Research on the Detection Principle of Coal Ash by X-Ray Transmission Based on FLUKA
Abstract
:1. Introduction
2. Materials and Computational Methods
2.1. Relationship Between Inorganic Content in Coal and Elements in Ash
2.2. The Principle of X-Ray Attenuation
2.3. Construction of Coal Materials
2.3.1. Construction of Coal Materials with Unchanged Elemental Proportions
2.3.2. Construction of Coal Materials with Changed Elemental Proportions
2.4. Computational Model
3. Results and Discussion
3.1. Analysis of Coal Material Results When Elemental Proportions Remain Unchanged
3.2. Model Measurement Error When Elemental Proportions of Coal Remain Unchanged
3.3. Analysis of Coal Material Results When Elemental Proportions Change
3.4. Model Measurement Error When Elemental Proportions of Coal Change
3.5. Reasons for Errors Caused by Changes in Elemental Proportions in Coal
4. Conclusions
- A computational model relating the ash content to the attenuation ratio was proposed, and its reliability was confirmed using simulation software. However, when the composition of coal changes, the method introduced in this paper faces certain limitations.
- This study investigated the impact of changes and non-changes in the elemental composition of coal on the degree of attenuation. It was found that altering the elemental composition affects the overall attenuation coefficient, which can lead to inaccuracies in the ash content model. Specifically, increasing the Si element content results in a decrease in both the intercept and slope of the fitted model.
- Since changes in composition significantly affect the attenuation coefficient, it is not advisable to add other minerals (such as kaolinite, montmorillonite, etc.) for convenience when calibrating ash measurement models in practice. It is preferable to use different ash contents of the same type of coal for experiments.
- Although the X-ray energy used in this experiment was 461.7 keV, attenuated by two orders of magnitude, the attenuation ratio before and after, as seen in Table 9, did not show much difference between samples. After logarithmic operations, the differences between samples become even smaller, reaching three decimal places, but the ash content varies significantly from tens to thirties. This requires an extremely high sensitivity from the sensor. Efforts should be made to explore optimized models or solutions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, H.; Luo, X. Analysis of energy saving and emission reduction in coal industry. In Proceedings of the International Conference on Mechanic Automation & Control Engineering, Inner Mongolia, China, 15–17 July 2011. [Google Scholar]
- ASTM D3174-12; Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM: West Conshohocken, PA, USA, 2012.
- Rui, G.; Lei, Z.; Yaohui, Z.; Hui, Y. Accurate and stable measurement of ash in coal by X-ray fluorescence spectrometry based on partial least squares. Front. Phys. 2022, 10, 1054796. [Google Scholar]
- Guang-Li, Z.; Shun-Xiang, Z. The application of γ online ash content apparatus on jigs. Coal Mine Mach. 2004. [Google Scholar]
- Wen, Z.; Zhou, C.; Pan, J.; Nie, T.; Jia, R.; Yang, F. Froth image feature engineering-based prediction method for concentrate ash content of coal flotation. Miner. Eng. 2021, 170, 107023. [Google Scholar] [CrossRef]
- Qiu, Z.; Dou, D.; Zhou, D.; Yang, J. On-line prediction of clean coal ash content based on image analysis. Measurement 2021, 173, 108663. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liang, L.; Li, T.Y.; Tan, J.K.; Liang, X.G.; Xie, G.Y. Coal Ash Content Measurement Based on Pseudo-Dual Energy X-ray Transmission. Minerals 2021, 11, 1433. [Google Scholar] [CrossRef]
