Local Crystallographic Texture of Alpha Quartz in Silicified Wood (Late Triassic, Madagascar)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD
3.1.1. Wood Heartwood and Sapwood—Sample A
3.1.2. Wood Heartwood and Sapwood—Sample B
3.2. XRT
3.3. SEM
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mustoe, G.; Aranyanark, C.; Boonchai, N.; Jintasakul, P. A new look at cenozoic fossil wood from Thailand. Geosciences 2022, 12, 291. [Google Scholar] [CrossRef]
- Clary, R.M.; Wandersee, J.H. The effectiveness of petrified wood as a geobiological portal to increase public understanding of geologic time, fossilization, and evolution. Paleontol. Soc. Pap. 2012, 18, 65–79. [Google Scholar]
- Mustoe, G.E. Wood petrifaction: A new view of permineralization and replacement. Geosciences 2017, 7, 119. [Google Scholar] [CrossRef]
- Mustoe, G.E. Mineralogy of non-silicified fossil wood. Geosciences 2018, 8, 85. [Google Scholar] [CrossRef]
- Husien, N.; Wahyuni, S.; Agus, E.; Budi, S. Identification of fossil wood from Samarinda, East Borneo. Adv. Biol. Sci. Res. 2021, 11, 253–257. [Google Scholar]
- Soomro, N.; Arain, B.; Rajput, M. Ougenioxylon chinjiensis sp. nov., a New Fossil Species of the Family Leguminosae from Chinji Formation Salt Range, Punjab Pakistan. Am. J. Plant Sci. 2014, 5, 3745–3751. [Google Scholar] [CrossRef]
- Tosal, A.; Decombeix, A.L.; Meyer-Berthaud, B.; Galtier, J.; Martín-Closas, C. First report of silicified wood from a late Pennsylvanian intramontane basin in the Pyrenees: Systematic affinities and palaeoecological implications. Pap. Palaeontol. 2023, 9, e1524. [Google Scholar] [CrossRef]
- Oktariani, H.; Winantris, W.; Hamzah, A. Dryobalanoxylon sp.: Silicified Fossil Wood from Lebak Regency, Banten Province, Indonesia. J. Geol. Dan Sumberd. Miner. 2019, 20, 93–99. [Google Scholar] [CrossRef]
- Cairncross, B.; Bamford, M.K.; Lombard, H. Silicified fossil woods from the late Permian Middleton formation, Beaufort group, Eastern Cape Province, South Africa and their paleoenvironmental significance. S. Afr. J. Geol. 2020, 123, 465–478. [Google Scholar]
- Pakhnevich, A.; Nikolayev, D.; Lychagina, T. Global Crystallographic Texture of Pyrite in Fossil Wood (Jurassic, Oryol Region, Russia). Minerals 2023, 13, 1010. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zheng, S.; Jintasakul, P.; Grote, P.J.; Boonchai, N. Recent advances in the study of Mesozoic-Cenozoic petrified wood from Thailand. Prog. Nat. Sci. 2006, 16, 501–506. [Google Scholar]
- Mencl, V.; Matysová, P.; Sakala, J. Silicified wood from the Czech part of the Intra Sudetic Basin (Late Pennsylvanian, Bohemian Massif, Czech Republic): Systematics, silicification and palaeoenvironment. Neues Jahrb. Für Geol. Und Paläontologie—Abh. 2009, 252, 269–288. [Google Scholar] [CrossRef]
- Dietrich, D.; Lampke, T.; Rößler, R. A microstructure study on silicified wood from the Permian Petrified Forest of Chemnitz. Palaontol. Z. 2013, 87, 397–407. [Google Scholar] [CrossRef]
- Jochems, A.P.; Hobbs, K.M.; Mustoe, G.E. Fossil wood in the upper Santa Fe Group, south-central New Mexico: Implications for mineralization style and paragenesis. In New Mexico Geological Society Guidebook, 72nd Fall Field Conference; New Mexico Geological Society: Socorro, Mexico, 2022; pp. 295–304. [Google Scholar]
