Chiral Minerals
Abstract
:1. Introduction
2. Elements of Crystallography of Chiral Minerals
2.1. The Relation between Symmetry and Chirality
2.1.1. Enantiomorphism
2.1.2. Symmetry Elements, Point-Group Symmetries and Their Relation to Chirality
2.2. The Lattice System
2.3. The Unit Cell (UC)
2.4. The Glide Symmetry Elements and the Helical Handedness Labeling
An assembly of atoms is chiral if its structure is characterized by rotational (proper) symmetry elements only. |
2.5. Space-Group Symmetry
2.5.1. The Space-Group Symmetry Label of Chiral Crystals
2.5.2. Chiral Crystals—Söhncke Space-Group Symmetries
A mineral is chiral if its space-group symmetry is one of the 65 Söhncke space groups. |
2.6. The Asymmetric Unit
2.7. Conglomerates and Racemates
3. The Chiral Minerals Found in Nature
3.1. The Abundance of Chiral Minerals and the “Missing-Glove” Situation
3.2. Chiral Minerals in the 22 Enantiomorphic Space-Group Symmetries
3.3. Chiral Minerals in the 43 Non-Enantiomorphic Söhncke Space Groups
Chiral silicate zeolite minerals Alflarsenite, NaCa2Be3Si4O13(OH)·2H2O, P21 Amicite, K2Na2Al4Si4O16·5H2O, I2 Analcime, Na(AlSi2O6)·H2O, P1 Bikitaite, LiAlSi2O6·H2O, P1 Edingtonite, Ba(Al2Si3O10)·4H2O, P21212 Gismondine-Sr, Sr4(Si8Al8O32)·9H2O, C2221 Goosecreekite, Ca(Al2Si6O16)·5H2O, P21 Hsianghualite, Ca3Li2(Be3Si3O12)F2, I4132 Nabesite, Na2BeSi4O10·4H2O, P212121 Pahasapaite, Li8(Ca,Li,K)10.5Be24(PO4)24·38H2O, I23 |
3.4. Chiral Organic and Carbonate Minerals
Chiral carbonate minerals Alicewilsonite-(YCe), Na2Sr2YCe(CO3)6·3H2O, P1 (and related carbonates ), P1 Balliranoite, (Na,K)6Ca2(Si6Al6O24)Cl2(CO3), P63 Britvinite, [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)], P1 Bussenite, Na2Ba2Fe2+Ti(Si2O7)(CO3)(OH)3F, P1 Cancrinite, (Na,Ca,◻)8(Al6Si6O24)(CO3,SO4)2·2H2O, P63 Chiyokoite, Ca3Si(CO3)[B(OH)4]O (OH)5·12H2O, P63 Depmeierite Na8(Al6Si6O24)(PO4,CO3)1−x·3H2O (x < 0.5), P63 Donnayite-(Y), NaCaSr3Y(CO3)6∙3H2O, P1 Hanjiangite, Ba2CaV3+Al(H2AlSi3O12)(CO3)2F, B2 Huntite, Mg3Ca(CO3)4, R32 Kyanoxalite, Na7(Al6−xSi6+xO24)(C2O4)0.5+x·5H2O (0 < x < 0.5), P63 Latiumite, (Ca,K)4(Si,Al)5O11(SO4,CO3), P21 Lecoqite-(Y), Na3Y(CO3)3·6H2O, P63 Monohydrocalcite, CaCO3·H2O, P3121/P3221 Molybdophyllite, Pb8Mg9[Si10O28(OH)8O2(CO3)3]·H2O, B2 Plumbotsumite, Pb13(CO3)6(Si10O27)·3H2O, C2221 Quintinite, Mg4Al2(OH)12CO3⋅3H2O, P6322 Slyudyankaite, Na28Ca4(Si24Al24O96)(SO4)6(S6)1/3(CO2)·2H2O, P1 Surite, (Pb,Ca)3(Al,Fe2+,Mg)2((Si,Al)4O10)(CO3)2(OH)2, P21 Thaumasite, Ca3(SO4)[Si(OH)6](CO3)·12H2O, P63 UM2009-23-SiO:AlCCaClHKNaS, (Na,Ca)24K10[(Si,Al)60O120](SO4)5.6Cl1.5(CO3)0.4·11H2O, P3 Vishnevite, (Na,K)8(Al6Si6O24)(SO4,CO3)·2H2O, P63 Weloganite, Na2(Sr,Ca)3Zr(CO3)6·3H2O, P1 Wyartite, CaU5+(UO2)2(CO3)O4(OH)·7H2O, P212121, |
3.5. Chiral Polymorphic Phase-Transitioned Minerals
4. Formation and Transformations of Chiral Minerals
4.1. Crystallization from the Melt and Melting of Crystals
4.2. Chirality Aspects of Crystallization of Minerals from Aqueous Solutions
4.3. Polymerizations Leading to Chiral Minerals
4.3.1. The Silicates
Chiral inosilicates Frankamenite, K3Na3Ca5(Si12O30)[F,(OH)]4·(H2O), P1 Leucophanite, NaCaBeSi2O6F, P212121 Taikanite, Sr3BaMn2+2(Si4O12)O2, B2 Tobermorite, Ca5Si6O16(OH)2·4H2O or Ca4Si6O17(H2O)2·(Ca·3H2O), C2221 or P21 Umbite, K2(Zr,Ti)Si3O9·H2O, P212121 Chiral phyllosilicates Amesite, Mg2Al(AlSiO5)(OH)4, P1 Britvinite, [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)], P1 Chalcodite, K(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27, P1 Cookeite, LiAl4(Si3Al)O10(OH)8, C2 (or Cc) Cymrite, BaAl2Si2(O,OH)8·H2O, P21 Dmisteinbergite, Ca(Al2Si2O8), P312 Ekanite, Ca2ThSi8O20, I422 (the only chiral mineral in that space group, Table 3) Kaolinite, Al2Si2O5(OH)4, P1 Latiumite, (Ca,K)4(Si,Al)5O11(SO4,CO3), P21 Levantite, KCa3Al2(SiO4)(Si2O7)(PO4), P21 Searlesite, NaBSi2O5(OH)2, P21 Zussmanite, K(Fe,Mg,Mn)13(Si,Al)18O42(OH)14, R3 |
4.3.2. Opals
4.3.3. Ambers
4.4. Chemical Transformations of Chiral Minerals
4.4.1. Hydrolyses
4.4.2. Carbonations
4.4.3. Oxygenations
5. Chirality of the Macroscopic Mineral
5.1. Molecular-Level Descriptors of the Macroscopic Crystal
5.1.1. The Crystal Class
A mineral is chiral if its crystal class contains only rotational elements, including the identity. |
5.1.2. The Crystal Forms
5.2. Chiral Habits of Minerals
5.2.1. Growth Conditions and Randomness as Sources of Habit Chirality
5.2.2. Chiral Twins
5.2.3. Chiral Habits of Biominerals
5.3. Chiral Gemstone Minerals
