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Abstract: The successful adhesion of air bubbles to mineral particles is the crucial to flotation
technology. This paper systematically investigates the parameters variation in the dynamic interaction
process between a rising bubble and a quartz plate in long-chain amine solutions (dodecylamine,
tedecylamine, and octadecylamine). The results show that the type and concentration of long-chain
amine affected the collision and adhesion process between bubbles and quartz plates remarkably. The
maximum rebound distance (rebound distance after the first collision) of bubbles and the stable-state
liquid film thickness gradually decreases with the increase of reagent concentration. Additionally,
the collision-rebound duration and induction time shorten accordingly, the surface tension of the
solution decreases, the surface hydrophobicity of quartz increases, and the deformation degree
and average movement velocity of bubbles decrease. With the increase in carbon chain length,
the adsorption form of the amine collector and quartz surface becomes closer to vertical, and the
density of water molecules decreases. The recovery of quartz particles is highest with octadecylamine
systems, corresponding well with the changing trend in steady-state liquid film thickness. This
research provides an effective method for in-depth analysis of the microscopic interaction mechanism
between bubbles and mineral surfaces and the prediction of flotation results.

Keywords: flotation; bubble behavior; collision and adhesion; induction time; liquid film thickness

1. Introduction

Mineral resources are non-renewable. With the decrease in rich deposits and the
increasing prevalence of poor, fine, and miscellaneous ores, the mineral processing field
will face the problem of fine particle separation for a long time. As an effective method of
fine particle separation, flotation is widely used in the processing field of nonferrous metal
ores, iron ores, non-metallic ores, coal, and other resources, and its status is pivotal and
irreplaceable in many cases. The generation of bubbles is the basic premise of flotation.
The size, distribution, and movement characteristics of bubbles, as well as the collision,
adhesion, and formation of a stable mineralized froth layer between the bubbles and
particles, directly impact the flotation effect [1–5]. Therefore, research on bubbles and
the interaction between bubbles and particles has long attracted considerable attention.
With advancements in the diversification and precision of detection methods, research
perspectives have become more diversified and unique.

At present, research methods on the interaction process between bubbles and particles
and their influencing factors mainly fall into two directions: thermodynamics and dynamics.
Thermodynamics determines the trend of bubble mineralization by calculating the energy
changes before and after, while dynamics divides the interaction process between bubbles
and quartz into three sub-processes: collision, adhesion, and desorption [6,7].
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In thermodynamic studies, it is generally assumed that bubbles do not deform before
and after contact with the particles, and the residual hydration film is not considered. The
change of free energy before and after adhesion is calculated. It is believed that, except for
completely hydrophilic particles (contact angle is zero), the adhesion between bubbles and
particles is spontaneous (free energy is less than zero). The higher the hydrophobicity of
ore particles, the larger the contact angle and the stronger the spontaneous tendency. The
thermodynamic study of gas–solid interactions is based on the interface wetting contact
angle theory. It assumes that a liquid droplet on a solid surface, does not develop fully
but forms an angle with the solid surface. The tangent line of the gas–liquid interface is
used at the intersection of the three phases—solid, liquid, and gas. The angle between the
tangent line and the boundary of the solid liquid is the contact angle, which is represented
by θ [8–11]. It is worth pointing out that bubble mineralization takes 10 min or longer
to reach the equilibrium contact angle. In the flotation process, the time of bubble and
particle collision contact is only 5–8 ms, so it is impossible to achieve equilibrium. In
addition, hydration film has an energy barrier; it is unrealistic not to consider the change
of free energy in hydration film, so some thermodynamic inferences should be treated
with caution.

Flotation kinetics divides the flotation process into three independent sub-processes:
collision, adhesion, and desorption. First, bubbles and mineral particles collide with each
other in the slurry. Then the liquid film on the surface of the bubbles thins, forming a gas-
liquid-solid three-phase wetting perimeter on the surface of the particles. As the three-phase
wetting perimeter expands, and the bubbles and mineral particles can adhere successfully.
Some of the bubble-particle polymers do not desorb due to external forces during the
ascent and eventually float up into the foam layer to become a concentrate. However,
some mineral particles separate from the bubbles under the action of external forces [12,13].
Therefore, the probability of mineral flotation can be described by three independent
processes: collision probability, adhesion probability, and desorption probability [14,15].

In recent years, the precise development of high-speed photography technology has
provided an effective means for gaining an in-depth understanding of the characteristics
and behavior of bubbles in flotation pulp. How to select appropriate equipment parameters
and operating conditions to make bubbles reach the most favorable state for mineralization
will be a focus of future flotation test research and production process control. Most
research on the interaction between bubbles and particles uses unique observation devices
either to fix bubbles and allow particles collide with them or fix minerals at the top and
produce bubbles to collide with them from below. A high-speed camera is used to record
the collision process in each setup The former is used to measure sliding contact time. The
latter is suitable for determining collision contact time [16–19]. Using high-speed camera
technology, researchers have explored the movement state and size distribution of bubbles
under different conditions, as well as differences in time parameters such as liquid film
drainage, three-phase wetting perimeter formation, diffusion time, and induction time
during the particle collision and their impact on the flotation effect. It has been recognized
that to capture particles and bubbles effectively, they must undergo a near-collision process
controlled by fluid dynamics. The particles and bubbles are first brought within the
gravitational range, and then the liquid film between them expels the liquid. This indicates
that liquid film thickness is critical for capture to occur. The liquid–gas interface then
retracts to the surface of the solid particle until a stable wetting perimeter is established.
After this attachment process, the particles and bubbles combine [20–23].

