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Abstract: To investigate the mechanism of polypropylene fiber (PPF) on the rheological and thixotropic
properties of cemented paste backfill containing mineral admixtures, the concept of water film thick-
ness (WFT) was introduced. The packing density of the tailings-binder-PPF (TBP) system was
measured in dry and wet conditions and the WFT was calculated accordingly. Additionally, the
rheological parameters (yield stress, thixotropy, etc.) of the fiber-reinforced cemented paste backfill
(FRCPB) were quantified. The results demonstrate that the wet packing test is a more appropriate
method for measuring the packing density of the TBP system. The PPF length has a slight adverse
effect on the packing density, and the packing density initially increases and then decreases with the
PPF content. The reasons can be attributed to the filling effect and wedge effect of the fibers, respec-
tively. In addition to the packing density, the thixotropy of FRCPB is also affected by the interaction of
fibers. WFT is a crucial factor affecting the yield stress of FRCPB, with which it exhibits a strong linear
relationship. The study identified that the optimum PPF content for enhancing the rheological and
thixotropic properties of CPB is 0.2%, with a fiber length of 9 mm, balancing flowability and stability
for practical application in mining backfill operations. These insights can guide the optimization of
CPB mixtures, enhancing their flowability and stability during placement in mined-out spaces. By
improving the fill quality and reducing the risk of blockage during backfill operations, the results
offer practical benefits in increasing the safety and efficiency of underground mining activities.

Keywords: polypropylene fiber; cemented paste backfill; packing density; water film thickness; yield
stress; thixotropy

1. Introduction

Cemented paste backfill (CPB), as a green and efficient mining technology, has been
widely used and studied around the world in recent years [1–4]. Compared with traditional
mining methods, CPB technology has unique advantages and potential. First of all, CPB can
maximize the recovery and utilization of ore resources, thereby improving the efficiency of
ore mining and recovery [5–8]. In addition, CPB can reduce the risk of surface subsidence
and geological disasters and effectively protect the integrity of the surface environment
and ecosystem [9]. However, the traditional CPB still has some limitations in practice, such
as high brittleness and low flexural and tensile strength [10,11]. Under the action of mining
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disturbance, CPB is easily prone to the phenomenon of rib spalling [12]. To overcome
these problems and further optimize the performance of CPB, fiber-reinforced cemented
paste backfill (FRCPB) was presented. This is a method of mixing fibers with traditional
CPB to form backfill materials with good toughness and flexural/tensile strength [13].
Compared with traditional CPB, FRCPB significantly improves the above shortcomings
and has extremely high on-site significance.

At present, the hardened properties of FRCPB, such as uniaxial compressive strength
and flexural strength, have been extensively studied. Xue et al. [14–16] and Cao et al. [17]
studied the effects of fiber characteristics such as fiber type and length on the strength
characteristics, failure behavior, and microstructure of FRCPB. Chen et al. [18] explored
the effects of fiber content and length on the compressive behavior and microstructural
properties of CPB. Sun and Fall [19] used the response surface methodology to characterize
and optimize the key engineering properties of fiber-reinforced cemented tailings backfill,
such as strength and elastic modulus. Cui et al. [20] studied the evolutive fracture behavior
and properties of FRCPB under pure mode-I, mode-II, and mode-III loadings. Guo et al. [21]
used recycled tire polymer fiber (RTPF) to replace polypropylene fiber (PPF). The results
showed that with the addition of 0.6% RTPF, the strength properties of cemented tailings
backfill were comparable to those of CPB containing 0.3% PPF. These studies are of great
significance for understanding the hardened properties of FRCPB. However, it is worth
noting that there are relatively few studies on the rheological properties of fresh FRCPB [21].
In addition, the mechanism of fibers on the rheological properties of CPB also needs to be
further explored. A full understanding of the rheological properties of CPB is critical to
its transportation process [22]. If the fluidity of CPB is insufficient, it may not be evenly
filled to the target stope and even lead to pipe-blocking accidents [23,24]. Therefore,
understanding the rheological properties of FRCPB, especially the mechanism of fibers,
is of great significance to optimizing the transportation process of FRCPB and thereby
improving mining efficiency and quality.