List of chiral gemstones Austinite, CaZnAsO4(OH), P212121 Cancrinite, Na6Ca2[(CO3)2|Al6Si6O24]·2H2O, P63 Celadonite, K(Mg,Fe2)(Fe3+,Al)[Si4O10](OH)2, C2 Cinnabar, HgS, P3121/P3221 Cyrilovite, (NaFe33+(PO4)2(OH)4·2(H2O)), P41212/P43212 Ekanite, (Ca,Fe,Pb)2(Th,U)Si8O20, I422 Kaolinite, Al2Si2O5(OH)4, P1 Langbeinite, K2Mg2(SO4)3, P213 Leucophanite, (Na,Ca)2BeSi2(O·OH·F)7, P212121 Nepheline, Na3KAl4Si4O16, P63 Quartz-based gemstones—see below Searlesite, NaBSi2O5(OH)2, P21 Simpsonite, Al4(Ta,Nb)3O13(OH), P3 Thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O, P63 Vishnevite, (Na, Ca, K)6(Si, Al)12O24[(SO4),(CO3), Cl2]2–4·nH2O, P63 Wardite, NaAl3(PO4)2(OH)4·2(H2O), P41212/P43212 Weloganite, Na2(Sr,Ca)3Zr(CO3)6·3H2O, P1 |
5.4. Handedness Labeling of the Chiral Minerals
5.4.1. The Problem of Handedness Labeling
5.4.2. The Enantiomeric Excess
6. Physical, Analytical and Chemical Properties of Chiral Minerals
6.1. The Diastereomeric Interactions of Chiral Minerals with Polarized Light
6.2. The Interaction with X-rays and Electrons: Absolute Chiral Configuration Determination
6.3. Physical Properties of Non-Centrosymmetric Crystals
6.4. Surface Chirality: The Diastereomeric Interactions of Chiral Minerals with Chiral Molecules
6.5. Property/Chirality Correlations: Quantifying the Degree of Chirality
7. Data Sources
Funding
Conflicts of Interest
References
- Flack, H.D. Chiral and achiral crystal structures. Helv. Chim. Acta 2003, 86, 905–921. [Google Scholar] [CrossRef]
- Thompson, A.L.; Watkin, D.J. X-ray crystallography and chirality: Understanding the limitations. Tetrahedron Asymmetry 2009, 20, 712–717. [Google Scholar] [CrossRef]
- Rekis, T. Crystallization of chiral molecular compounds: What can be learned from the Cambridge Structural Database? Acta Cryst. 2020, B76, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Dryzun, C.; Avnir, D. On the abundance of chiral crystals. Chem. Commun. 2012, 48, 5874–5876. [Google Scholar] [CrossRef] [PubMed]
- The Quartz Page. Available online: https://www.quartzpage.de/ (accessed on 1 August 2024).
- Götze, J.; Pan, Y.; Müller, A. Mineralogy and mineral chemistry of quartz: A review. Mineral. Mag. 2021, 85, 639–664. [Google Scholar] [CrossRef]
- Xu, H.; Hong, K.-S.; Wu, M.; Lee, S. Tectonic hydrogen and tectonic oxygen production through deforming piezoelectric minerals in the presence of water. In The Footsteps of Warren B. Hamilton: New Ideas in Earth Science; Foulger, G.R., Hamilton, L.C., Jurdy, D.M., Stein, C.A., Howard, K.A., Stein, S., Eds.; Geological Society of America: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- Hoffmann, F. Introduction to Crystallography; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Hoffmann, F. Frank Hoffmann. Available online: https://www.youtube.com/@FrankHoffmann1000 (accessed on 1 August 2024).
- Coquerel, G. Chiral Discrimination in the Solid State: Applications to Resolution and Deracemization. In Advances in Organic Crystal Chemistry; Tamura, R., Miyata, M., Eds.; Springer: Tokyo, Japan, 2015; Chapter 20; pp. 393–420. [Google Scholar] [CrossRef]
- Avnir, D. Critical review of chirality indicators of extraterrestrial life. New Astron. Rev 2021, 92, 101596. [Google Scholar] [CrossRef]
- Yogev-Einot, D.; Avnir, D. Quantitative symmetry and chirality of the molecular building blocks of quartz. Chem. Mater. 2003, 15, 464–472. [Google Scholar] [CrossRef]
- Yogev-Einot, D.; Avnir, D. Left/right handedness assignment to chiral tetrahedral AB4 structures. Tetrahedron Asymmetry 2007, 18, 2295–2299. [Google Scholar] [CrossRef]
- Available online: http://img.chem.ucl.ac.uk/sgp/misc/notation.htm (accessed on 1 August 2024).
- The Structure of Materials. Available online: https://som.web.cmu.edu/structures/S097-alpha-quartz.html (accessed on 1 August 2024).
- Yogev-Einot, D.; Avnir, D. Pressure and temperature effects on the degree of symmetry and chirality of the molecular building blocks of low quartz. Acta Cryst. 2004, B60, 163–173. [Google Scholar] [CrossRef]
- Dryzun, C.; Mastai, Y.; Shvalb, A.; Avnir, D. Chiral silicate zeolites. J. Mater. Chem. 2009, 19, 2062–2069. [Google Scholar] [CrossRef]
- Fábián, L.; Brock, C.P. A list of organic kryptoracemates. Acta Crystallogr. B 2010, 66, 94–103. [Google Scholar] [CrossRef]
- Urusov, V.S.; Nadezhina, T.N. Frequency distribution and selection of space groups in inorganic crystal chemistry. J. Struct. Chem. 2009, 50, 22–37. [Google Scholar] [CrossRef]
- Carretero-Genevrier, A.; Gich, M.; Picas, L.; Sanchez, C.; Rodriguez-Carvajal, J. Chiral habit selection on nanostructured epitaxial quartz films. Faraday Discuss. 2015, 179, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Shindo, H.; Shirota, Y.; Niki, K.; Kawasaki, T.; Suzuki, K.; Araki, Y.; Matsumoto, A.; Soai, K. Asymmetric autocatalysis induced by cinnabar: Observation of the enantioselective adsorption of a 5-pyrimidyl alkanol on the crystal surface. Angew. Chem. Int. Ed. 2013, 52, 9135–9138. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R. Available online: https://www.mindat.org/search.php?search=334001 (accessed on 1 August 2024).