- Patra, K.C.; Rautray, T.R.; Tripathy, B.B.; Nayak, P. Elemental analysis of coal and coal ASH by PIXE technique. Appl. Radiat. Isot. 2012, 70, 612–616. [Google Scholar] [CrossRef]
- Yao, S.C.; Mo, J.H.; Zhao, J.B.; Li, Y.S.; Zhang, X.; Lu, W.Y.; Lu, Z.M. Development of a Rapid Coal Analyzer Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2018, 72, 1225–1233. [Google Scholar] [CrossRef]
- Lv, W.B.; Wang, Y.X.; Li, L.; Jin, L.; Wang, C. Mechanism of measuring ash with low-energy gamma rays for equal coal seam thickness. Int. J. Coal Prep. Util. 2024, 44, 1639–1652. [Google Scholar] [CrossRef]
- Li, D.; He, L.; Guo, Y.; Wang, S.; Cheng, G. Dual-energy X-ray transmission identification method for coal and gangue with different thicknesses and densities. Measurement 2024, 225, 113718. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, W.; Cui, Y.; Lv, Z.; Fan, Y.; Zhao, X.J.M. Deep learning-based estimation of ash content in coal: Unveiling the contributions of color and texture features. Measurement 2024, 233, 114632. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, H.; Zhou, M.; Liu, C.; Zhou, C. Explainable machine learning rapid approach to evaluate coal ash content based on X-ray fluorescence. Fuel 2023, 332, 125991. [Google Scholar] [CrossRef]
- Siregar, I.; Niu, Y.; Mostaghimi, P.; Armstrong, R.T. Coal ash content estimation using fuzzy curves and ensemble neural networks for well log analysis. Int. J. Coal Geol. 2017, 181, 11–22. [Google Scholar] [CrossRef]
- Medhat, M.E.; Demir, N.; Tarim, U.A.; Gurler, O. Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods. Radiat. Eff. Defects Solids 2014, 169, 706–714. [Google Scholar] [CrossRef]
- Hila, F.C.; Javier-Hila, A.M.; Sayyed, M.I.; Asuncion-Astronomo, A.; Dicen, G.P.; Jecong, J.F.; Guillermo, N.R.; Amorsolo, A.V., Jr. Evaluation of photon radiation attenuation and buildup factors for energy absorption and exposure in some soils using EPICS2017 library. Nucl. Eng. Technol. 2021, 53, 3808–3815. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Cheng, G.; He, L. Study on coal and gangue recognition method based on the combination of X-ray transmission and diffraction principle. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 9716–9728. [Google Scholar] [CrossRef]
- Chirayath, S.S.; Schafer, C.R.; Long, G.R. A new methodology to estimate stochastic uncertainty of MCNP-predicted isotope concentrations in nuclear fuel burnup simulations. Ann. Nucl. Energy 2021, 151, 107911. [Google Scholar] [CrossRef]
- Mohtaram, S.; Tajik, M.; Peyvandi, R.G. Comparison of MCNPX and FLUKA Monte Carlo codes in the simulating a nuclear gauge. Appl. Radiat. Isot. 2021, 170, 109603. [Google Scholar] [CrossRef]
- Ahdida, C.; Froeschl, R.; Iliopoulou, E.; Infantino, A.; Jensen, S. Measurements and FLUKA simulations of aluminium, bismuth and indium activation by stray radiation from the annihilation of low energy antiprotons. Nucl. Instrum. Methods Phys. Res. Sect. a-Accel. Spectrometers Detect. Assoc. Equip. 2020, 950, 162972. [Google Scholar] [CrossRef]
- Ahdida, C.; Bozzato, D.; Calzolari, D.; Cerutti, F.; Charitonidis, N.; Cimmino, A.; Coronetti, A.; D’Alessandro, G.L.; Donadon Servelle, A.; Esposito, L.S.; et al. New Capabilities of the FLUKA Multi-Purpose Code. Front. Phys. 2022, 9, 788253. [Google Scholar] [CrossRef]
- Yu, A.; Liu, H.; Wang, C.; Lv, J.; Wang, F.; He, S.; Wang, L. Online Ash Content Monitor by Automatic Composition Identification and Dynamic Parameter Adjustment Method in Multicoal Preparation. Processes 2022, 10, 1432. [Google Scholar] [CrossRef]
- Laboratory, P.M. X-Ray and Gamma-Ray Data. Available online: https://www.nist.gov/pml/x-ray-and-gamma-ray-data (accessed on 10 September 2024).