However, most studies on the characteristics of bubbles and the collision process
with particles have used specific surfactants and planes of unique materials instead of
hydrophilic and hydrophobic minerals, respectively. However, in the actual flotation
process, the conditions of flotation reagents are complicated, and the interaction between
reagents may also affect the bubble characteristics [24]. In the actual flotation process, the
surface properties of particles are realized through the adsorption of reagents, and the flow
field environment also has a non-negligible impact on the characteristics of bubbles and the
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interaction process with minerals. Therefore, although these studies have gained a deeper
understanding of the interaction process between particles and bubbles, they are limited in
guiding the production practice.

The adhesion of particles on the bubble surface is closely related to the chemical and
physicochemical properties of particles and the bubble surface [25–27]. Not all particles that
collide with the bubble can adhere to the bubble’s surface; of those that are capable, only a
portion successfully adhere. Although high-speed camera technology can directly observe
the changing process of each stage, it cannot provide information on the force. In recent
years, the continuous improvement of atomic force microscope (AFM) functionality has
provided conditions for studying the force between bubbles and mineral particles from a
microscopic perspective [28–31]. Naoyuki Ishida [32] measured the force between spherical
silica particles and bubbles in a dodecylamine chloride (DAH) aqueous solution using
an atomic force microscope. The test found that in a surfactant solution, the electrostatic
repulsion force could be observed at a considerable distance between particles and bubbles
and became attractive as the distance approached. The range of gravitational action
increased with the increase in DAH concentration. Quantitative analysis data obtained by
AFM can further clarify the interaction mechanism between bubbles and mineral particles
under different solution conditions. Zhu Chunyun et al. [33] conducted a test using AFM
bubble probe technology to analyze the adhesion mechanism between bubbles and different
hydrophobic coal surfaces at micro and nano scales. The results show that for strong
hydrophobic coal surface surfaces, hydrophobic force can overcome surface repulsion and
induce bubble adhesion, while fluid force can hinder or even inhibit bubble adhesion.
Hydrophobic power is insufficient for medium and weak hydrophobic coal surfaces to
overcome repulsive surface force. In contrast, fluid force can increase the attraction between
bubbles and coal surfaces, thus increasing the adhesion probability. Zhang Fanfan et al. [34]
used AFM to test the interaction force between particles and bubbles. They obtained
information on the interaction force by recording the microcantilever deformation during
the insertion and removal of the probe needle. The results show that the thickness of the
broken liquid film is 114.34 nm when a micron-sized bubble is attached to the hydrophobic
particles, which is about two orders of magnitude different from the thickness of the broken
liquid film between the millimeter bubble and the particles. This indicates that the thickness
of the broken liquid film is related to the bubble size when bubbles attach to particles. The
hydrophobic interaction between particle bubbles was investigated using AFM and DWFA
by Xing Yaowen et al. [35]. Four different positions were selected in the experiments
to ensure the accuracy of the results, and the results showed that hydrophobic particles
undergo a jump-in phenomenon between the occurrence of adhesion and the maximum
adhesion distance of 20–40 nm. Israelachvili et al. [36] investigated the hydrophobic coal
particles–stearic acid system using the AFM technique. They detected a repulsive force
at a distance of about 75 nm, which increased as the distance decreases. This repulsive
force may be due to electrostatic repulsion between the carboxyl groups in stearic acid
molecules and the negatively charged coal surface, while the attractive force may be due to
the hydrophobic gravitational force between the hydrocarbon chains in the stearic acid and
the hydrophobic coal surface.

This paper studied the dynamic process of rising bubbles with a certain speed ap-
proaching the quartz surface, colliding, bouncing, and finally adhering to the flotation
solution of long-chain amines using a high-speed dynamic camera. The curve of the vertex
position on the bubble with time, the collision and rebound time between the bubble
and quartz, the maximum rebound distance, the induction time, and the thickness of the
liquid film in the stable state (the thickness of the residual liquid after the bubble and
the quartz surface are stably attached) were investigated with the type and amount of
long-chain amine. At the same time, the changing characteristics of the rising bubble rate,
solution surface tension, quartz surface contact angle, and adsorption parameters of chemi-
cal molecules and quartz, as influenced by changes in reagent molecules and concentration,
were also investigated. The correlation between the interaction parameters of bubbles and
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particles and the flotation results was further established based on the results of the quartz
flotation test.