- Cooper, M.; Hawthorne, F.C.; Cerny, P. Refinement of the crystal structure of cyrilovite from Cyrilov, Western Moravia, Czech Republic. J. Czech Geol. Soc. 2000, 45, 95–100. [Google Scholar]
- Van der Biest, O.; Thomas, G. Identification of Enantiomorphism in Crystals by Electron Microscopy. Acta Cryst. 1975, A31, 70–76. [Google Scholar] [CrossRef]
- Smith, P.P.K. The observation of enantiomorphous domains in a natural maghemite. Contr. Mineral. Petrol. 1979, 69, 249–254. [Google Scholar] [CrossRef]
- Kozlovskaya, K.A.; Ovchinnikova, E.N.; Ustyugov, A.M.; Dmitrienko, V.E.; Oreshko, A.P. Determination of the absolute configuration of monoatomic chiral crystals using three-wave X-ray diffraction. Crystallogr. Rep. 2023, 68, 374–379. [Google Scholar] [CrossRef]
- Lee, C.; Weber, J.M.; Rodriguez, L.E.; Sheppard, R.Y.; Barge, L.M.; Berger, E.L.; Burton, A.S. Chirality in organic and mineral Systems: A review of reactivity and alteration processes relevant to prebiotic chemistry and life detection missions. Symmetry 2022, 14, 460. [Google Scholar] [CrossRef]
- Webmineral. Available online: https://webmineral.com/crystal/Triclinic.shtml (accessed on 1 August 2024).
- Powder Diffraction on the WEB. Available online: https://pd.chem.ucl.ac.uk/pdnn/symm3/sgpfreq.htm (accessed on 1 August 2024).
- Cambridge Structural Database. Available online: https://www.ccdc.cam.ac.uk/media/CSD-Space-Group-Statistics-Space-Group-Number-Ordering-2024.pdf (accessed on 1 August 2024).
- Wukovitz, S.W.; Yeates, T.O. Why protein crystals favour some space-groups over others. Nat. Struct. Biol. 1995, 2, 1062–1067. [Google Scholar] [CrossRef]
- Friis, H.; Balic-Zunic, T. CER200–Rare earth minerals. GFF 2005, 127, 33–41. [Google Scholar] [CrossRef]
- Fortes, A.D. From Surrey to the moons of Jupiter (via Mars): The story of epsomite. Axis 2005, 1, 1–28. Available online: https://mineralogicalrecord.com/wp-content/uploads/2020/10/pdfs/Epsomite-Article-Figs.pdf (accessed on 1 August 2024).
- Staples, L.W. Austinite, a new arsenate mineral, from Gold Hill, Utah. Am. Mineral. 1935, 20, 112–119. [Google Scholar]
- Williams, S.A.; de Azevedo, J. Austinite from Gold Hill, Utah. Am. Mineral. 1967, 52, 1224–1226. [Google Scholar]
- Hejl, E.; Finger, F. Chiral Proportions of Nepheline Originating from Low-Viscosity Alkaline Melts. A Pilot Study. Symmetry 2018, 10, 410. [Google Scholar] [CrossRef]
- Wilson, P. Experimental investigation of etch pit formation on quartz sand grains. Geol. Mag. 1979, 116, 477–482. [Google Scholar] [CrossRef]
- Gault, H.R. The Frequency of Twin Types in Quartz Crystals. Am. Mineral. 1949, 34, 142–162. [Google Scholar]
- Hongu, H.; Yoshiasa, A.; Nespolo, M.; Tobase, T.; Tokuda, M.; Sugiyama, K. Crystal structure and XANES investigation of petzite, Ag3AuTe2. Acta Cryst. 2019, B75, 273–278. [Google Scholar] [CrossRef]
- Samotoin, N.D. Enantiomorphism of kaolinite: Manifestation at the levels of elementary layer and microcrystals. Crystallogr. Rep. 2011, 56, 327–334. [Google Scholar] [CrossRef]
- Huang, T.; Sun, J.; Wang, D.; Wang, Q. Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chin. Chem. Lett. 2024, 35, 109785. [Google Scholar] [CrossRef]
- Carbon Mineral Challenge. Available online: https://en.wikipedia.org/wiki/Carbon_Mineral_Challenge (accessed on 1 August 2024).