- Mustoe, G.E. Silicification of Wood: An Overview. Minerals 2023, 13, 206. [Google Scholar] [CrossRef]
- Benício, J.; Pires, E.; Rosa, Á.; Spiekermann, R.; Uhl, D.; Jasper, A. A new fossil Fabaceae wood from the Pleistocene Touro Passo Formation of Rio Grande do Sul, Brazil. Foss. Impr. 2016, 72, 251–264. [Google Scholar] [CrossRef]
- Boura, A.; Saulnier, G.; Franceschi, D.; Gomez, B.; Daviero-Gomez, V.; Pons, D.; Valentin, X. An Early Record of a Vesselless Angiosperm from the Middle Cenomanian of the Envigne Valley (Vienne, Western France). Iawa J. 2019, 40, 530–550. [Google Scholar] [CrossRef]
- Viney, M.; Mustoe, G.; Dillhoff, T.; Link, P. The Bruneau Woodpile: A Miocene phosphatized fossil wood locality in southwestern Idaho, USA. Geosciences 2017, 7, 82. [Google Scholar] [CrossRef]
- Harper, C.; Taylor, T.; Krings, M.; Taylor, E. Structurally preserved fungi from antarctica: Diversity and interactions in late palaeozoic and mesozoic polar forest ecosystems. Antarct. Sci. 2016, 28, 153–173. [Google Scholar] [CrossRef]
- Xie, A.; Gee, C.; Tian, N. Ancient basidiomycota in an extinct conifer-like tree, Xenoxylon utahense, and a brief survey of fungi in the upper Jurassic Morrison formation, USA. J. Paleontol. 2023, 97, 754–763. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Asakawa, Y. Terpenoids preserved in fossils from Miocene-aged Japanese conifer wood. Nat. Prod. Commun. 2015, 10, 1051–1053. [Google Scholar] [CrossRef]
- Mizutani, M.; Takase, H.; Adachi, N.; Ota, T.; Daimon, K.; Hikichi, Y. Porous ceramics prepared by mimicking silicified wood. Sci. Technol. Adv. Mater. 2005, 6, 76–83. [Google Scholar] [CrossRef]
- Mustoe, G.; Abbassi, N.; Hosseini, A.; Mahdizadeh, Y. Neogene tree trunk fossils from the meshgin shahr area, northwest Iran. Geosciences 2020, 10, 283. [Google Scholar] [CrossRef]
- Karowe, A.; Jefferson, T. Burial of trees by eruptions of Mount St. Helens, Washington: Implications for the interpretation of fossil forests. Geol. Mag. 1987, 124, 191–204. [Google Scholar] [CrossRef]
- Yoon, C.J.; Kim, K.W. Anatomical descriptions of silicified woods from Madagascar and Indonesia by scanning electron microscopy. Micron 2008, 39, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Liesegang, M.; Tomaschek, F.; Götze, J. The structure and chemistry of silica in mineralized wood. Techniques and analysis. In Fossilization: Understanding the Material Nature of Ancient Plants and Animals; Gee, C.T., McCoy, V.E., Sander, P.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2021; pp. 159–186. ISBN 9781421440217. [Google Scholar]
- Matysová, P.; Götze, J.; Leichmann, J.; Škoda, R.; Strnad, L.; Drahota, P.; Grygar, T.M. Cathodoluminescence and LA-ICP-MS chemistry of silicified wood enclosing wakefieldite—REEs and V migration during complex diagenetic evolution. Eur. J. Mineral. 2016, 28, 869–887. [Google Scholar] [CrossRef]
- Kuczumow, A.; Chevallier, P.; Dillmann, P.; Wajnberg, P. Investigation of petrified wood by synchrotron X-ray fluorescence and diffraction methods. Spectrochim. Acta Part B At. Spectrosc. 2000, 55, 1623–1633. [Google Scholar] [CrossRef]
- Leo, R.F.; Barghoorn, E.S. Silicification of Wood. Bot. Mus. Leafl. Harv. Univ. 1976, 25, 1–47. [Google Scholar] [CrossRef]