2. Materials and Methods
2.1. High-Speed Dynamic Camera System and Data Treating

Figures 1 and 2 show the observation system diagram and a picture of the real product
of the interaction between the bubble and the quartz plate.
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The observation system comprises a high-speed dynamic camera (OLYMPUS
I-SPEED221), homemade plexiglass trough, LED lamp, peristaltic pump, and computer.
The observation device for interactions between bubbles and quartz plates is a homemade
plexiglass tank of 15 cm in length, 8 cm in breadth, and 60 cm in height. The plexiglass
tube at the bottom of the side is connected to the pump and flowmeter to generate uniform
bubbles for the system. In addition, the bottom and upper parts of the tank have external
drainage pipes. The bottom, through the peristaltic pump water supply, adjusts the pump’s
power and changes the flow speed in the tank, allowing it to also be used to study the inter-
action process of bubbles and minerals in a dynamic environment. Through this research
methodology and approach, we examined the rise of bubbles in water and amine collector
solutions and their collision and adhesion with quartz surfaces. Bubble morphology and
movement characteristics were also investigated.

The quartz samples used in the test were taken from the Qidashan Iron Ore concentra-
tor produced by Angang Group. First, samples were crushed to −2 mm with a jaw crusher
and roll crusher and then ground to −0.1 mm with a ceramic ball mill. After dewatering,
the ground products were soaked three times in a 5% hydrochloric acid solution using a
liquid-solid ratio of 3:1. The products were soaked for 24 h each time, and finally washed
with distilled water until neutral, resulting in the extraction of quartz single mineral. The
result of elemental analyses of the samples is shown in Table 1, which shows that the
sample is mainly quartz, the SiO2 content is more than 99%, and the chemical purity is
high. Further screening obtained more than 80% quartz particles of −0.074 mm for the
prepared quartz sample, which is used for single-mineral flotation.

Table 1. Elemental analysis of quartz.

Sample Name SiO2 % Al2O3 % Fe % Mg % MgO %

1 99.5 0.33 <0.001 <0.001 ---

The quartz plate of the bubble–quartz adhesion observation system is obtained by
pressing the quartz particles after they are treated with the corresponding reagent condi-
tions. By fixing the quartz plate on the upper part of the system, the bubbles generated
at the bottom rise and come into contact with it. A high-speed dynamic camera is used
to capture the collision and adhesion process between the bubbles and the surface of the
quartz particles. The microscopic process of the collision between the surface of the particles
and the bubbles, along with the liquid film drainage under the conditions of dodecylamine,
tetradecylamine, and octadecylamine with different concentrations, is observed and ana-
lyzed. In the coordinate system of data processing, the vertical coordinate of the horizontal
plane between the quartz plate and water is set to zero, and the direction of bubble rise is
set to the positive direction of the Y-axis.

The video of the interaction between bubbles and quartz was imported into I-speed
control software version 1.0, a high-speed camera data processing software that can convert
the video into pictures. After verification with the ruler of the observation system, the
position of the top of the bubble was recorded to determine the movement of the bubble
and the distance between the bubble and the quartz plate. Bubble centroids are widely
used to investigate their trajectories with high accuracy [37,38]. The research focused
on the process of bubbles rising and coming into contact with the quartz surface. Since
the apex of the bubble first contacts the quartz surface, receives a specific extrusion, and
rebounds, changes in the induction time and film thickness cannot be observed by tracking
bubble centroids. Therefore, the coordinate of the bubble apex was utilized to examine its
movement trajectory. The Y-axis coordinate of the plane at the bottom of the quartz plate
was set to zero, and the shot image is shown in Figure 3.
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Figure 3. Motion path of a bubble.

The speed of the bubble is calculated according to the coordinates derived from the
high-speed camera system. The bubble coordinates in the previous frame are taken as a
reference. The displacement of the bubble in two adjacent frames is divided by the time
interval, as shown in Equation (1):

v =(

√
(xi − xi−1)

2 +

√
(yi − yi−1)

2)/∆t (1)

where (xi, yi) is the coordinate of the bubble at a particular moment and (xi−1, yi−1) is
the coordinate of the bubble in the previous frame. ∆t is the time interval—1.9 ms in
this test—and the speed calculated by this method is the instantaneous speed of the
bubble. The derived longitudinal position of the top of the bubble also characterizes the
collision and adhesion process between the bubble and the quartz particles. In order to
facilitate calculation, the Y-axis coordinate of the plane where the bottom of the quartz is
located is set to zero, and the distance between the top of the bubble and the quartz plate
after the rebound stops is the liquid film thickness between the two. In this experiment,
two parameters—induction time and steady-state liquid film thickness—were used to
quantitatively characterize the adhesion process between the bubble and the quartz surface.
In order to improve the reliability of the data, 20 repeated shots were taken under each
condition. Previous studies have shown that the liquid film thickness between bubbles and
particles is related to the size of the bubbles and particles. Hence, this test’s absolute value
of liquid film thickness is still different from the actual flotation situation, which can be
further improved based on this test.