The water film thickness (WFT) theory may be a practical and promising method
to reveal the mechanism of fibers on the rheological properties of FRCPB [25–28]. After
the water in the system fills the voids of the particles, the excess free water forms a water
film on the particles’ surface, which is an important factor in controlling the fluidity of
the slurry [28]. WFT was originally proposed to evaluate the fluidity of cement paste,
mortar, and concrete [29,30]. Compared with mortar or concrete, CPB has significantly
higher water content and much lower binder content [31,32]. Qiu et al. [28,33] confirmed
the applicability of WFT theory to traditional CPB. On this basis, Guo et al. [34] used WFT
theory to study the fluidity of superfine-tailings cemented paste backfill and proposed the
concept of floc film thickness. Additionally, WFT has proven critical to understanding the
flow behavior of backfill materials containing hydrogen peroxide or biomass power plant
ash [35]. In summary, WFT has relevant applications in the fluidity of backfill materials.
However, to the authors’ knowledge, there are currently few relevant studies on the use of
WFT to explore the rheological properties of CPB-containing fibers.

Based on the above discussion, the originality of this study lies in introducing the
concept of WFT to explore the mechanism of polypropylene fiber (PPF) on the rheological
properties of CPB. Through dry and wet packing tests, the packing density of the tailings-
binder-PPF (TBP) solid mixture system was obtained, and the WFT was calculated based
on this. In addition, the rheological properties (yield stress and thixotropy, etc.) of CPB
containing different PPF contents were measured. Finally, the yield stress and WFT of
FRCPB were correlated, and the quantitative relationship between them was obtained.

2. Experimental Materials and Methods
2.1. Experimental Materials

The raw materials used in this study include tailings, cementitious materials, mixing
water and fiber.
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2.1.1. Tailings

The tailings used to prepare CPB come from the Aoniu iron ore mine in northeast
China, and its specific gravity is 2.83. Figure 1a shows the particle size distribution of
tailings obtained by the Mastersizer 2000. It can be seen from the figure that the fine
content (<20 µm) of tailings is 25.01%, which can be regarded as coarse tailings [36]. The
non-uniformity coefficient (Cu) and curvature coefficient (Cc) of tailings are 8.93 and
2.17, respectively, indicating a good particle gradation [22]. X-ray fluorescence (XRF)
results show that the main chemical components of tailings are SiO2 (53.99%), Fe2O3
(22.84%), Al2O3 (8.51%), CaO (6.38%) and MgO (5.38%). In addition, X-ray fluorescence
(XRF) analysis shows that the main minerals of tailings are quartz, diopside, anorthite,
hornblende, and magnetite (Figure 1b).
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2.1.2. Cementitious Materials and Water

The cementitious materials are used to provide the strength required for the CPB
sample [37]. Ordinary Portland cement, P·O 42.5, is used as a cementitious material.
Its specific surface area and specific gravity are 5003 cm2/g and 3.2, respectively. The
main chemical components of cement are CaO (60.16%), SiO2 (22.46%), Fe2O3 (5.86%),
Al2O3 (4.65%), and MgO (2.32%). In addition, granulated blast furnace slag is used as a
mineral admixture to replace part of the cement. The mass ratio of cement to slag is set
to 3:2. The cement-to-slag ratio was chosen to optimize cost, enhance sustainability, and
improve rheological properties by leveraging the synergistic effects between cement and
blast furnace slag. Tap water is used as mixing water to homogenize the tailings, binder
and fibers.

2.1.3. Fiber

The incorporation of fibers aims to enhance the toughness, flexural strength, and
tensile properties of cement-based materials [38–40]. The fiber selected is polypropylene
fiber (PPF), commonly used in the backfill field, and its density and Young’s modulus
are 0.91 g/cm3 and 3.85 Gpa, respectively (Figure 2). The reason for choosing PPF is
that PPF has excellent mechanical properties, chemical resistance, and compatibility with
cementitious materials. PPFs are widely used in CPB to improve mechanical performance
by mitigating shrinkage and cracking, as well as enhancing the post-yield strength and
ductility of the backfill.
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2.2. Experimental Methods