- Badawi, M.S. A numerical simulation method for calculation of linear attenuation coefficients of unidentified sample materials in routine gamma ray spectrometry. Nucl. Technol. Radiat. Prot. 2015, 30, 249–259. [Google Scholar] [CrossRef]
- Uwah, E.J.; Udeh, C.O. Measurement of the ash content of iron-rich coals by gamma-ray irradiation. J. Radioanal. Nucl. Chem. 1989, 132, 11–18. [Google Scholar] [CrossRef]
- Zhou, M.; Wen, Z.; Xu, G.; Zhang, Z.; Zhou, C. Deep learning with TabNet: Rapid coal ash content estimation via X-ray fluorescence. Int. J. Coal Prep. Util. 2024. [Google Scholar] [CrossRef]
- Rajavelu, H.; Vasa, N.J.; Seshadri, S. Determination of Ash Content in Coal Using Laser-Induced Breakdown Spectroscopy with Multivariate Analysis. In ICOL-2019: Proceedings of the International Conference on Optics and Electro-Optics, Dehradun, India; Springer: Singapore, 2021. [Google Scholar]
- Jovanovic, R.; Marek, E.; Maletic, S.; Cvetinovic, D.; Markovic, Z.J.F. Lattice Monte Carlo simulation of single coal char particle combustion under oxy–fuel conditions. Fuel 2015, 151, 172–181. [Google Scholar] [CrossRef]
- Gójska, A.M.; Kozioł, K.; Kozioł, K.; Wasilewski, A.; Wasilewski, A.; Miśta-Jakubowska, E.A.; Miśta-Jakubowska, E.A.; Mazerewicz, P.; Mazerewicz, P.; Szymanowski, J.; et al. FLUKA Simulations of Kβ/Kα Intensity Ratios of Copper in Ag–Cu Alloys. Materials 2021, 14, 4462. [Google Scholar] [CrossRef]
- Thabit, H.A.; Ismail, A.; Sayyed, M.I.; Hashim, S.; Abdullahi, I.; Elsafi, M.; Keshavamurthy, K.; Jagannath, G. Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3-SrCO3-TeO2-ZnO glass series. Nucl. Eng. Technol. 2024, 56, 247–256. [Google Scholar] [CrossRef]
Element Name | Si | Al | Fe | Ca | Mg | S | Other |
---|---|---|---|---|---|---|---|
Oxide | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | — |
Mass fraction of various oxides in coal ash /% | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | — |
Elemental mass fraction in oxides ηi /% | 0.4674 | 0.5293 | 0.6994 | 0.7147 | 0.6030 | 0.4005 | — |
The mass fraction of each element in the coal ash /% | q1 | q2 | q3 | q4 | q5 | q6 | — |
Element Name | Si | Al | Fe | Ca | Mg | S | Total |
---|---|---|---|---|---|---|---|
Oxide | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | — |
Mass fraction of various oxides in coal ash /% | 51.93 | 30.5 | 6.24 | 2.49 | 0.74 | 1.36 | 93.26 |
Elemental mass fraction in oxides ηi /% | 0.4674 | 0.5293 | 0.6994 | 0.7147 | 0.603 | 0.4005 | — |
The mass fraction of each element in the coal ash /% | 24.2721 | 16.1437 | 4.3643 | 1.7796 | 0.4462 | 0.5447 | 47.55 |
Element name | C | H | N | O | ||