2.2. Contact Angle and Surface Tension Test

A JC2000A contact angle measuring instrument measured the contact angle of the
quartz particle surface under different reagent conditions. During the test, the treated
quartz plate was placed on a platform, and the liquid drops were slowly dropped by
turning the knob above the syringe. Using the picture of the droplet falling on the mineral
surface, we used the five-point method to calculate the contact angle of the mineral surface.

The surface tension of dodecylamine, tetradecylamine, and octadecylamine solutions
with different concentrations was measured using a JK99A automatic tensiometer. The
test was conducted using the Wilhelmy method at about 20 ± 0.5 ◦C. Before measurement,
solutions of different concentrations should be prepared, and 50 mL of the solution to be
measured should be added to the glassware. Then, the surface tension should be measured.
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The measurement of each concentration should be repeated at least three times, and the
measurement results should be averaged. Using this research methodology and approach,
the changes in the surface tension of the solution and the surface hydrophobicity of quartz
were explored, respectively.

2.3. Molecular Dynamics Simulation

Structural characterization of dodecylamine, tetradecylamine, and octadecylamine
collectors was carried out using Materials Studio 2020 software, as shown in Figure 4.
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The hydrophobicity increases with increasing carbon chain length, and octadecylamine
has the best hydrophobicity compared to the other two collectors. Nitrogen atoms in the
amine collector molecule can accept protons to form cations (RNH3+), which can be
adsorbed by the electrostatic force of attraction with the negative charges on the quartz
surface, thus changing the surface’s hydrophobicity.

The molecular dynamics of three kinds of water-reagent-quartz (101) surface sys-
tems were simulated using Materials Studio 2020 software, and the adsorption energy,
order degree, and oxygen atom density of the amine collectors and quartz were calculated,
respectively. Using this simulation methodology and approach, the variation character-
istics of the parameters of the adsorption process between reagent molecules and quartz
were investigated.

Adsorption energy can be used to compare the adsorption strength between differ-
ent reagents and minerals quantitatively. The calculation method for adsorption energy
between reagents and quartz surface under a vacuum environment is as follows:

∆Ead = Etotal − (Ecollector + Equartz) (2)

where ∆Ead is the adsorption energy of the cationic collector interacting with the quartz
(101) surface under vacuum conditions, Etotal is the total energy of the system after the
interaction of the quartz (101) surface with the cationic collector under vacuum conditions,
Ecollector is the total energy of the cationic collector, and Equartz is the total energy of the
quartz (101) face. When the value of ∆Ead is negative, it indicates that the reaction can be
spontaneous. The larger the value of ∆Ead, the easier the reaction is to proceed with and
the more stable the adsorption. When the value of ∆Ead is positive, the reaction is more
difficult to proceed with.

In order to quantitatively compare the differences in the adsorption structures of
dodecylamine, tetradecylamine, and octadecylamine ions on a quartz surface, the ordered
parameter S, which is used to characterize the angle between the definition vector and the
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reference vector, is used to characterize the adsorption morphology of the collector on the
mineral surface. The calculation method is as follows:

S =
1
2

(
3 cosθ2 − 1

)
(3)

where θ is the angle between the specified vector and the reference vector, that is, the angle
between the definition vector bi and the z-axis, which is the reference vector perpendicular
to the surface of quartz (101) in the study system, and bi is defined as the vector along the
N-C skeleton, starting with the head nitrogen atom of the collector, and pointing to the i-th
carbon atom on the ion chain. The ordered parameter S has a value between −0.5 and 1.0.
When the value of the ordered parameter S is −0.5, the defined vector bi is perpendicular
to the z-axis of the reference vector. When the value of the ordered parameter S is 1.0, the
vector bi is defined parallel to the z-axis of the reference vector (in the same direction or the
opposite direction). When the value of the ordered parameter S is 0.0, the orientation of the
defined vector bi concerning the z-axis of the reference vector is random.

The density of water molecules at different distances from the quartz surface is char-
acterized by counting the density of the water oxygen atoms. The calculation method is
as follows:

ρz =
N(z − ∆z/2, z+∆z/2)× M

∆z × S
(4)

where N(z − ∆z
2 , z + ∆z/2) is the average number of oxygen atoms in the interval (z − ∆z

2 ,
z + ∆z/2) (∆z = 0.01), M is the mass of oxygen atoms, and S is the area of the quartz
base surface.

2.4. Flotation Test

The single mineral flotation test was carried out in the XFGCII hanging cell flotation
machine with a volume of 35 mL. Each time, 5.0 g quartz particles were weighed, about
30 mL distilled water was added for pulping for 2 min, and then the collector was added and
stirred for 2 min before flotation began. Because the amine collector has a comprehensive
effect of foaming, adjusting the hydrophobicity of the solid surface, and reducing the surface
tension, the frother is generally no longer added to the flotation pulp [39–41]. Collector
species included dodecylamine, tetradecylamine, and octadecylamine at concentrations
of 0.25 mol/L, 0.5 mol/L, 0.75 mol/L, and 1 mol/L, respectively. The flotation time was
4 min, and then the flotation products were dried and weighed to calculate the quartz
recovery rate. Based on the results of the flotation tests, the recovery of quartz particles
and the correlation with the parameters of the liquid drainage process were analyzed and
explored, respectively.

