigated using a feed containing
70% passing 0.074 mm, a lime dosage of 1500 g/t, and a terpenic oil dosage of 84 g/t.
The effects of different types of collectors on the flotation index are shown in Figure 6b–d.
The comparison of Figure 6b,c shows that the copper recovery in the rougher concentrate
was significantly higher when using butyl xanthate as the collector than when using
ethyl xanthate at the same dosage. Figure 6d shows that with an increase in the dosage
of ammonium dibutyl dithiophosphate, the copper grade and recovery in the rougher
concentrate first decreased, then increased, and then decreased. At 40 g/t ammonium
dibutyl dithiophosphate, the copper grade was relatively high, but recovery was low.
Relatively high copper grade and recovery in the rougher concentrate were achieved
with 10 g/t ammonium dibutyl dithiophosphate. This reagent is usually used to recover
associated precious metals in the flotation of sulfide ore, so was selected as the collector for
gold and silver.

The depression effects of lime in combination with hydrogen peroxide or sodium
sulfite on the pyrite flotation were investigated (Figure 7). Tests were carried out using
a particle size of 70% passing 0.074 mm, 1500 g/t lime, 10 g/t butyl xanthate, and 84 g/t
terpenic oil. As shown in Figure 7a, as the hydrogen peroxide dosage increased, the
copper grade in the rougher concentrate first increased and then decreased; the opposite
trend was observed with respect to copper recovery. Optimum grade and recovery were
achieved using 400 g/t hydrogen peroxide—2.48% and 89.68%, respectively. As shown
in Figure 7b, as the sodium sulfite dosage increased, the copper grade first increased and
then decreased; recoveries were relatively stable. When the dosage of sodium sulfite was
500 g/t, the copper grade and recovery were 2.16% and 89.51%. These results demonstrate
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that better flotation was achieved using the combination of lime and hydrogen peroxide for
the depression of pyrite. This method was therefore selected for subsequent experiments,
at the optimal hydrogen peroxide dosage of 400 g/t.
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3.2.3. Application of Combined Collectors

The combined collectors co-adsorb on the mineral surface through synergistic effects.
In addition, different collectors exhibit different selectivity and collectivity; mixing col-
lectors with strong selectivity and strong collectivity in a certain proportion can establish
complementary functions [34,35]. Ammonium dibutyl dithiophosphate (ADD) has good
selectivity, and can effectively collect chalcopyrite and precious metals such as gold and
silver, but its ability to collect pyrite is relatively weak. However, butyl xanthate (BX) has a
strong collection ability but weak selectivity under high alkaline conditions, while ethyl
xanthate (EX) is the opposite [36–38]. The application of combined collectors in the flotation
of copper sulfide ore was then studied, with the aim of improving the flotation index and
reducing reagent dosage. The effects of different collector ratios in the combined collectors
on the rougher copper concentrate are shown in Figure 8. The particle size comprised
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70% passing 0.074 mm, the dosages of lime and hydrogen peroxide were 1500 g/t and
400 g/t, respectively, and the dosage of terpenic oil was 84 g/t. As shown in Figure 8a,
when butyl xanthate, ammonium dibutyl dithiophosphate, and ethyl xanthate were used
in a mass ratio of 1:0.5:0.5, the copper grade in the rougher concentrate was relatively
low; however, a ratio of 0.5:1:0.5 gave a relatively high grade (Figure 8b). In addition,
compared with the results in Figure 7, the use of the combined collectors not only reduced
the reagent dosage, but also significantly improved the flotation index, grade, and recovery
of the copper concentrate, and achieved the efficient recovery of copper sulfide minerals
using ultra-low-dosage conditions. This may be attributed to the combined use of three
collectors; the strong collectivities of ADD and BX are synergistically adsorbed on the
surface of the target mineral, while EX, with weaker collectability, enhances the synergistic
effect among the various components, thus achieving the efficient recovery of copper and
associated precious metals such as gold and silver. From these results, ammonium dibutyl
dithiophosphate, butyl xanthate, and ethyl xanthate were selected as collectors in the mass
combination of 1:0.5:0.5, at a combined optimal dosage of 10 g/t.
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3.2.4. Analysis of Depressant Dosage during Cleaning

To determine the effect of depressant dosage during cleaning on the flotation index,
the lime and hydrogen peroxide additions were investigated. As shown in Figure 9a, when
the dosage of hydrogen peroxide was fixed at 200 g/t, the copper grade in the cleaner
concentrate first increased and then decreased as the lime dosage increased; recovery
showed the opposite trend. Both the copper grade and recovery of the cleaner concentrate
were relatively high when the lime dosage was 700 g/t, so this was selected as the optimal
value. Figure 9b shows that when the lime dosage was fixed at 700 g/t, the copper grade in
the cleaner concentrate first increased and then decreased as the hydrogen peroxide dosage
increased; recovery first increased, then decreased, and then increased. The relatively
ideal copper grade of the cleaner concentrate was achieved at 200 g/t hydrogen peroxide.
This was selected as the optimum value, owing to the copper grade being assigned higher
priority than the recovery.