- Matysová, P.; Leichmann, J.; Grygar, T.; Rößler, R. Cathodoluminescence of silicified trunks from the Permo-Carboniferous basins in eastern Bohemia, Czech Republic. Eur. J. Mineral. 2008, 20, 217–231. [Google Scholar] [CrossRef]
- Trümper, S.; Rößler, R.; Götze, J. Deciphering silicification pathways of fossil forests: Case studies from the late Paleozoic of Central Europe. Minerals 2018, 8, 432. [Google Scholar] [CrossRef]
- Strullu-Derrien, C.; Kenrick, P.; Tafforeau, P.; Cochard, H.; Bonnemain, J.-L.; Le Hérrissé, A.; Lardeux, H.; Badel, E. The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Bot. J. Linn. Soc. 2014, 175, 423–437. [Google Scholar] [CrossRef]
- Buurman, P. Mineralization of fossil wood. Scr. Geol. 1972, 12, 1–43. [Google Scholar]
- Scurfield, G.; Segnit, E.R. Petrification of Wood by Silica Minerals. Sediment. Geol. 1984, 39, 149–167. [Google Scholar] [CrossRef]
- Furuno, T.; Watanabe, T.; Suzuki, N.; Goto, T.; Yokoyama, K. Microstructure and Silica Mineralization in the Formation of Silicified Woods I. Species identification of silicified woods and observations with a scanning electron microscope. J. Jpn. Wood Res. Soc. 1986, 32, 387–400. [Google Scholar]
- Furuno, T.; Watanabe, T.; Suzuki, N.; Goto, T.; Yokoyama, K. Microstructure and Silica Mineralization in the Formation of Silicified Woods II. Distribution of organic carbon and the formation of quartz in the structure of silicified woods. J. Jpn. Wood Res. Soc. 1986, 32, 575–583. [Google Scholar]
- Saminpanya, S.; Ratanasthien, B.; Jatusan, W.; Limthong, R.; Amsamarng, T. Mineralogy, geochemistry, and petrogenesis of the world’s longest petrified wood. Int. J. Geoheritage Parks 2024, 12, 37–62. [Google Scholar] [CrossRef]
- Witke, K.; Gotze, J.; Rossler, R.; Dietrich, D.; Marx, G. Raman cathodoluminescence spectroscopic investigations on Permian fossil wood from Chemnitz—A contribution to the study of the permineralisation process. Spectrochim. Acta Part A 2004, 60, 2903–2912. [Google Scholar] [CrossRef]
- Bunge, H.J. Texture Analysis in Material Science. In Mathematical Methods; Butterworths Publisher: London, UK, 1982; 595p. [Google Scholar]
- Brokmeier, H.G. Global crystallographic textures obtained by neutron and synchrotron radiation. Phys. B Condens. Matter 2006, 385–386, 623–625. [Google Scholar] [CrossRef]
- Chateigner, D.; Blanchart, P.H.; Deniel, S.; Lutterotti, L.; Wenk, H. Characterization of microstructure and crystallographic texture of silicate and phyllosilicate ceramics. Adv. Sci. Technol. 2010, 68, 13–22. [Google Scholar]
- Isaenkova, M.; Perlovich, Y.; Fesenko, V. Regularities of crystallographic texture formation in cladding tubes from Zr-based alloys during their production. Mater. Sci. Eng. 2016, 130, 012008. [Google Scholar] [CrossRef]
- Isaenkova, M.; Perlovich, Y.; Fesenko, V.; Babich, Y.; Zaripova, M.; Krapivka, N. Regularities of Changes in Structure and Texture of Low Modulus Alloy Zr-25Nb at Cold Rolling of Monocrystals with Different Orientations. KnE Mater. Sci. 2018, 4, 287. [Google Scholar] [CrossRef]
- Ghosh, P.; Kormout, K.S.; Todt, J.; Lienert, U.; Keckes, J.; Pippan, R. An investigation on shear banding and crystallographic texture of Ag–Cu alloys deformed by high-pressure torsion. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 794–806. [Google Scholar] [CrossRef]