3. Results and Discussion
3.1. The Rise of Bubbles in Water and Amine Collector Solutions and Their Collision and Adhesion
with Quartz Surfaces

The bubbles’ rising and contact collision process with the quartz surface was observed
using an established high-speed dynamic camera system to obtain the bubbles’ rising
and behaviors of collision and adhesion with the quartz surface in water and amine
collector solutions.

3.1.1. Time Curve of Vertex Position on Bubble

The collision and adhesion process between the bubble and the quartz surface is
analyzed by recording the position change of the upper vertex in still water. The movement
trajectory of bubbles in pure water and solutions of dodecylamine (DDA), tetradecylamine
(TDA), and octadecylamine (ODA) at different concentrations is shown in Figure 5.
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Figure 5. The rising trajectory of the bubble and its interaction under different reagent conditions.
(a) DDA solutions. (b) TDA solutions. (c) ODA solutions.

As shown in Figure 5, the bubble is close to the quartz plate in pure water. It does not
adhere to the quartz surface immediately after contact, but rebounds after deformation to
the limit degree and breaks away from the quartz surface. After rebounding to a certain
distance, the bubble continues to move upward. Due to energy dissipation, the bubble rises
less than the first approach’s speed. After four “collision-bounce” processes, the bubbles
stop bouncing and stay on the solid surface. As the contact time increases, the liquid
drainage process gradually reaches equilibrium, and the bubbles can stably attach to the
quartz surface. The time from the first impact to when the bouncing stops is about 160 ms.

The collision and adhesion process between bubbles and quartz sheets is similar to
the action process in pure water in different concentrations of long-chain amine solution.
However, the time required from the beginning of impact for bubbles to stop rebounding
and the maximum rebound distances are different under different reagent conditions. The
induction time and steady-state liquid film thickness are also different. In general, as
the concentration of the reagent solution increased, the movement speed of the bubble
decreased, the maximum rebound distance decreased (about 1.5 mm), and the time from
the beginning of impact to the end of rebound shortened (about 50 ms). This is because the
reagent will change the state of bubble motion, the nature of the solution, and the nature of
the quartz surface, and also because the rate of drainage during the interaction between
the two is not the same as the thickness of the liquid film in the final steady state.
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3.1.2. Bubble and Quartz Collision-Rebound Duration and Maximum Rebound Distance

In order to quantitatively analyze the interaction process between bubbles and quartz
sheets, the collision-rebound duration of bubbles and quartz and the maximum rebound
distance curves of bubbles were drawn under different reagent conditions, and the results
are shown in Figure 6.
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Figure 6. The collision and rebound of bubbles and quartz under different reagent conditions.
(a) Collision-rebound duration. (b) The maximum rebound distance.

As shown in Figure 6, the concentration and type of the reagent impacted the collision-
rebound process of the bubble. Viewed as a whole, the collision-rebound duration and
the maximum rebound distance were negatively correlated with the reagent concentration
and the carbon chain length of the amine molecule. At the same time, with the increase
in reagent concentration, the range of the collision-rebound process duration and the
maximum rebound distance decreased. This shows that there was an equilibrium trend; the
longer the carbon chain length, the lower the reagent concentration reaching the equilibrium.
According to Ling Xiangyang’s research on foam stability [42], as the reagent concentration
increases, more amines accumulate in the bottom of the bubble during the rising process,
resulting in a more obvious “Marangoni” effect [43] (The Marangoni effect occurs when
there is a gradient in surface tension at the interface of two phases. This phenomenon occurs
mainly at gas-liquid interfaces, and as the solute concentration, surfactant concentration,
and temperature along the interface change, the surface tension usually changes as well).
As a result, the agents gathered at the bottom of the bubble will move towards the top of
the bubble, increasing the dragging force on the bubble, hindering the fluidity of the liquid
on the surface of the bubble, reducing the deformation of the bubble, and making its shape
more spherical. Therefore, the speed and kinetic energy of the bubble are also reduced, and
the process time requiring energy consumption is shorter.

3.1.3. The Induction Time and Steady-State Liquid Film Thickness Vary with the
Concentration of the Reagent

The induction time is the time required for the liquid film thickness to decrease from
the beginning to the minimum thickness. It is worth noting that in this test system, the final
bubble and quartz adhesion reached a stable state, but did not break. The results of the
induction time and steady-state liquid film thickness under different agent conditions are
shown in Figure 7.