---|---|---|---|---|---|---|
Low-Z element mass fraction | r1 | r2 | r3 | r4 | ||
Element name | Si | Al | Fe | Ca | Mg | S |
High-Z element mass fraction | p1 | p2 | p3 | p4 | p5 | p6 |
Oxide | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | |
---|---|---|---|---|---|---|
Mass fraction of various oxides in coal ash /% | 9.92 | 3.53 | 0.67 | 1.06 | 0.20 | 15.38 |
Element name | Si | Al | Fe | Ca | Mg | |
Elemental mass fraction in oxides | 0.4674 | 0.5293 | 0.6994 | 0.7147 | 0.603 | (Fixed value) |
The mass fraction of each element in the coal ash /% | 4.6352 | 1.8682 | 0.4701 | 0.7574 | 0.1206 | 7.85 |
Element Name | C | H | N | O |
---|---|---|---|---|
Low-Z element mass fraction | 79.99 | 4.69 | 1.49 | 5.97 |
C | H | N | O | Si | Al | Fe | Ca | Mg | Ash | |
---|---|---|---|---|---|---|---|---|---|---|
Sample 1 | 79.9900 | 4.6927 | 1.4931 | 5.9726 | 4.64 | 1.87 | 0.47 | 0.76 | 0.12 | 15.38 |
Sample 2 | 77.6364 | 4.5547 | 1.4492 | 5.7969 | 6.24 | 2.51 | 0.63 | 1.02 | 0.16 | 20.69 |
Sample 3 | 75.1292 | 4.4076 | 1.4024 | 5.6096 | 7.94 | 3.2 | 0.81 | 1.3 | 0.21 | 26.34 |
Sample 4 | 73.5855 | 4.3170 | 1.3736 | 5.4944 | 8.99 | 3.62 | 0.91 | 1.47 | 0.24 | 29.83 |
Sample 5 | 71.2633 | 4.1808 | 1.3302 | 5.3210 | 10.57 | 4.26 | 1.07 | 1.73 | 0.27 | 35.07 |
Sample 6 | 69.4298 | 4.0732 | 1.2960 | 5.1841 | 11.82 | 4.76 | 1.2 | 1.93 | 0.31 | 39.21 |
Element Name | Si | Al | Fe | Ca | Mg | Subtotal |
---|---|---|---|---|---|---|
Original high-Z element mass fraction | 4.64 | 1.87 | 0.47 | 0.76 | 0.12 | 7.8515 |
New High-Z quality score | 5.5622 | 1.3298 | 0.3346 | 0.5391 | 0.0858 | 7.8515 |
C | H | N | O | Si | Al | Fe | Ca | Mg | Ash | |
---|---|---|---|---|---|---|---|---|---|---|
Sample 1 | 79.9900 | 4.6927 | 1.4931 | 5.9726 | 5.5623 | 1.3298 | 0.3346 | 0.5391 | 0.0858 | 15.38 |
Sample 2 | 77.6364 | 4.5547 | 1.4492 | 5.7969 | 7.4827 | 1.7890 | 0.4501 | 0.7252 | 0.1159 | 20.69 |
Sample 3 | 75.1292 | 4.4076 | 1.4024 | 5.6096 | 9.5260 | 2.2781 | 0.5732 | 0.9235 | 0.1503 | 26.34 |
Sample 4 | 73.5855 | 4.3170 | 1.3736 | 5.4944 | 10.7882 | 2.5794 | 0.6490 | 1.0456 | 0.1674 | 29.83 |
Sample 5 | 71.2633 | 4.1808 | 1.3302 | 5.3210 | 12.6869 | 3.0324 | 0.7630 | 1.2293 | 0.1931 | 35.07 |
Sample 6 | 69.4298 | 4.0732 | 1.2960 | 5.1841 | 14.1805 | 3.3902 | 0.8530 | 1.3743 | 0.2189 | 39.21 |
Ash | I0/MeV | I1/MeV | I0/I1 | ln(I0/I1) | |
---|---|---|---|---|---|
Sample 1 | 15.38 | 5.02486 × 10−4 | 2.72601 × 10−5 | 18.43302116 | 2.914143684 |
Sample 2 | 20.69 | 5.02230 × 10−4 | 2.72516 × 10−5 | 18.42937662 | 2.913945947 |
Sample 3 | 26.34 | 5.01229 × 10−4 | 2.72197 × 10−5 | 18.41420001 | 2.913122107 |