- Hibino, S.; Todo, T.; Ishimoto, T.; Gokcekaya, O.; Koizumi, Y.; Igashira, K.; Nakano, T. Control of crystallographic texture and mechanical properties of hastelloy-X via laser powder bed fusion. Crystals 2021, 11, 1042. [Google Scholar] [CrossRef]
- Klosek, V. Crystallographic textures. In Proceedings of the EPJ Web of Conferences, Crete, Greece, 17–29 August 2017; Volume 155, p. 00005. [Google Scholar]
- Li, J.; Qu, W.; Daniels, J.; Wu, H.; Liu, L.; Wu, J.; Wang, M.; Checchia, S.; Yang, S.; Lei, H.; et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science 2023, 380, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Lychagina, T.A.; Brokmeier, H.-G. Some practical results for calculating elastic properties of textured cubic polycrystals. Phys. Status Solidi A 2001, 184, 373–380. [Google Scholar] [CrossRef]
- Lychagina, T.A.; Nikolayev, D.I.; Sanin, A.F.; Tatarko, J.; Ullemeyer, K. Investigation of wheel steel crystallographic texture changes due to modification and thermo-mechanical treatment. In Proceedings of the 17th International Conference on Textures of Materials (ICOTOM 17), Dresden, Germany, 24–29 August 2014; IOP Conference Series: Materials Science and Engineering. IOP Publishing: Bristol, UK, 2015; Volume 82, p. 012107. [Google Scholar]
- Lychagina, T.; Zisman, A.; Yashina, E.; Nikolayev, D. Directly Verifiable Neutron Diffraction Technique to Determine Retained Austenite in Steel. Adv. Eng. Mater. 2018, 20, 1700559. [Google Scholar] [CrossRef]
- Nguyen-Minh, T.; Petrov, R.H.; Cicalè, S.; Kestens, L.A.I. Evolutions of Microstructure and Crystallographic Texture in an Fe-1.2 wt.% Si Alloy After (A)Symmetric Warm Rolling and Annealing. J. Manag. 2024, 76, 1015–1030. [Google Scholar] [CrossRef]
- Richeton, T.; Wagner, F.; Chen, C.; Toth, L. Combined Effects of Texture and Grain Size Distribution on the Tensile Behavior of α-Titanium. Materials 2018, 11, 1088. [Google Scholar] [CrossRef]
- Stolbov, S.; Isaenkova, M.; Perlovich, Y.; Tenishev, A.; Krymskaya, O.; Mikhalchik, V.; Klyukova, K. Dependence of Thermal Expansion of Zr-Based Products on their Crystallographic Texture. Mater. Sci. Eng. 2021, 1121, 012036. [Google Scholar] [CrossRef]
- Tandon, V.; Park, K.-S.; Khatirkar, R.; Gupta, A.; Choi, S.-H. Evolution of Microstructure and Crystallographic Texture in Deformed and Annealed BCC Metals and Alloys: A Review. Metals 2024, 14, 149. [Google Scholar] [CrossRef]
- Wagner, F. Texture Determination by Using X-ray Diffraction. In Characterization Techniques of Glasses and Ceramics; Rincon, J.M., Romero, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 169–186. [Google Scholar]
- Wang, Z.; Chen, J.; Magdysyuk, O.; Uzun, F.; Korsunsky, A.M. Ultra-fast quantification of polycrystalline texture via single shot synchrotron X-ray or neutron diffraction. Mater. Charact. 2022, 186, 111825. [Google Scholar] [CrossRef]
- Yi, S.; Brokmeier, H.-G.; Letzig, D. Microstructural evolution during the annealing of an extruded AZ31 magnesium alloy. J. Alloys Compd. 2010, 506, 364–371. [Google Scholar] [CrossRef]
- Chateigner, D.; Kaptein, R.; Dupont-Nivet, M. X-ray quantitative texture analysis on Helix aspersa aspera (Pulmonata) shells selected or not for increased weight. Am. Malacol. Bull. 2009, 27, 157–165. [Google Scholar] [CrossRef]