The CPB samples with different PPF contents (0%, 0.1%, 0.2%, 0.3%, and 0.4%) were
prepared, and the fiber content was expressed as a volume percentage of solid dry material
(tailings and binder). In addition, PPF lengths are 3, 6, 9, and 12 mm, respectively. Detailed
mix proportions can be seen in Table 1. It should be noted that, except for the WFT test (68%,
69%, 70%, and 71%), the solid content and binder dosage of other CPB samples were fixed
at 71% and 10%, respectively. The selection of the solid content was based on a balance
between achieving adequate flowability and ensuring sufficient mechanical strength of
CPB. The binder dosage was calculated based on the weight of the solid components, which
include the tailings and any added mineral admixtures. The relatively high cement content
was adopted to ensure sufficient early-age strength and durability of the CPB. The water
added to the mixture was determined based on achieving the target solid content of 71%.
After the preset material is prepared, the dry material is mixed evenly first, and then the
required water is added to further stir for 3 min to ensure the uniform distribution of the
fiber to the maximum extent. The preparation process of fresh FRCPB is shown in Figure 3.

Table 1. The mix proportions of the experimental FRCPB samples.

Solid Content/% Binder Dosage/% PPF Content/% PPF Length/mm

71 10 0, 0.1, 0.2, 0.3, 0.4 3, 6, 9, 12
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2.2.1. Determination of Packing Density

In this paper, the dry packing test and wet packing test were used to measure the
packing density. The dry packing test was carried out in a water-free environment, and the
specific steps are as follows: First, weigh the required tailings, binder, and PPF, then mix
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the tailings and binder thoroughly for 2 min using a mixer, followed by the addition of PPF
and further mixing for 2 min. Transfer the mixed dry materials into a measuring container
and vibrate on a vibrating table for 1 min to minimize workmanship variation. Detailed
experimental procedures for the dry packing test can be found in [41]. Finally, the packing
density of the TBP system (∅dry) obtained by the dry packing test can be calculated using
the following formula:

∅dry =
ρbulk

ρtαt + ρbαb + ρ f α f
(1)

where ρbulk is the bulk density of the sample in the container; ρt, ρb and ρ f are the densities
of tailings, binder, and PPF, respectively; αt, αb and α f refer to the volume fraction of
tailings, binder, and PPF in solid materials, respectively.

When measuring packing density using the wet packing test, the water content in the
solid system is continuously increased, causing an initial increase in the solid concentration
due to the formation of liquid bridges, followed by a decrease due to particle dispersion and
an increase in slurry volume [42]. The highest solid concentration reached by the system is
considered its packing density. In conducting a wet packing test, the water-to-solid (W/S)
ratio is first set, and the required amounts of tailings, binder, and PPF are weighed. The
tailings, binder, and water are thoroughly mixed for 2 min using a mixer, after which PPF
is added and mixed for an additional 2 min. The resulting slurry is then transferred to
a measuring container and vibrated for 1 min on a vibrating table. Finally, the packing
density of the TBP system (∅wet) obtained by the wet packing test can be calculated using
the following formula:

∅wet =
ρbulk

ρwβw + ρtαt + ρcαc + ρ f α f
(2)

where ρw is the density of water, and βw is the volumetric W/S ratio.

2.2.2. Determination of WFT

WFT was determined to study the mechanism of PPF on the rheological properties
of CPB. According to the WFT theory [43], the water incorporated into the system can be
divided into two parts: void-filling water and excess water, where the excess water forms a
water film enveloping the surfaces of solid particles. After obtaining the packing density of
the solid system, WFT can be expressed by the following equation:

WFT =
w0 − w1

As
(3)

where w0 and w1 represent the total water volume ratio and void volume ratio, respectively,
and w0 −w1 represents the excess water volume ratio. w1 can be represented as 1−∅

∅ , where
∅ represents the packing density of a solid system. As is the total specific surface area of
the solid material, and the specific calculation method can be found in [25].

2.2.3. Determination of Yield Stress and Thixotropy

The prepared FRCPB is transferred to the measuring cup of the rheometer, followed
by rheological testing. It should be noted that the length of the fiber is fixed at 6 mm.
The rheometer used is a Brookfield RSR-CC. The shear protocol used here (Figure 4a) is
as follows: pre-shear at a rate of 100 s−1 for 60 s, followed by a rest period of 30 s. The
pre-shear serves to homogenize the slurry and eliminate any residual structure, providing
a consistent baseline before measuring the buildup of structure during the rest period.
The rest step allows the system to recover and rebuild the internal structure, which is
essential for assessing thixotropy. After resting, the shear rate increases linearly from 0
to 100 s−1 and then decreases linearly to 0 in 120 s. This shearing pattern mimics the
conditions experienced in practical pumping and flow scenarios. The data obtained from
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the descending segment are fitted using the Herschel–Bulkley (H–B) rheological model to
determine the rheological parameters. The model is as follows:

τ = τ0 + µ
.
γ

n (4)

where τ and τ0 are shear stress and (dynamic) yield stress, respectively. µ is the consistency
index,

.
γ is the shear rate, and n is the H–B index indicating the degree of shear thinning

or thickening.
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After obtaining the shear stress–shear rate curves through the above shear protocol,
the area of the hysteresis loop formed by the upward and downward curves (Figure 4b)
can be used to characterize the thixotropy of FRCPB. A larger area of the hysteresis loop
indicates stronger thixotropy of the slurry, and vice versa [44].

3. Results and Discussions
3.1. Packing Density and WFT
3.1.1. Effect of Water Content on Solid Concentration

Figure 5 shows the variation in solid concentration with the W/S ratio in a solid
mixture system containing 0.2% PPF (length = 6 mm) under dry and wet conditions. When
the W/S ratio is zero, that is, there is no water in the system, and the solid mixture system
is in a dry environment, the solid concentration at this time is equal to the packing density
obtained by the dry packing test. With the increase in the W/S ratio, the solid concentration
initially decreases and then gradually increases. The initial decrease in solid concentration,
known as the “bulking effect”, is caused by the formation of a water film on the particle
surfaces that leads to an air interlock, pushing the solid particles apart [41]. However, after
reaching a certain water content, the water films begin to merge, forming what are known
as “liquid bridges” and the excess water starts to fill the voids, leading to an increase in
solid concentration [34]. It can be also seen from the figure that after the solid concentration
reaches a maximum value (0.675, packing density), it begins to decrease with the water
content. This is because the excess water separates the particles, causing the particles
to become dispersed and thus increasing the volume of FRCPB, ultimately leading to a
decrease in the solid concentration. In addition, the evolution of void ratio corresponds to
the result of packing density, exhibiting a pattern of increasing, then decreasing, and finally
increasing. When the system reaches its maximum packing density, the void ratio is at its
lowest, indicating that the system has achieved its maximum compactness at this point.
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Figure 5. Solid concentration of CPB containing 0.2% PPF (fiber length = 6 mm).

3.1.2. Effect of PPF on Packing Density

The packing densities of the TBP system obtained from dry and wet packing tests are
shown in Figure 6. It is evident that the packing densities obtained from the dry packing
test range between 0.569 and 0.603, while those from the wet packing test range from 0.620
to 0.677. Therefore, the results from the wet packing test are higher than those from the
dry packing test, indicating that water has a significant positive impact on the packing
of the TBP system. The reason for this phenomenon may be that water can reduce the
agglomeration of particles and fibers and lubricate them, resulting in a closer packing of
particles and fibers, that is, a higher packing density [45]. In addition, in a wet environment,
regardless of PPF length, the packing density of the system increases first with the fiber
content and then decreases after reaching the maximum value. Therefore, similar to the
filling effect of fine particles, there is an optimal PPF content that maximizes the packing
density of the system [28]. This phenomenon can be explained as follows: when the PPF
content is low, the fibers fill the voids between solid particles, which coincides with a
decrease in void ratio, thus increasing the packing density. When the PPF content is high,
some isolated fibers become trapped in the narrow gaps between solid particles, causing
the particles to be wedged and separated, which increases the inter-particle spacing and
thereby reduces the packing density. This phenomenon is known as the “wedge effect” [46].
On the other hand, it can also be observed from the figure that at a given fiber content,
whether measured dry or wet packing test, the packing density slightly decreases with the
increase in fiber length. This suggests that the length of PPF has a detrimental effect on the
packing density of the TBP system. Therefore, although the fiber may bend and deform to
fill or pass through the gap of particles due to the influence of slurry consistency, the wedge
effect will increase if the fiber length increases, thus reducing the packing density [47].
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Overall, the results obtained from the wet packing test seem to be more accurate than
those from the dry packing test. In fact, in the absence of water, the forces acting between
particles are primarily controlled by friction [48]. Therefore, due to higher resistance, it
is difficult for the particles to rearrange and achieve close packing. In wet environments,
however, the addition of water can provide lubrication and reduce friction between particles.
This allows the particles to slide more smoothly and effectively into a more compact
arrangement [28]. It should be noted that the wet environment is also more consistent with
the actual situation of the particles in the slurry and the influence of some admixtures such
as superplasticizer can be considered. Therefore, for TBP systems, the wet packing test is a
more scientific approach to measuring packing density.