- Hazen, R.M. Symphony in C: Carbon and the Evolution of (Almost) Everything; W.W. Norton & Company: New York, NY, USA, 2019. [Google Scholar]
- Hazen, R.M.; Hummer, D.R.; Hystad, G.; Downs, R.T.; Golden, J.J. Carbon mineral ecology: Predicting the undiscovered minerals of carbon. Am. Mineral. 2016, 101, 889–906. [Google Scholar] [CrossRef]
- Strunz, H. Fichtelit Dimethyl-isopropyl-perhydropenanthren. Naturwissenschaften 1962, 49, 9–10. [Google Scholar] [CrossRef]
- Mace, H.A.; Peterson, R.C. The crystal structure of fichtelite, a naturally occurring hydrocarbon. Can. Mineral. 1995, 33, 7–11. [Google Scholar]
- Bouska, V.; Cisarova, I.; Skala, R.; Dvorak, Z.; Zelinka, J.; Zak, K. Hartite from Bilina. Am. Mineral. 1998, 83, 1340–1346. [Google Scholar] [CrossRef]
- Pažout, R.; Sejkora, J.; Maixner, J.; Dušek, M.; Tvrdý, J. Refikite from Krásno, Czech Republic: A crystal-and molecular-structure study. Mineral. Mag. 2018, 79, 59–70. [Google Scholar] [CrossRef]
- Franzini, L.; Pasero, M.; Perchiazzi, N. Re-discovery and re-definition of dinite, C20H36, a forgotten organic mineral from Garfagnana, northern Tuscany Italy. Eur. J. Mineral. 1991, 3, 855–861. [Google Scholar] [CrossRef]
- Petrícek, V.; Císarová, I.; Hummel, L.; Kroupa, J.; Brezina, B. Orientational disorder in phenanthrene. Structure determination at 248, 295, 339 and 344 K. Acta Cryst. 1990, B46, 830–832. [Google Scholar] [CrossRef]
- Erez, J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev. Mineral. Geochem. 2003, 54, 115–149. [Google Scholar] [CrossRef]
- Poole, P.H. Amorphous polymorphism. Comput. Mater. Sci. 1995, 4, 373–382. [Google Scholar] [CrossRef]
- Drees, L.R.; Wilding, L.P.; Smeck, N.E.; Senkayi, A.L. Silica in Soils: Quartz and Disordered Silica Polymorphs. In Minerals in Soil Environments; Dixon, J.B., Weed, S.B., Eds.; The Soil Science Society of America, Inc.: Madison, WI, USA, 1989; Volume 1, Chapter 19. [Google Scholar] [CrossRef]
- Shelton, H.; Bi, T.; Zurek, E.; Smith, J.; Dera, P. The Ideal Crystal Structure of Cristobalite X-I: A Bridge in SiO2. J. Phys. Chem. C. 2018, 122, 17437–17446. [Google Scholar] [CrossRef]
- Ng, H.N.; Calvo, C. X-ray study of the α–β transformation of berlinite (AlPO4). Can. J. Phys. 1976, 54, 638–647. [Google Scholar] [CrossRef]
- Kaolinite Subgroup. Available online: https://www.mindat.org/min-43755.html (accessed on 1 August 2024).
- Bayliss, P. A further crystal structure refinement of gersdorffite. Am. Mineral. 1982, 67, 1058–1064. [Google Scholar]
- Dapiaggi, M. The formation of silica high temperature polymorphs from quartz: Influence of grain size and mineralising agents. J. Eur. Ceram. Soc. 2015, 35, 4547–4555. [Google Scholar] [CrossRef]
- Hatch, D.M.; Ghose, S. The a-b Phase Transition in Cristobalite, SiO2. Phys. Chem. Miner. 1991, 17, 554–562. [Google Scholar] [CrossRef]
- Overview of Silica Polymorphs. Available online: https://www.quartzpage.de/gen_mod.html (accessed on 1 August 2024).
- Beta-Tridymite. Available online: https://www.mindat.org/min-47886.html (accessed on 1 August 2024).
- Crystallization of Magma. Available online: https://opentextbc.ca/geology/chapter/3-3-crystallization-of-magma/ (accessed on 1 August 2024).
- Kumar, A. Fulgurite: A unique mineral formed by impact of lightening. Earth Sci. India 2012, V, 1–8. [Google Scholar]
- Drewitt, J.W.E.; Hennet, L.; Neuville, D.R. From short to medium range order in glasses and melts by diffraction and Raman spectroscopy. Rev. Mineral. Geochem. 2022, 87, 55–103. [Google Scholar] [CrossRef]
- Ward, R.M.; Copeland, G.W.; Alexander, A.J. Enantiomorphic symmetry breaking in crystallization of molten sodium chlorate. Chem. Commun. 2010, 46, 7634–7636. [Google Scholar] [CrossRef]
- Glassy Igneous Rock. Available online: https://www.mindat.org/min-50714.htm (accessed on 1 August 2024).
- The Mineral Cristobalite. Available online: https://www.minerals.net/mineral/cristobalite.aspx (accessed on 1 August 2024).
- Horwell, C.J.; Williamson, B.J.; Llewellin, E.W.; Damby, D.E.; Le Blond, J.S. The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: Implications for the petrology and stability of silicic lava domes. Bull. Volcanol. 2013, 75, 696. [Google Scholar] [CrossRef]
- Schmidt, H.; Paschke, I.; Freyer, D.; Voigt, W. Water channel structure of bassanite at high air humidity: Crystal structure of CaSO4·0.625H2O. Acta Crystallogr. Sect. B Struct. Sci. 2011, 67, 467–475. [Google Scholar] [CrossRef]
- Potapov, V.V.; Cerdan, A.A.; Gorev, D.S. Silicic Acid Polymerization and SiO2 Nanoparticle Growth in Hydrothermal Solution. Polymers 2022, 14, 4044. [Google Scholar] [CrossRef]
- Rubin, A.E.; Ma, C. Meteoritic minerals and their origins. Chem. Erde 2017, 77, 325–385. [Google Scholar] [CrossRef]
- Amber. Available online: https://www.mindat.org/min-188.html (accessed on 1 August 2024).
- Armstrong, D.W.; Zhou, E.Y.; Zukowski, J.; Kosmowska-Ceranowicz, B. Enantiomeric composition and prevalence of some bicyclic monoterpenoids in amber. Chirality 1996, 8, 39–48. [Google Scholar] [CrossRef]
- Hazen, R.M.; Morrison, S.M. On the paragenetic modes of minerals: A mineral evolution perspective. Am. Mineral. 2022, 107, 1262–1287. [Google Scholar] [CrossRef]
- Moody, J.B. Serpentinization: A review. Lithos 1976, 9, 125–138. [Google Scholar] [CrossRef]
- Daval, D. Carbon dioxide sequestration through silicate degradation and carbon mineralisation: Promises and uncertainties. npj Mater. Degrad. 2018, 2, 11. [Google Scholar] [CrossRef]
- Pogge von Strandmann, P.A.E.; Burton, K.W.; Snæbjörnsdóttir, S.O.; Sigfússon, B.; Aradóttir, E.S.; Gunnarsson, I.; Alfredsson, H.A.; Mesfin, K.G.; Oelkers, E.H.; Gislason, S.R. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat. Commun. 2019, 10, 1983. [Google Scholar] [CrossRef]
- Kremer, D.; Strunge, T.; Skocek, J.; Schabel, S.; Kostka, M.; Hopmann, C.; Wotruba, H. Separation of reaction products from ex-situ mineral carbonation and utilization as a substitute in cement, paper, and rubber applications. J. CO2 Util. 2022, 62, 102067. [Google Scholar] [CrossRef]
- Hummer, D.R.; Golden, J.J.; Hystad, G.; Downs, R.T.; Eleish, A.; Liu, C.; Ralph, J.; Morrison, S.M.; Meyer, M.B.; Hazen, R.M. Evidence for the oxidation of Earth’s crust from the evolution of manganese minerals. Nat. Commun. 2022, 13, 960. [Google Scholar] [CrossRef]
- Hazen, R.M.; Ewing, R.C.; Sverjensky, D.A. Evolution of uranium and thorium minerals. Am. Mineral. 2009, 94, 1293–1311. [Google Scholar] [CrossRef]
- Goslarite Mineral Data. Available online: https://webmineral.com/data/Goslarite.shtml (accessed on 1 August 2024).