As shown in Figure 7 subfigure a, as the concentration of the agent increases, the
induction time generally shows a shortening trend, though there is a small increase in
some concentration ranges. The longer the carbon chain length, the lower the critical
concentration of the induction time extension. During the contact process between bubbles
and quartz, the area of the liquid film increases with the local increase of surface tension,
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making the surface tension of the contact interface higher than that of the solution, resulting
in a surface tension gradient. The liquid moves along the gradient direction, and the
tendency of the liquid film to recover the original thickness increases as the concentration
increases, resulting in an increased induction time.
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(a) Induction time. (b) Steady-state liquid film thickness.

Figure 7b shows that the steady-state liquid film is significantly negatively correlated
with the concentration of long-chain amines and the carbon chain lengths. At the same
time, in the solution of TDA and ODA, the steady-state liquid film thickness gradually
reached equilibrium with the increasing concentration of the reagent; the longer the carbon
chain length, the smaller the equilibrium concentration (ODA: 0.25 × 10−3 mol/L; TDA:
0.75 × 10−3 mol/L). There was no obvious equilibrium trend in DDA solution, but the
decreasing trend of the liquid film thickness slowed down gradually, indicating that the
equilibrium would eventually be reached. It can be concluded that steady-state liquid film
thickness is related to the type and concentration of amine collectors. When a quartz surface
is treated with an amine solution before collision with a bubble, the surface unsaturated
bond force is partially compensated. The higher the concentration of the reagent, the greater
the compensated part, the weaker the hydration effect, and the smaller the thickness of the
hydrated film [44,45].

3.2. Analysis of Phase Properties and Their Interactions Under Different Reagent Conditions

Changes in reagent conditions make the reagent molecules adsorb onto the surface
of the mineral, which affects the surface properties of the mineral. At the same time, this
changes the conditions for the generation of bubbles and the nature of the fluid, further
affecting the size of the bubbles and their movement characteristics. In addition, changes
in the conditions of the agent also alter the properties of the solution. The change in these
factors comprehensively determines the result of gas-solid two-phase interactions in a
flotation solution.

3.2.1. Change of Surface Tension of Solution and Surface Hydrophobicity of Quartz

As surfactants, amine collectors can reduce the surface tension of the solution and, at
the same time, adsorb on the surface of the mineral to enhance its surface hydrophobic-
ity [46,47]. Changes in the surface tension and contact angle of quartz surface are detected
during the experiment by means of an automatic tensiometer and contact angle measuring
instrument. The solution surface tension and the contact angle of the quartz surface under
different reagent conditions are shown in Figure 8.

Figure 8 shows that, viewed as a whole, the surface tension of the solution gradually
decreases with the increase in the concentration of amine collectors, but the decreasing
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trend gradually slows down and begins to balance. Similarly, at the same concentration,
longer carbon chain lengths of the amine collector lead to a smaller surface tension in the
solution. The contact angle of the quartz surface increases with the increase in concentration.
However, the increasing trend also gradually slows down and eventually begins to balance
as well. In addition, when the concentration of the three long-chain amines is increased to
0.75 × 10−3 mol/L, the difference in the contact angle of the quartz surface is very small.
Therefore, within a certain concentration range, longer carbon chain lengths of long-chain
amines result in a more obvious regulatory effect on the surface tension of the solution and
the surface hydrophobicity of a solid surface, while reagent concentrations above a certain
value result in a decrease in the difference between the effects of different reagents.
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Figure 8. Surface tension of solution and contact angle of quartz surface under different reagent
conditions. (a) Surface tension. (b) Contact angle.

3.2.2. Variation Characteristics of Parameters of Adsorption Process Between Reagent
Molecules and Quartz

To further study the causes of the differences in the process of liquid drainage under
different conditions, it is necessary to study the adsorption forms of reagents on the mineral
surface and the density distribution of water molecules on the reagent-mineral surface
from a microscopic perspective. The molecular dynamics of different reagent-quartz-water
systems were simulated using Materials Studio 2020 software, and the adsorption energy,
order degree, and density of water oxygen atoms between the amine collector and quartz
were calculated, respectively. In the water environment, the adsorption energy calculation
results for three amine collectors and quartz are shown in Figures 9–11.

Ignoring the influence of calculation error, the interaction energy of DDA, TDA, and
ODA with the quartz surface is almost the same in the water and vacuum environments
[48,49]. It can be considered that the adsorption strength of the amine collector on a quartz
surface is minimally affected by the carbon chain length and can be ignored. This is because
the adsorption occurs between the amine collector head group and the quartz surface under
electrostatic force and has nothing to do with the non-polar group.

As shown in Figure 10, with the increase of carbon chain length, the degree of order
S increases slightly; that is, compared with DDA and TDA, the ODA molecule is more
perpendicular to the quartz (101) plane. When the polar group is the same, the longer the
carbon chain length of the non-polar group, the closer the adsorption of reagent molecules
on the quartz surface. This results in a larger angle of reagent molecules on the quartz
surface, which will increase the coverage of the collector on the quartz surface and reduce its
contact area with the water phase [50,51]. In addition, the length of the hydrophobic chain
of the collector itself is large, which will reduce the density distribution of water molecules
at a certain distance near the quartz surface, thereby increasing its hydrophobicity.
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Figure 10. The influence of carbon chain length on S.