- Chateigner, D.; Ouhenia, S.; Krauss, C.; Belkhir, M.; Morales, M. Structural distortion of biogenic aragonite in strongly textured mollusk shell layers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 341–345. [Google Scholar] [CrossRef]
- Checa, A.G.; Esteban-Delgado, F.J.; Rodríguez-Navarro, A.B. Crystallographic structure of the foliated calcite of bivalves. J. Struct. Biol. 2007, 157, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Checa, A.G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front. Mar. Sci. 2018, 5, 353. [Google Scholar] [CrossRef]
- Checa, A.G.; Salas, C.; Varela-Feria, F.M.; Rodríguez-Navarro, A.B.; Grenier, C.; Kamenev, G.M.; Harper, E.M. Crystallographic control of the fabrication of an extremely sophisticated shell surface microornament in the glass scallop Catillopecten. Sci. Rep. 2022, 12, 11510. [Google Scholar] [CrossRef]
- Kučeráková, M.; Rohlicek, J.; Vratislav, S.; Jarosova, M.; Kalvoda, L.; Lychagina, T.; Nikolayev, D.; Douda, K. Texture and element concentration of the freshwater shells from the Unionidae family collected in the Czech Republic by X-ray, neutron and electron diffraction. Crystals 2021, 11, 1483. [Google Scholar] [CrossRef]
- Kučeráková, M.; Rohlicek, J.; Vratislav, S.; Nikolayev, D.; Lychagina, T.; Kalvoda, L.; Douda, K. Texture Study of Sinanodonta woodiana shells by X-ray Diffraction. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2021, 15, 640–643. [Google Scholar] [CrossRef]
- Nikolayev, D.I.; Lychagina, T.A.; Pakhnevich, A.V. Experimental neutron pole figures of minerals composing bivalve mollusk shells. SN Appl. Sci. 2019, 1, 344. [Google Scholar]
- Pakhnevich, A.V.; Nikolayev, D.I.; Lychagina, T.A. Comparison of the Crystallographic Texture of the Recent, Fossil and Subfossil Shells of Bivalves. Paleontol. J. 2021, 55, 589–599. [Google Scholar] [CrossRef]
- Pakhnevich, A.; Nikolayev, D.; Lychagina, T.; Balasoiu, M.; Ibram, O. Global Crystallographic Texture of Freshwater Bivalve Mollusks of the Unionidae Family from Eastern Europe Studied by Neutron Diffraction. Life 2022, 12, 730. [Google Scholar] [CrossRef] [PubMed]
- Pakhnevich, A.; Nikolayev, D.; Lychagina, T. Crystallographic Texture of the Mineral Matter in the Bivalve Shells of Gryphaea dilatata Sowerby, 1816. Biology 2022, 11, 1300. [Google Scholar] [CrossRef] [PubMed]
- Pakhnevich, A.; Nikolayev, D.; Lychagina, T. Local Crystallographic Texture of a Nummulite (Foraminifera) Test from the Eocene Deposits of the Crimea Peninsula. Biology 2023, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed.; Pearson Education Limited: Harlow, UK, 2014. [Google Scholar]
- Engler, O.; Randle, V. Introduction to Texture Analysis. In Macrotexture, Microtexture, and Orientation Mapping, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Matthies, S.; Vinel, G.; Helming, K. Standard Distributions in Texture Analysis; Akademie-Verlag: Berlin, Germany, 1987; Volume 1–3. [Google Scholar]
- Williams, R.O. Analytical methods for representing complex textures by biaxial pole figures. J. Appl. Phys. 1968, 39, 4329–4335. [Google Scholar] [CrossRef]
- Jmhof, J. Texture Analysis by Iteration (I). Phys. Stat. Sol. B 1983, 110, 693–701. [Google Scholar]
- Matthies, S.; Vinel, G. On the Reproduction of the Orientation Distribution Function of Texturized Samples from Reduced Pole Figures Using the Conception of a Conditional Ghost Correction. Phys. Stat. Sol. B 1982, 112, K111–K114. [Google Scholar] [CrossRef]