3.2.5. Open-Circuit Flotation Experiment

To determine the optimal reagent system for an open-circuit test, flotation tests were
carried out for different reagent systems (Figure S1–S4). For the rougher stage, the dosages
of lime and hydrogen peroxide were fixed at 1500 g/t and 400 g/t, respectively; those of the
combined collectors and terpineol oil were fixed at 10 g/t and 84 g/t, respectively. The first
cleaner stage used 700 g/t lime and 200 g/t hydrogen peroxide. The results of the four open
circuit processes are shown in Figure 10. Compared to the second cleaner stage without
lime (Figure S1), the flotation effect of the second cleaner stage with 300 g/t lime was better.
During scavenging, adding 4 g/t of combined collector for the first scavenger (Figure S2)
and 2 g/t of combined collector for the second scavenger produced better flotation results
than not adding the combined collector. However, the flotation effect was poor when
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adding 4 g/t of the combined collectors in the first cleaner stage (Figure S4). Therefore, the
optimal flotation index was obtained by open-circuit process 3 (Figure S3), with a copper
grade of 22.65% and recovery of 66.21%.
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3.2.6. Closed-Circuit Flotation Experiment

The experiments using a closed circuit adopted one rougher, two cleaner, and three
scavenger stages. The middlings were returned in sequence. The flow chart and reagent
system are shown in Figure 11 and the results are shown in Table 5. A flotation index of
20.08% copper grade and 87.73% copper recovery in the concentrate was obtained. The
separation efficiency of flotation copper is 85.45%, indicating that this copper sulfide ore can
be effectively recovered using this separation process. In addition, the grades of associated
precious metals in the concentrate were 0.740 g/t Au and 42.90 g/t Ag, with respective
recoveries of 9.22% and 26.66%, indicating that these metals were also recovered to a certain
extent. Recoveries of Fe (7.27%) and S (8.86%) in the concentrate were both low, indicating
that pyrite was effectively depressed by the combination of lime and hydrogen peroxide.
The flotation separation of copper and sulfur minerals was achieved, and the quality of the
copper concentrate was effectively improved.
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Table 5. Results of closed-circuit flotation experiment.

Product Yield/%
Grade/% Recovery/%

Cu Au * Ag * Fe S Cu Au * Ag * Fe S

Copper concentrate 2.84 20.08 0.740 42.90 29.50 35.00 87.73 9.22 26.66 7.27 8.86
Tailing 97.16 0.084 0.213 3.45 10.99 10.52 12.27 90.78 73.34 92.73 91.14

Raw ore 100 0.65 0.228 4.57 11.52 11.22 100 100 100 100 100

* Unit g/t.

4. Conclusions

This study conducted process mineralogical research on the copper sulfide ore. The
test results reveal the effects of the types and amounts of combination inhibitors and
combination collectors on flotation, leading to several specific conclusions, as follows:

1. Process mineralogy research indicates that the ore is a sulfide copper ore with high
sulfur content (α = 11.64%). The symbiotic relationship of the target metal minerals is
complex, and the degree of dissociation is poor. In the ore, the Cu content is 0.79%,
and the associated precious metals’ contents Au and Ag are 0.233 g/t and 5.83 g/t;

2. The combined inhibitor of lime and hydrogen peroxide (pH = 11.33) inhibited pyrite
better than lime and sodium sulfite. This may be attributed to the Fenton reaction
of hydrogen peroxide on the surface of pyrite, which promotes the formation of
hydrophilic iron hydroxides and prevents the adsorption of collectors on the surface
of pyrite;

3. Using the ADD-BX-EX (1:0.5:0.5) ternary collector resulted in better flotation perfor-
mance compared to a single collector. This is attributed to the synergistic effects of
ADD and BX, while EX, with weaker collectability, intensifies the synergistic effects
between each component. Under the condition that the dosage of combined collector
was only 10 g/t, the copper grade of the copper concentrate was 20.08% and the
copper recovery was 87.73%. The associated metal grades of gold and silver were
0.740 g/t and 42.90 g/t, while the recoveries of gold and silver were 9.22% and 26.66%.
Therefore, the present work achieved the recovery of copper sulfide flotation under
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the condition of an ultra-low dosage of combined collector, which not only obtained
better copper flotation indexes, but also reduced the dosage of reagents, and lowered
the production costs.

In this study, certain limitations have been identified regarding the processing of ores
containing pyrite, which inhibits the recovery of precious metals associated with it, such
as gold and silver. However, the effective and comprehensive recovery of inhibited gold
and silver can still be achieved when using sulfur concentrate. Nevertheless, targeting
the flotation of gold and silver during copper flotation may lead to a reduction in copper
concentrate grade. Therefore, it is crucial to strike a balance between maximizing the
recovery of precious metals and maintaining high-grade copper concentrations in mineral
processing operations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min14101026/s1, Figure S1: Potential flow charts of open-circuit
tests 1; Figure S2: Potential flow charts of open-circuit tests 2; Figure S3: Potential flow charts of
open-circuit tests 3; Figure S4: Potential flow charts of open-circuit tests 4.
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