- Hahn, T.; Klapper, H. Tables 10.1.2.2 and 10.1.2.3. Int. Tables Crystallogr. 2006, A, 771+791. [Google Scholar] [CrossRef]
- Disphenoid. Available online: https://en.wikipedia.org/wiki/Disphenoid (accessed on 1 August 2024).
- External Symmetry of Crystals, 32 Crystal Classes. Available online: https://www2.tulane.edu/~sanelson/eens211/32crystalclass.htm (accessed on 1 August 2024).
- Hahn, T.; Klapper, H. Table 3.2.1.3. Int. Tables Crystallogr. 2016, A, 724. Available online: https://onlinelibrary.wiley.com/iucr/itc/Ac/contents/ (accessed on 1 August 2024).
- Perkins, D. Forms and Point Groups. Section 10.5.1 in Mineralogy, LibreTexts™. 2023. Available online: https://geo.libretexts.org/Bookshelves/Geology/Mineralogy_(Perkins_et_al.) (accessed on 1 August 2024).
- The Quartz Page. Available online: https://www.quartzpage.de/crs_forms.html (accessed on 1 August 2024).
- Hazen, R.M. Chiral crystal faces of common rock-forming minerals. In Progress in Biological Chirality; Palyi, G., Zucchi, C., Caglioti, L., Eds.; Elsevier: Oxford, UK, 2004; Chapter 11; pp. 137–151. [Google Scholar]
- Addadi, L.; Geva, M. Molecular recognition at the interface between crystals and biology: Generation, manifestation and detection of chirality at crystal surfaces. CrystEngComm 2003, 5, 140–146. [Google Scholar] [CrossRef]
- Katzenelson, O.; Avnir, D. Quantitative Chirality/Enantioselectivity Relations in Large Random Supramolecular Structures. Chem. Eur. J. 2000, 6, 1346–1354. [Google Scholar] [CrossRef]
- Katzenelson, O.; Hel-Or, H.Z.; Avnir, D. Chirality of large random supramolecular structures. Chem. Eur. J. 1996, 2, 174–181. [Google Scholar] [CrossRef]
- Avnir, D. (Ed.) The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, 3rd ed.; Wiley: Chichester, UK, 1992. [Google Scholar]
- Grimmer, H.; Nespolo, M. Geminography: The crystallography of twins. Z. Für Krist. 2006, 221, 28–50. [Google Scholar] [CrossRef]
- Avrahami, E.M. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets. Science 2022, 376, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Bouropoulos, N.; Weiner, S.; Addadi, L. Calcium oxalate crystals in tomato and tobacco plants: Morphology and in vitro interactions of crystal-associated macromolecules. Chem. Eur. J. 2001, 7, 1881–1888. [Google Scholar] [CrossRef]
- Cody, A.M.; Cody, R.D. Chiral habit modifications of gypsum from epitaxial-like adsorption of stereospecific growth inhibitors. J. Cryst. Growth 1991, 113, 508–519. [Google Scholar] [CrossRef]
- Jiang, W.; Athanasiadou, D.; Zhang, S. Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture. Nat. Commun. 2019, 10, 2318. [Google Scholar] [CrossRef]
- Liu, X.-H.; Xu, J.-W.; Lai, J.-Q.; Song, X.F.; He, H.-S.; Zhang, L.-J.; Shi, J.; Zhou, X.; Liao, J.; Cao, Y.H.; et al. Genetic significance of trace elements in hydrothermal quartz from the Xiangzhong metallogenic province, South China. Ore Geol. Rev. 2023, 152, 105229. [Google Scholar] [CrossRef]
- List of Gemstones by Species. Available online: https://en.wikipedia.org/wiki/List_of_gemstones_by_speciesandotherlistings (accessed on 1 August 2024).
- Nassau, K. The origins of color in minerals. Am. Mineral. 1978, 63, 219–229. [Google Scholar]
- Ruby Dreamscape™ Cut. Available online: https://www.johndyergems.com/gemstones/ruby-7397.html (accessed on 1 August 2024).
- Avnir, D. Huylebrouck, D. On Left and Right: Chirality in Architecture. Nexus Netw. J. Archit. Math. 2013, 15, 171–182. [Google Scholar] [CrossRef]
- Van Dyke, K.S. On the right- and left-handedness of quartz and its relation to elastic and other properties. Proc. Inst. Radio Eng. (I.R.E.) 1940, 28, 399–406. [Google Scholar] [CrossRef]
- Glazer, A.M. Confusion over the description of the quartz structure yet again. J. Appl. Cryst. 2018, 51, 915–918. [Google Scholar] [CrossRef]
- Pinto, Y.; Hel-Or, H.Z.; Avnir, D. Continuous chirality analysis of interconversion pathways of the water-trimer enantiomers. J. Chem Soc. Faraday Trans. 1966, 92, 2523–2527. [Google Scholar] [CrossRef]
- Pinto, Y.; Avnir, D. A generalized handedness labeling strategy: Addressing latent handedness in chiral structures. Enantiomer 2001, 6, 211–217. [Google Scholar]
- Viedma, C. Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling. Phys. Rev. Lett. 2005, 94, 065504. [Google Scholar] [CrossRef]
- Iggland, M.; Mazzotti, M. A population balance model for chiral resolution via Viedma ripening. Cryst. Growth Des. 2011, 11, 4611–4622. [Google Scholar] [CrossRef]
- Támara, M.; Preston, M.R. A statistical reassessment of the evidence for the racemic distribution of quartz enantiomorphs. Am. Mineral. 2009, 94, 1556–1559. [Google Scholar] [CrossRef]
- Yogev-Einot, D.; Avnir, D. The temperature-dependent optical activity of quartz: From Le Chatelier to chirality measures. Tetrahedron Asymmetry 2006, 17, 2723–2725. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kojima, T.; Takata, Y.; Chainani, A.; Lovesey, S.W.; Knight, K.S.; Shin, S. Determination of structural chirality of berlinite and quartz using resonant x-ray diffraction with circularly polarized x-rays. Phys. Rev. B 2010, 81, 144104, Erratum in Phys. Rev. B 2011, 84, 219905. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The optical rotatory dispersion of cinnabar. Proc. Indian Acad. Sci. 1953, 37, 697–703. [Google Scholar] [CrossRef]
- Glazer, A.M.; Stadnicka, K. On the origin of optical activity in crystal structures. J. Appl. Cryst. 1986, 19, 108–122. [Google Scholar] [CrossRef]
- Amber. Available online: https://www.kremer-pigmente.com/elements/resources/products/files/60200e.pdf (accessed on 1 August 2024).