- Nikolayev, D.I.; Luzin, V.V.; Lychagina, T.A.; Dzjuba, A.A.; Kogan, V.A.; Nijenhuis, T.T. X’pert texture: Overview of a software package for quantitative texture analysis. In Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12), Montreal, QC, Canada, 9–13 August 1999; NRC Research Press: Ottawa, ON, Canada, 1999; pp. 241–246. [Google Scholar]
- Medeiros, J.G.; Fo, M.T.; Krug, F.J.; Vives, A.E.S. Tree-ring characterization of Araucaria columnaris Hook and its applicability as a lead indicator in environmental monitoring. Dendrochronologia 2008, 26, 165–171. [Google Scholar] [CrossRef]
- Gasson, P.; Baas, P.; Wheeler, E. Wood anatomy of CITES-listed tree species. IAWA J. 2011, 32, 155–198. [Google Scholar] [CrossRef]
- Osterkamp, I.C.; Lara, D.M.D.; Gonçalves, T.A.P.; Kauffmann, M.; Périco, E.; Stülp, S.; Machado, N.T.G.; Uhl, D.; Jasper, A. Changes of wood anatomical characters of selected species of Araucaria-during artificial charring-implications for palaeontology. Acta Bot. Bras. 2017, 32, 198–211. [Google Scholar] [CrossRef]
- Sigleo, A.C. Organic Geochemistry of Silicified Wood, Petrified Forest National Park, Arizona. Geochim. Et Cosmochim. Acta 1978, 42, 1397–1405. [Google Scholar] [CrossRef]
- Sigleo, A.C. Geochemistry of silicified wood and associated sediments, Petrified Forest National Park, Arizona. Chem. Geol. 1979, 26, 151–163. [Google Scholar] [CrossRef]
- Wiemann, M.C.; Manchester, S.R.; Wheeler, E.A. Paleotemperature estimation from wood anatomical characters. Palaios 1999, 14, 459–474. [Google Scholar] [CrossRef]
Pole Figure | Heartwood (mrd) | Sapwood (mrd) | ||
---|---|---|---|---|
Maximum | Minimum | Maximum | Minimum | |
(100) | 1.68 | 0.55 | 1.99 | 0.51 |
(011) | 2.32 | 0.59 | 2.35 | 0.56 |
(006) | 1.85 | 0.39 | 2.24 | 0.36 |
Pole Figure | Heartwood (mrd) | Sapwood (mrd) | ||
---|---|---|---|---|
Maximum | Minimum | Maximum | Minimum | |
(100) | 1.83 | 0.49 | 1.91 | 0.46 |
(011) | 2.28 | 0.58 | 2.54 | 0.47 |
(006) | 2.19 | 0.38 | 2.09 | 0.25 |
Element | The Range of Element Concentration | |
---|---|---|
Weight % | Atomic % | |
Si | 1.82–35.42 | 1.11–25.86 |
O | 35.39–66.04 | 34.07–82.64 |
Al | 0.67–26.33 | 0.35–19.37 |
Fe | 8.44–33.68 | 3.10–14.55 |
Na | 0.94 | 0.81 |
Ca | 2.37–32.11 | 1.09–16.04 |
C | 43.46–49.34 | 55.73–58.01 |
Co | 0.67 | 0.28 |
Cr | 1.65 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakhnevich, A.; Lychagina, T.; Morris, S.; Nikolayev, D. Local Crystallographic Texture of Alpha Quartz in Silicified Wood (Late Triassic, Madagascar). Minerals 2024, 14, 1128. https://doi.org/10.3390/min14111128
Pakhnevich A, Lychagina T, Morris S, Nikolayev D. Local Crystallographic Texture of Alpha Quartz in Silicified Wood (Late Triassic, Madagascar). Minerals. 2024; 14(11):1128. https://doi.org/10.3390/min14111128
Chicago/Turabian StylePakhnevich, Alexey, Tatiana Lychagina, Sancia Morris, and Dmitry Nikolayev. 2024. "Local Crystallographic Texture of Alpha Quartz in Silicified Wood (Late Triassic, Madagascar)" Minerals 14, no. 11: 1128. https://doi.org/10.3390/min14111128
APA StylePakhnevich, A., Lychagina, T., Morris, S., & Nikolayev, D. (2024). Local Crystallographic Texture of Alpha Quartz in Silicified Wood (Late Triassic, Madagascar). Minerals, 14(11), 1128. https://doi.org/10.3390/min14111128