Sample 4 | 29.83 | 5.00823 × 10−4 | 2.72196 × 10−5 | 18.39935194 | 2.912315443 |
Sample 5 | 35.08 | 4.99829 × 10−4 | 2.72011 × 10−5 | 18.37532306 | 2.911008626 |
Sample 6 | 39.21 | 4.99359 × 10−7 | 2.72 × 10−8 | 18.3588048 | 2.910109285 |
Attenuation Ratio Logarithm | Predicted Value | Actual Ash | Relative Error | Absolute Error | |
---|---|---|---|---|---|
Sample 1 | 2.915386451 | 15.11372 | 15.38 | 1.73 | 0.27 |
Sample 2 | 2.913940838 | 21.81687 | 20.69 | 5.45 | 1.13 |
Sample 3 | 2.913122107 | 25.61324 | 26.34 | 2.76 | 0.73 |
Sample 4 | 2.912315443 | 29.35364 | 29.83 | 1.6 | 0.48 |
Sample 5 | 2.911008626 | 35.41321 | 35.08 | 0.95 | 0.33 |
Sample 6 | 2.910109285 | 39.58335 | 39.21 | 0.952 | 0.37 |
Measured Ash Content | I0/MeV | I1/MeV | I0/I1 | ln(I0/I1) | |
---|---|---|---|---|---|
Sample 1 | 15.38 | 6.40226 × 10−4 | 3.47224 × 10−5 | 18.4384144 | 2.914436227 |
Sample 2 | 20.69 | 6.39543 × 10−4 | 3.46705 × 10−5 | 18.44631603 | 2.914864678 |
Sample 3 | 26.34 | 6.38267 × 10−4 | 3.46744 × 10−5 | 18.4074418 | 2.912755029 |
Sample 4 | 29.83 | 6.37637 × 10−4 | 3.46696 × 10−5 | 18.39181877 | 2.911905934 |
Sample 5 | 35.08 | 6.36667 × 10−4 | 3.46675 × 10−5 | 18.36495277 | 2.910444107 |
Sample 6 | 39.21 | 6.36302 × 10−4 | 3.45984 × 10−5 | 18.39108167 | 2.911865855 |
Attenuation Ratio Logarithm | Predicted Value | Actual Ash | Relative Error | Absolute Error | |
---|---|---|---|---|---|
Sample 1 | 2.914436227 | 19.5198 | 15.38 | 26.91679124 | 4.14 |
Sample 2 | 2.914864678 | 17.53313 | 20.69 | 15.25797237 | 3.16 |
Sample 3 | 2.912755029 | 27.31534 | 26.34 | 3.702868375 | 0.98 |
Sample 4 | 2.911905934 | 31.2525 | 29.83 | 4.768673899 | 1.42 |
Sample 5 | 2.910444107 | 38.03082 | 35.08 | 8.411697158 | 2.95 |
Sample 6 | 2.911865855 | 31.43833 | 39.21 | 19.82062038 | 7.77 |
Si | Al | Fe | Ca | Mg |
---|---|---|---|---|
0.09079678 | 0.08763273 | 0.08792255 | 0.09062295 | 0.08970635 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Liu, J. Research on the Detection Principle of Coal Ash by X-Ray Transmission Based on FLUKA. Minerals 2024, 14, 1079. https://doi.org/10.3390/min14111079
Liu H, Liu J. Research on the Detection Principle of Coal Ash by X-Ray Transmission Based on FLUKA. Minerals. 2024; 14(11):1079. https://doi.org/10.3390/min14111079
Chicago/Turabian StyleLiu, Haizeng, and Jiake Liu. 2024. "Research on the Detection Principle of Coal Ash by X-Ray Transmission Based on FLUKA" Minerals 14, no. 11: 1079. https://doi.org/10.3390/min14111079
APA StyleLiu, H., & Liu, J. (2024). Research on the Detection Principle of Coal Ash by X-Ray Transmission Based on FLUKA. Minerals, 14(11), 1079. https://doi.org/10.3390/min14111079