3.1.3. Effect of PPF on WFT

The variation of WFT in CPB under different PPF contents and solid contents is shown
in Figure 7. For ease of comparison, the PPF length is fixed at 6 mm. It is evident from
the figure that regardless of the PPF content, WFT decreases as the solid content increases,
which is due to the reduction in the system’s water content. For example, at a given PPF
content (0.2%), when the solid content increases from 68% to 71%, the WFT decreases from
0.561 to 0.498 µm. In addition, it can be noted that when the solid content remains constant,
WFT increases first and then decreases with the PPF content. This corresponds to the result
of packing density. A greater packing density results in a lower void ratio, so when the
solid content is equal, a higher amount of excess water is required to cover the solid surface
to form a water film, leading to a greater WFT. It is also important to note that increasing
the fiber content decreases the total specific surface area of the solids system, which leads
to an increase in WFT. Therefore, WFT is the result of the coupling of packing density and
specific surface area.
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Compared to the WFT of mortar and cement paste, the WFT of FRCPB is significantly
greater due to its lower solid content [49,50]. This is consistent with the results of traditional
CPB [28]. Additionally, a negative WFT (i.e., the voids between solid particles are not
completely filled with water) does not occur in FRCPB, which is also due to the high water
content of CPB.

3.2. Rheological Properties

Figure 8a shows the typical rheological curves of fresh CPB at a fixed solid content
(71%) and binder dosage (10%) with different PPF dosages (0, 0.1%, 0.2%, 0.3%, and 0.4%).
Table 2 presents the fitting results of the H–B model. Firstly, the fitted correlation coefficients
are all greater than 0.98, indicating that the H–B model can well describe the rheological
behavior of FRCPB and demonstrate that fresh FRCPB is a non-Newtonian fluid with yield
stress. In addition, all FRCPBs exhibit significant shear-thinning behavior, which is similar
to the rheological behavior displayed by ordinary CPB under shear. Samples with higher
PPF content show more pronounced shear-thinning behavior, manifested by a smaller H–B
index (Table 2). The fresh slurries exhibit either shear-thinning or shear-thickening behavior
under shear, depending on the aggregation and breakage kinetics of the flocs [51]. When the
breakage caused by shear dominates, the slurry exhibits characteristics of shear-thinning
and vice versa. Therefore, PPF, to a certain extent, makes the flocs in CPB more susceptible
to disruption. This may be related to the orientation of the fibers in the slurry. Furthermore,
the yield stresses for CPBs containing 0, 0.1%, 0.2%, 0.3%, and 0.4% PPF are 23.59, 18.83,
15.9, 23.28, and 30.85 Pa, respectively. This trend is consistent with the changes in packing
density, indicating that packing density may be an important factor affecting the rheological
properties of FRCPB. Since WFT is a comprehensive representation of packing density and
solid content among other factors, it is necessary to further investigate the relationship
between WFT and yield stress.
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Table 2. Fitting parameters of H–B model (τ0: yield stress; µ: consistency index; n: H–B index).

PPF Content/
%

τ0/
Pa

µ/
-

n/
-

R2/
-

0 23.59 0.85 0.95 0.99
0.1 18.83 0.63 0.88 0.98
0.2 15.9 1.26 0.77 0.99
0.3 23.28 2.43 0.75 0.99
0.4 30.85 2.87 0.68 0.99