As shown in Figure 11, there are four peaks in the density of water molecules on the
quartz surface after interaction with the reagent. The positions of the peaks are numerically
labelled in the already graphs. With the increase in carbon chain length, the first and
second peaks under the action of the three agents are very close to each other, which can be
considered unrelated to the carbon chain length of the reagent. In contrast, the third and
fourth peaks weaken, and the density of water molecules decreases. Macroscopically, the
hydrophobicity of the quartz surface after the action of ODA is stronger, and it is easier for
bubbles to adhere.

Based on the above test results, the difference in adsorption energy between primary
amine collectors with different carbon chain lengths and quartz surfaces is small. However,
adsorption form and water molecular density are greatly affected by the carbon chain
length. Specifically, as the carbon chain length increases, the adsorption form between
amine collectors and quartz surface becomes more vertical and the water molecular density
decreases, with the final outcome being stronger hydrophobicity.
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3.2.3. Bubble Morphology and Movement Characteristics

Bubbles do not always remain spherical in movement and undergo varying degrees
of deformation. Generally, the deformation degree of a bubble is calculated using the ratio
of the maximum diameter of the bubble Dmax to the minimum diameter Dmin [52].

Observed by a high-speed camera system, the state of the bubble in water and
0.5 × 10−3 mol/L dodecylamine solution is shown in Figure 12.
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After bubble generation, the bubbles showed an ‘S’ type rise in water and surfactant
solution. However, the maximum displacement of the bubbles in the X-axis direction was
different under different reagent conditions. With the increase in surfactant concentration,
the maximum displacement of bubbles in the X-axis direction decreased.

In the actual flotation process, bubble deformation is often inhibited by adding sur-
factants, reducing the bubble movement speed [53]. To facilitate comparison, the instanta-
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neous velocity and deformation degree of bubbles in pure water and DDA solution during
movement were analyzed, and the results are shown in Figure 13.
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Figure 14. The influence of different concentrations of reagents on bubble rise rate. 

Figure 13. Relationship between the instantaneous velocity and deformation coefficient of a bubble.
(a) Water. (b) 0.5 × 10−3 mol/L DDA solution.

As can be seen from Figure 13, in pure water, the bubbles first accelerate to the maxi-
mum value during the rising process and then slow down, showing periodic fluctuations
around a certain value. The changing trend of bubble deformation degree is consistent
with the change in velocity; when the deformation degree of the bubble is large, the speed
of the bubble is high, and vice versa. In the DDA solution, the deformation degree of bub-
bles decreased significantly, the maximum instantaneous velocity decreased significantly,
the fluctuation amplitude decreased, and the synchronization of deformation degree and
velocity was higher. As amine molecules cover the bubbles during the rising process, they
aggregate at the bottom of the bubbles, forming a surface tension gradient. Water molecules
move along the gradient direction to prevent the bubbles from deforming, resulting in a
decrease in the rising [54].

To compare the agents’ actions, the average velocity curves of the bubbles in solutions
of DDA, TDA, and ODA at different concentrations were drawn. The results are shown in
Figure 14.
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As shown in Figure 14, in different amine solutions, the overall change trend in the
average velocity of bubbles is the same; with the increase in the concentration of the
agent, the average bubble velocity gradually decreases, and the decline rate also decreases
continuously. All of them increase to a certain extent when the concentration is greater
than 0.75 × 10−3 mol/L, indicating that there is a critical point in the regulation of the
bubble rising velocity when concentrations of the agent are increased. In addition, the
bubble velocity in TDA and ODA solution systems is significantly lower than that in the
DDA system, and the average bubble velocity is negatively correlated with the carbon
chain length. This is because the longer the carbon chain length of the long-chain amine,
the smaller the deformation degree of the bubble and the smaller the rising speed [55,56].
On the other hand, when the concentration of the reagent is increased, the decrease in the
surface tension and the size of the bubble will also cause a decrease in the bubble movement
speed [57].

3.3. The Results of Quartz Particles Flotation Test and Their Correlation with the Parameters of
Liquid Drainage Process

Flotation tests were carried out to obtain the recovery of quartz particles at different
reagent concentrations, which were used to establish the correlation between the flotation
results and the induction time, as well as the steady-state liquid film thickness. It has a
positive effect on the prediction of flotation effectiveness.

3.3.1. Recovery of Quartz Particles at Different Reagent Concentrations

To further explore the influence of the gas–solid interaction process on the flotation
effect, flotation tests were carried out on quartz particles under the same reagent conditions,
and the results are shown in Figure 15.
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Figure 15. The recovery of quartz under different reagent conditions.