- Buchen, J.; Wesemann, V.; Dehmelt, S.; Gross, A.; Rytz, D. Twins in YAl3(BO3)4 and K2Al2B2O7 crystals as revealed by changes in optical activity. Crystals 2019, 9, 8. [Google Scholar] [CrossRef]
- Vinegrad, E.; Vestler, D.; Ben-Moshe, A.; Barnea, A.R.; Markovich, G.; Cheshnovsky, O. Circular Dichroism of Single Particles. ACS Photonics 2018, 5, 2151–2159. [Google Scholar] [CrossRef]
- Kaminsky, W.; Claborn, K.; Kahr, B. Polarimetric imaging of crystals. Chem. Soc. Rev. 2004, 33, 514–525. [Google Scholar] [CrossRef]
- Matsuura, T.; Koshima, H. Introduction to chiral crystallization of achiral organic compounds: Spontaneous generation of chirality. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 7–24. [Google Scholar] [CrossRef]
- Meierhenrich, U. When Crystals Deliver Chirality to Life. In Amino Acids and the Asymmetry of Life; Advances in Astrobiology and Biogeophysics; Springer: Berlin/Heidelberg, Germany, 2008; p. 64. [Google Scholar]
- Valentín-Pérez, Á.; Rosa, P.; Hillard, E.A.; Giorgi, M. Chirality determination in crystals. Chirality 2022, 34, 163–181. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takeuchi, T.; Lovesey, S.W.; Knight, K.S.; Chainani, A.; Takata, Y.; Oura, M.; Senba, Y.; Ohashi, H.; Shin, S. Right handed or left handed? Forbidden X-ray diffraction reveals chirality. Phys. Rev. Lett. 2008, 100, 145502. [Google Scholar] [CrossRef]
- Inui, H.; Fujii, A.; Sakamoto, H.; Fujio, S.; Tanaka, K. Enantiomorph identification of crystals belonging to the point groups 321 and 312 by convergent-beam electron diffraction. J. Appl. Cryst. 2007, 40, 241–249. [Google Scholar] [CrossRef]
- Thomas, P.A. The crystal structure and absolute optical chirality of paratellurite, α-TeO2. J. Phys. C Solid State Phys. 1988, 21, 4611. [Google Scholar] [CrossRef]
- Watkin, D.J.; Cooper, R.I. Howard Flack and the Flack Parameter. Chemistry 2020, 2, 796–804. [Google Scholar] [CrossRef]
- Winkelmann, A.; Nolze, G. Chirality determination of quartz crystals using Electron Backscatter Diffraction. Ultramicroscopy 2014, 149, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Ma, Y. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat. Commun. 2020, 11, 1588. [Google Scholar] [CrossRef] [PubMed]
- Goodman, P.; Secomb, T.W. Identification of enantiomorphously related space groups by electron diffraction. Acta Cryst. 1977, A33, 126–133. [Google Scholar] [CrossRef]
- McLaren, A.C.; Phakey, P.P. Diffraction contrast from Dauphine twin boundries in quartz. Phys. Stat. Sol. 1969, 31, 723–737. [Google Scholar] [CrossRef]
- Gatta, G.D.; Guastoni, A.; Fabelo, O. A single-crystal neutron diffraction study of wardite, NaAl3(PO4)2(OH)4·2H2O. Phys. Chem. Miner. 2019, 46, 427–435. [Google Scholar] [CrossRef]
- Wenk, H.-R. Neutron Diffraction Texture Analysis. Rev. Mineral. Geochem. 2006, 63, 399–426. [Google Scholar] [CrossRef]
- Glazer, A.M.; Stadnicka, K. On the Use of the Term ‘Absolute’ in Crystallography. Acta Cryst. A 1989, 45, 234–238. [Google Scholar] [CrossRef]
- Ok, K.M.; Chi, E.O.; Halasyamani, P.S. Bulk characterization methods for non-centrosymmetric materials: Second harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710–717. [Google Scholar] [CrossRef]
- Claborn, K.; Isborn, C.; Kaminsky, W.; Kahr, B. Optical Rotation of Achiral Compounds. Angew. Chem. Int. Ed. 2008, 47, 5706–5717. [Google Scholar] [CrossRef]
- Halasyamani, P.S.; Kenneth, R. Poeppelmeier, K.R. Noncentrosymmetric oxides. Chem. Mater. 1998, 10, 2753–2769. [Google Scholar] [CrossRef]
- Winta, C.J.; Gewinner, S.; Schöllkopf, W.; Wolf, M.; Paarmann, A. Second-harmonic phonon spectroscopy of α-quartz. Phys. Rev. B 2018, 97, 094108. [Google Scholar] [CrossRef]
- Labéguerie, P.; Harb, M.; Baraille, I.; Rérat, M. Structural, electronic, elastic, and piezoelectric properties of α-quartz and MXO4 (M = Al, Ga, Fe; X = P, As) isomorph compounds: A DFT study. Phys. Rev. B 2010, 81, 045107. [Google Scholar] [CrossRef]
- Parkhomenko, E.I. Piezoelectric and Pyroelectric Effects in Minerals. In Electrification Phenomena in Rocks; Springer Science+Business Media: New York, NY, USA, 1971; Chapter 2. [Google Scholar]
- Piezoelectric Gems. Available online: https://classicgems.net/info_Piezoelectricity.htm (accessed on 1 August 2024).