Figure 8b shows the variation of the hysteresis loop area of CPB with the amount of
fiber added. It is apparent that when the fiber content is low (0%–0.2%), the hysteresis loop
area remains relatively stable, around 2361 Pa/s. The area of the hysteresis loop represents
the magnitude of thixotropy. Therefore, although the addition of a certain amount of fiber
increases the system’s packing density, it does not affect the thixotropy of CPB. Similar
results were observed in Guo et al.’s study on the structural build-up of CPB containing
RTPF [21]. If the fiber content is further increased, the hysteresis loop area begins to
increase, indicating that fibers enhance the thixotropy of CPB. Therefore, low amounts of
fiber do not significantly affect the macrostructure of CPB. However, when the fiber content
reaches a certain level, fibers begin to form complex physical network structures within
the slurry; this not only enhances the structural integrity and improves the viscosity, but
also affects the dynamic shear process—these networks will partially destroy and quickly
recover after stopping the shear, thus improving the thixotropy. It is important to note that
the fiber content at the maximum packing density of the system precisely corresponds to
the critical point where the thixotropy of FRCPB stabilizes and increases. This suggests
that packing density may be an important factor affecting the thixotropy of FRCPB. On the
other hand, thixotropy does not show a simple linear relationship with packing density.
Thus, it can be inferred that in addition to packing density, there are other significant factors
affecting the thixotropy of FRCPB, such as the interactions among fibers. This requires
further exploration.

3.3. Discussion

The above results show that the optimal fiber content for achieving the best transport
properties lies at 0.2%. At this fiber content, the CPB demonstrated sufficient viscosity to
prevent segregation and bleeding while maintaining acceptable flowability for pipeline
transport, i.e., low yield stress. In addition, it is also shown that WFT may be an important
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factor affecting the yield stress of fresh FRCPB. Therefore, to further explore the mechanism
of PPF on the yield stress of CPB, a relationship between WFT and yield stress has been
established, as shown in Figure 9. It can be seen that, in general, the yield stress of
FRCPB decreases with the increase in WFT. This is because when an external shear load is
applied, particles adapt to the stress by sliding through the water film layer. The greater
the WFT, the less direct contact between particles, thereby reducing friction and lowering
the external stress required to initiate slurry flow [34]. In addition, a fitting analysis was
carried out to quantify the relationship between WFT and the yield stress of fresh FRCPB.
The fitting results show that there is a linear relationship between WFT and yield stress,
with a correlation coefficient of 0.92. The F-test (95% level of confidence) was conducted to
evaluate the significance of regression, and the results indicate a p-value of 1.35 × 10−7,
which is far less than 0.05, demonstrating the validity of the fitting equation. Therefore, it
can be concluded that WFT is an important factor affecting the rheological properties of
FRCPB. Qiu et al. also reached a similar conclusion when studying the fluidity of traditional
fresh CPB [28]. The fitting equation can be used to predict the yield stress of FRCPB, which
has a certain significance for the field application of FRCPB.
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4. Conclusions

In this study, water film thickness (WFT) was introduced to explain the mechanism
of polypropylene fibers (PPF) on the rheological properties of fresh CPB. Dry and wet
packing tests were used to determine the packing density of solid systems with different
fiber lengths (3 mm, 6 mm, 9 mm, and 12 mm) and fiber contents (0%, 0.1%, 0.2%, 0.3%,
0.4%, and 0.5%). On the basis of obtaining the packing density, the WFT was calculated. In
addition, the rheological properties of fiber-reinforced cemented paste backfill (FRCPB),
including yield stress and thixotropy, were measured. Based on the experimental results,
the following conclusions can be drawn:
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1. The packing density obtained by the wet packing test is greater than that obtained by
the dry packing test. Compared with the dry packing test, the wet packing test is more
suitable for measuring the packing density of the tailings-binder-PPF (TBP) system.

2. As the PPF content increases, the packing density of the TBP system first increases
and then decreases. The increase in packing density is due to the filling effect of the
fibers, while the decrease is attributed to the wedging effect. In addition, the PPF
length has a slight adverse effect on the packing density.

3. The thixotropy of CPB exhibits a characteristic of stability followed by an increase
with the addition of PPF. The critical PPF content for these two trends is 0.2%, at
which point the system achieves its maximum packing density. Packing density is an
important factor affecting the thixotropy of fresh FRCPB, but interactions among the
fibers cannot be ignored.

4. The WFT tends to increase and then decrease with the PPF content. Moreover, there is
a good linear relationship between WFT and the yield stress of fresh FRCPB. Therefore,
WFT can be used to predict the yield stress of FRCPB.

5. The optimal PPF content was determined to be 0.2%, with a fiber length of 6 mm. This
combination provides the best performance in terms of yield stress, thixotropy, and
overall transport properties, making it suitable for use in CPB applications.
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