As shown in Figure 15, regardless of which amine collector is used, the recovery
of quartz particles increases overall with the increase in the dosage of the agent. In the
concentration range of 0–0.75 × 10−3 mol/L, the recoveries obtained using ODA as a
collector were higher than those of the other two reagent systems. When the reagent
concentration was higher than 0.75 × 10−3 mol/L, the recovery difference was reduced,
and all of them could reach more than 97%. In contrast, the recovery of quartz particles
under the ODA system was the highest (98.01%). The results of the quartz flotation test are
highly correlated with the changes in the properties and modes of action of each phase in
the flotation system.
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3.3.2. Correlation Between Induction Time and Quartz Particles Recovery

Induction time is essential in the interaction between flotation bubbles and minerals.
Figure 16 shows the corresponding relationship between induction time and recovery
under the conditions of DDA, TDA, and ODA with different concentrations obtained by
combining the shooting results of high-speed dynamic cameras and flotation tests.
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particles. (a) DDA. (b) TDA. (c) ODA.

Figure 16 shows that, under different concentrations of three different agents, the
recovery of quartz flotation is negatively correlated with the induction time; that is, the
shorter the induction time, the higher the recovery. However, when the induction time is
reduced to a certain extent, it is no longer related to the recovery. The process of liquid
drainage is the speed control step of flotation. When the induction time is extended,
the number of particles that can successfully adhere to the bubble is small, reducing the
productivity. When the induction time is reduced to a certain extent, there is little difference
in the number of adhesions between particles and bubbles, and the main factor affecting the
flotation effect changes the stability of adhesion between gas and solid. Therefore, when the
concentration of the reagent increases to a certain extent, the induction time becomes longer
due to the significant Marangoni effect. However, the adhesion between the gas-solid phase
is more stable due to the enhanced hydrophobicity of the quartz surface, and the flotation
recovery increases rather than decreases.
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3.3.3. Correlation Between Steady-State Liquid Film Thickness and Quartz
Particles Recovery

The relationship between steady-state liquid film thickness and flotation recovery of
quartz in DDA, TDA, and ODA systems is shown in Figure 17.
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Figure 17. Comprehensive effect of reagent concentration on steady-state liquid film thickness and 

recovery of quartz particles. (a) DDA. (b) TDA. (c) ODA. 
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As shown in Figure 17, in the three reagent systems, the steady-state liquid film
thickness is consistent with the rule of induction time. It is also negatively correlated with
the flotation recovery of quartz in general; the thinner the liquid film thickness between
bubbles and minerals, the higher the flotation recovery. This shows that the liquid film
thickness during the interaction between bubbles and mineral particles can characterize
adhesion stability. A thinner hydration film makes the adhesion process more stable, makes
it more difficult for mineral particles to detach from the bubble, and improves the flotation
effect. The results show that the thickness of the liquid film and the induction time can be
key indexes to predict the flotation effect and have important reference values to accurately
predict the flotation effect. In contrast, the steady-state liquid film thickness, which is not
affected by the Marangoni effect, has higher accuracy in the characterization of the surface
interaction between bubbles and solid particles to a certain extent.

4. Conclusions

In the present work, we systemically investigated the parameters variation in the dy-
namic interaction process between rising bubbles and quartz in long-chain amine solutions
at the same concentration as the actual flotation process. We focused on clarifying the
relevance of these parameters and identifying the drainage process parameters that can
accurately predict the flotation results. The variation trend of the steady-state liquid film
thickness is found to have the strongest correlation with the recovery of quartz by flotation.
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(1) The collision and rebound process between the bubbles and the quartz plates in the
long-chain amine solution is similar to that in pure water, and it takes four rebounds
to stay on the surface of the quartz plate and to start the liquid drainage process.
The duration of the collision-rebound process and the maximum rebound distance
were negatively correlated with the concentration of the reagent and the carbon chain
length, and there was an equilibrium trend.

(2) The induction time decreases with the increase in reagent concentration. Finally,
there is still a hydration film between the bubble and the surface of the quartz plate.
The stable-state liquid film thickness has a significant negative correlation with the
concentration of long-chain amine and the carbon chain length; the longer the carbon
chain length, the lower the adhesion equilibrium concentration.

(3) With the increase in the concentration of long-chain amine, the surface tension of
the solution decreases, and the hydrophobicity of quartz increases. The longer the
carbon chain length, the more obvious the regulatory effect. The effect difference
of different agents decreases with the increase of the concentration of agents. At
the microscopic level, the adsorption form of the amine collector and quartz surface
becomes more vertical as the carbon chain length increases. The water molecular
density also becomes smaller and eventually shows stronger hydrophobicity.

(4) Compared with pure water, the deformation degree of the bubble in dodecylamine
solution is significantly reduced, and the deformation degree and velocity synchro-
nization are higher. The average velocity of bubbles decreases with the increase
in the concentration, and there is a critical point of control. The bubble velocity of
tetradecylamine and octadecylamine solutions was significantly lower than that of
the dodecylamine system.

(5) When octadecylamine is used as a collector, the recovery of quartz particles is higher
than that of the other two reagent systems. The results of flotation tests are highly
correlated with the changes in phase properties and modes of action in the flota-
tion system. In contrast, the steady-state liquid film thickness can more accurately
characterize the interaction between bubbles and particle surfaces to some extent.
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