- Hong, W.; Bin, X.; Liu, X.; Han, J.; Shan, S.; Li, H. The piezoelectric and elastic properties of berlinite and the effect of defects on the physical properties. J. Cryst. Growth 1986, 79, 227–231. [Google Scholar] [CrossRef]
- Kobyakov, I.B. On a peculiarity of the piezoeffect in carbonate-cancrinite crystals. Sov. Phys. JETP 1982, 56, 1112–1115. [Google Scholar]
- Fridkin, V.M.; Batirov, T.M.; Konstantinova, A.T.; Oyorochkov, A.I.; Verkhovskaya, K.A. The linear and circular bulk photovoltaic effect in piezoelectric crystals Er(HCOO)3·2H2O and HgS. Ferroelectrics 1982, 44, 27–31. [Google Scholar] [CrossRef]
- Helman, D.S. Symmetry-based electricity in minerals and rocks: A review with examples of centrosymmetric minerals that exhibit pyro and piezoelectricity. Period. Di Mineral. 2016, 85, 201–248. [Google Scholar] [CrossRef]
- Loiacono, G.M.; Kostecky, G.; White, J.S. Resolution of space group ambiguities in minerals. Am. Mineral. 1982, 67, 846–847. [Google Scholar]
- Downs, R.T.; Hazen, R.M. Chiral indices of crystalline surfaces as a measure of enantioselective potential. J. Mol. Catal. A Chem. 2004, 216, 273–285. [Google Scholar] [CrossRef]
- Hazen, R.M.; Filley, T.R.; Goodfriend, G.A. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Natl. Acad. Sci. USA 2001, 98, 5487–5490. [Google Scholar] [CrossRef]
- Kavasmaneck, P.R.; Bonner, W.A. Adsorption of amino acid derivatives by d- and l-quartz. J. Am. Chem. Soc. 1977, 99, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Gus’kov, V.Y. Supramolecular chiral surface of nickel sulfate hexahydrate crystals and its ability to chirally recognize enantiomers by adsorption data. New J. Chem. 2020, 44, 17769–17779. [Google Scholar] [CrossRef]
- Soai, K.; Osanai, S.; Kadowaki, K.; Yonekubo, S.; Shibata, T.; Sato, I. D- and l-Quartz-Promoted Highly Enantioselective Synthesis of a Chiral Organic Compound. J. Am. Chem. Soc. 1999, 121, 11235–11236. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ozawa, H.; Inumaru, A.; Soai, K. Asymmetric induction by retgersite, nickel sulfate hexahydrate, in conjunction with asymmetric autocatalysis. New J. Chem. 2015, 39, 6742–6745. [Google Scholar] [CrossRef]
- Matsumoto, A.; Avnir, D. Achiral Inorganic Gypsum Acts as an Origin of Chirality through Its Enantiotopic Surface in Conjunction with Asymmetric Autocatalysis. Angew. Chem. Int. Ed. 2017, 57, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Zabrodsky, H.; Avnir, D. Continuous Symmetry Measures, IV: Chirality. J. Am. Chem. Soc. 1995, 117, 462–473. [Google Scholar] [CrossRef]
- Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous Symmetry Measures. J. Am. Chem. Soc. 1992, 114, 7843–7851. [Google Scholar] [CrossRef]
- Tuvi-Arad, I.; Shalit, Y.; Alon, G. CSM software: Continuous symmetry and chirality measures for quantitative structural analysis. J. Chem. Inf. Model. 2024, in press. [CrossRef]
Crystal Class and System a | Space Group b |
---|---|
1 (C1) Pedial Triclinic | P1 (#1) |
2 (C2) Sphenoidal Monoclinic | P2 (#3), P21 (#4), C2 (or A2, B2) (#5) |
222 (D2) Rhombic–disphenoidal Orthorhombic | P222 (#16), P2221 (#17), P21212 (#18), P212121 (#19), C2221 (#20), C222 (#21), F222 (#22), I222 (#23), I212121 (#24) |
4 (C4) Tetragonal–pyramidal Tetragonal | P4 (#75), P42 (#77), I4 (#79), I41 (#80) P41 (#76)/P43 (#78) |
422 (D4) Tetragonal–trapezohedral Tetragonal | P422(#89), P4212(#90), P4222 (#93), P42212 (#94), I422 (#97), I4122 (#98) P4122 (#91)/P4322 (#95), P41212(#92)/P43212 (#96) |
3 (C3) Trigonal–pyramidal Trigonal | P3 (#143), R3 (#146) P31 (#144)/P32 (#145) |
32 (D3) Trigonal–trapezohedral Trigonal | P312 (#149), P321 (#150), R32 (#155) P3112 (#151)/P3212 (#153), P3121 (#152)/P3221 (#154) |
6 (C6) Hexagonal–pyramidal Hexagonal | P6 (#168), P63 (#173) P61 (#169)/P65 (#170), P62 (#171)/P64 (#172) |
622 (D6) Hexagonal–trapezohedral Hexagonal | P622 (#177), P6322 (#182) P6122(#178)/P6522 (#179), P6222(#180)/P6422(#181) |
23 (T) Tetaroidal Cubic | P23 (#195), F23 (#196), I23 (#197), P213 (#198), I213 (#199) |
432 (O) Gyroidal Cubic | P432 (#207), P4232 (#208), F432 (#209), F4132 (#210), I432 (#211), I4132 (#214) P4332 (#212)/P4132 (#213) |
P41–P43: | Percleveite-(La), La2Si2O7 Percleveite-(Ce), Ce2Si2O7 |
P4122–P4322: | Lemanskiite, NaCaCu5(AsO4)4Cl·3H2O Manganoquadratite, AgMnAsS3 Quadratite, Ag(Cd,Pb)AsS3 |
P41212–P43212 | Cristobalite, SiO2 (quartz polymorph) Cuprotungstite, Cu2(WO4)(OH)2 Cyrilovite, NaFe3+3(PO4)2(OH)4·2H2O Fluorowardite, NaAl3(PO4)2F2(OH)2(H2O)2 Kamphaugite-(Y), Ca2Y2(CO3)4(OH)2·3H2O Keatite, SiO2 (quartz polymorph) Lipscombite, Fe2+Fe3+2(PO4)2(OH)2 Maucherite, Ni11As8 Paratellurite, α-TeO2 Retgersite, NiSO4·6H2O Sweetite, Zn(OH)2 Ungavaite, Pd4Sb3 Wardite, NaAl3(PO4)2(OH)4·2H2O Wuyanzhiite, Cu2S Zinclipscombite, ZnFe3+2(PO4)2(OH)2 |
P31–P32 | Monohydrocalcite, CaCO3·H2O Sheldrickite, NaCa3(CO3)2F3·H2O Stavelotite-(La), La₃Mn²⁺₃Cu²⁺(Mn³⁺,Fe³⁺,Mn⁴⁺)₂₆(Si₂O₇)₆O₃₀ Stillwellite-(Ce), (Ce,La,Ca)BSiO5 |
P3112–P3212 | Caresite, Fe2+4Al2(OH)12[CO3]·3H2O Müllerite, Pb2Fe3+(Te6+O6)Cl Muscovite-3T, KAl2(AlSi3O10)(OH)2 (a mica 3T polytype) |
P3121–P3221 | Alarsite, AlAsO4 Berlinite, AlPO4 Cinnabar, HgS Eliopoulosite, V7S8 Faheyite, Be2Mn2+Fe3+2(PO4)4·6H2O Ingersonite, Ca3Mn2+Sb5+4O14 Matildite, AgBiS2 Norilskite, (Pd,Ag)2xPb (x = 0.08–0.11) Quartz, SiO2 Rhabdophane-(Ce), Ce(PO4)·0.6H2O Rodolicoite, Fe3+PO4 Schuetteite, Hg2+3(SO4)O2 Selenium, Se Tellurium, Te Zirconolite-3T, (Ca,REE)2Zr2(Ti,Nb)3FeO14 Ximengite, BiPO4 |
P61–P65 | Nagelschmidtite, Ca7(SiO4)2(PO4)2 Trinepheline, NaAlSiO4 |
P62–P64 | Apparently not reported |
P6122–P6522 | Apparently not reported |
P6222–P6422 | The Rhabdophane group: Brockite, (Ca,Th,Ce)PO4·H2O Grayite, (Th,Pb,Ca)(PO4)·H2O Rhabdophane-(La), La(PO4)·H2O Rhabdophane-(Nd), Nd(PO4)·H2O Rhabdophane-(Y), YPO4·H2O Smirnovskite, (Th,Ca)PO4·nH2O Tristramite, (Ca,U,Fe)(PO4,SO4)·2H2O UM1993-07-PO:CaCeHLa, (Ca,Ce,La,REE)PO4·nH2O Tounkite, (Na,Ca,K)8(Al6Si6O24)(SO4)2Cl·H2O Virgilite, LiAlSi2O6 |
P4132–P4332 | Choloalite, (Cu,Sb)3(Pb,Ca)3(TeO3)6Cl Coldwellite, Pd3Ag2S Maghemite, Fe2O3, γ-Fe2O3 ((Fe3+0.67◻0.33)Fe3+2O4) Titanomaghemite, (Ti4+0.5◻0.5)Fe3+2O4 |
#1: P1 (80), babefphite, BaBe(PO4)(F,OH) #3: P2 (9), zippeite, K4(UO2)6(SO4)3(OH)10·4(H2O) #4: P21 (50), uranophane, (Ca(UO2)2(SiO3OH)2·5H2O #5: C2 (31), campigliaite, Cu4Mn(SO4)2(OH)6·4H2O #16: P222 (3), zýkaite, Fe3+4(AsO4)3(SO4)(OH)·15H2O #17: P2221 (1), achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 #18: P21212 (7), sussexite, Mn2+BO2(OH) #19: P212121 (51), teineite, Cu(TeO3).2H2O #20: C2221 (11), seeligerite, Pb3Cl3(IO3)O #21: C222 (2), jarosewichite, Mn2+3Mn3+(AsO4)(OH)6 #22: F222 (1), pseudograndreefite, Pb6(SO4)F10 #23: I222 (0); #24: I212121 (0); #75: P4 (0); # 77: P42 (0) #79: I4 (2), piypite, K2Cu2O(SO4)2 #80: I41 (0); #89: P422 (0); #90: P4212 (0); #93: P4222 (0); #94: P42212 (0) #97: I422 (1), ekanite, Ca2ThSi8O20 #98: I4122 (1), biphosphammite, NH4(H2PO4) #143: P3 (26), marathonite, Pd25Ge9 #146: R3 (26), bluebellite, Cu6[(I5+O3)(OH)3](OH)7Cl #149: P312 (3), backite Pb2AlTeO6Cl #150: P321 (17), qeltite, Ca3TiSi2(Fe3+2Si)O14 #155: R32 (14), abhurite, Sn21Cl16(OH)14O6 #168: P6 (1), ekaterinite, Ca2(B4O7)(Cl,OH)2·2H2O #173: P63 (43), zinkenite, Pb9Sb22S42 #177: P622 (2), currierite, Na4Ca3MgAl4(AsO3OH)12·9H2O #182: P6322 (8), kalsilite, KAlSiO4 #195: P23 (0) #196: F23 (1), tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 #197: I23 (3), wilancookite, (Ba5Li2◻)Ba6Be24P24O96·26H2O #198: P213 (19), naquite, FeSi #199: I213 (4), corderoite, Hg3S2Cl2 #207: P432 (0); #208: P4232 (0); #209: F432 (0); #210: F4132 (0); #211: I432 (0) #214: I4132 (4), ye'elimite, Ca4Al6O12(SO4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avnir, D. Chiral Minerals. Minerals 2024, 14, 995. https://doi.org/10.3390/min14100995
Avnir D. Chiral Minerals. Minerals. 2024; 14(10):995. https://doi.org/10.3390/min14100995
Chicago/Turabian StyleAvnir, David. 2024. "Chiral Minerals" Minerals 14, no. 10: 995. https://doi.org/10.3390/min14100995
APA StyleAvnir, D. (2024). Chiral Minerals. Minerals, 14(10), 995. https://doi.org/10.3390/min14100995