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Abstract: Mineral liberation and concentration have always been the core issues in ore processing.
The goal of multi-stage crushing and ball milling is liberation because mineral liberation is the
foundation of beneficiation. High energy consumption and environmental pollution have always
been unavoidable topics. We put forward the method of high-pressure gas rapid unloading (GRU).
Particle size followed MR-R distribution. The scanning electron microscopy data showed that the
liberation of apatite particles smaller than 4 mm was sufficient by high-pressure GRU methods, and
high-grade apatite concentrated in the particle size range of 0.5 to 4 mm. The average grade of
the preferred particle size interval was 3%–5% higher than the original ore. Liberation degrees of
apatite less than 4 mm are above 88%, which was beneficial for mineral processing. Compared to
the traditional crushing method, the GRU method had a higher liberation and concentration in the
particle size range of 0.5 to 4 mm. The total energy consumption was about 1.76 kW·h/t, less than
that of the traditional crushing method.

Keywords: apatite; mineral liberation; mineral concentration; preferred particle size interval

1. Introduction

Apatite is a group of natural calcium, mineral fluorine, and chlorine (Ca5(PO4)3(F, Cl,
OH)). The most common forms of apatite are fluorapatite (Ca5(PO4)3(F)), hydroxyapatite
(Ca5(PO4)3(OH)), and chlorapatite (Ca5(PO4)3(Cl) [1] The mineral primarily occurs as
phosphate rock. Apatite is considered a source of phosphorus, phosphoric acid, and
fertilizers. China is extremely rich in phosphate mineral resources, just behind South Africa
and Morocco, accounting for third place in the world’s phosphorus resources. Although
China has a large amount of apatite ore resources, as illustrated in Figure 1, the average
grade of apatite ore is only 16.95%, and only 6.75% are rich ores with P2O5 grades larger
than 30% (857 million tons). The beneficiation of low-grade apatite has been necessary for
decades [2,3].

Mineral liberation is the fundamental problem of mineral processing [4]. A principal
purpose of comminution in mineral processing is liberation [5,6]. The relationship between
size and grade is quite understandable, as large particles tend to have grades close to
the average ore grade. In contrast, finer particles are respectively close to 0% or 100%
grade [7]. If each particle contains a single mineral, individual minerals are separated.
However, sufficient mineral liberation is extremely difficult to reach [8–10]. Indeed, the
particle liberation degree is the crucial variable to define the performance of any separation
technology [11–13].
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The limitations of conventional comminution technology have been reviewed by 
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conventional tumbling mill. It is highly beneficial to achieve liberation by grain boundary 
fracture. This theme was well-established in the mineral processing research literature. 
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cantly developed in the last few hundred years because the liberation of the target mineral 
was already sufficiently high with particle size reduction [15–17]. Particulate materials are 
fractured primarily by compressive stress. Subsidiary fracture is caused by high shearing 
stress, particularly at the particle surface. Patterns of fracture by mechanical comminution 
mainly include shatter, cleavage, attrition, and chipping. The fracture patterns of conven-
tional crushing equipment (jaw crusher, cone crusher, etc.) are impact and cleavage [6]. 
The traditional compression and shear crushing method achieves sufficient liberation only 
by particle size reduction. The energy consumed increases significantly because of the 
surface area [18–21]. 

Ball milling has the following characteristics: (a) “partial” loading and “external” 
loading; (b) overcoming the compressive strength or shear strength. Compression shear 
is the main failure style during the ball milling process. Compared with the ball milling 
method, pulverizing ore by the high-pressure GRU method has the following character-
istics: (a) “uniform” loading and “internal” gas infiltration loading; (b) overcoming the 
tensile strength conserved much energy [22]. Besides this, the method results in absolute 
physical separation. 

Considering the diverse compositions, texture, and other physio-chemical properties 
of the natural apatite ore, numerous beneficiation processes have been investigated [23–
26]. Low-grade apatite ore upgraded the ore grade by several mineral processing meth-
ods, including flotation, magnetic separation, density separation, and electrostatic sepa-
ration, which were all efficient enrichment approaches [27–31]. Flotation technology is 
widely used in mineral processing [32]. Density separation, electrostatic separation, and 
magnetic separation technologies have all been investigated. However, these techniques 
have limited application because of high power input and limited capacity constraints. 
Calcination is mostly used in ore processing for lime processing [33]. 
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The limitations of conventional comminution technology have been reviewed by
Wills [14], who found that it was desirable to devise improved methods that applied the
breaking force preferentially at mineral grain boundaries rather than randomly as in a
conventional tumbling mill. It is highly beneficial to achieve liberation by grain boundary
fracture. This theme was well-established in the mineral processing research literature.

Traditional multistep crushing, grinding, and flotation technologies have significantly
developed in the last few hundred years because the liberation of the target mineral
was already sufficiently high with particle size reduction [15–17]. Particulate materials
are fractured primarily by compressive stress. Subsidiary fracture is caused by high
shearing stress, particularly at the particle surface. Patterns of fracture by mechanical
comminution mainly include shatter, cleavage, attrition, and chipping. The fracture patterns
of conventional crushing equipment (jaw crusher, cone crusher, etc.) are impact and
cleavage [6]. The traditional compression and shear crushing method achieves sufficient
liberation only by particle size reduction. The energy consumed increases significantly
because of the surface area [18–21].

Ball milling has the following characteristics: (a) “partial” loading and “external”
loading; (b) overcoming the compressive strength or shear strength. Compression shear
is the main failure style during the ball milling process. Compared with the ball milling
method, pulverizing ore by the high-pressure GRU method has the following character-
istics: (a) “uniform” loading and “internal” gas infiltration loading; (b) overcoming the
tensile strength conserved much energy [22]. Besides this, the method results in absolute
physical separation.

Considering the diverse compositions, texture, and other physio-chemical properties
of the natural apatite ore, numerous beneficiation processes have been investigated [23–26].
Low-grade apatite ore upgraded the ore grade by several mineral processing methods,
including flotation, magnetic separation, density separation, and electrostatic separation,
which were all efficient enrichment approaches [27–31]. Flotation technology is widely
used in mineral processing [32]. Density separation, electrostatic separation, and magnetic
separation technologies have all been investigated. However, these techniques have limited
application because of high power input and limited capacity constraints. Calcination is
mostly used in ore processing for lime processing [33].
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Apatite is commonly associated with dolomite and Fushan stone and usually appears
with interlayers. Moreover, its density difference is less than 0.3 g/cm3, so, it is highly
arduous to complete mineral processing through density separation. When the thickness of
the interlayer between apatite and shale or dolomite is only 5 mm or less, density separation
is especially ineffective, so interlayered apatite ore needs to be crushed to a particle size
smaller than 0.074 mm by ball milling and separated by flotation or reverse flotation to
obtain P2O5. In this case, the cost increases significantly.

This article proposes the pulverization method of high-pressure GRU for micron-sized
apatite powder production. In this paper, the authors designed a series of ore pulverization
experiments to explore the liberation and concentration of apatite. Furthermore, the particle
size distribution curve complied with the modified R-R function.

2. Materials and Methods

The ore powder was dried and sieved to obtain the particle size distribution. The sieve
diameter included eight groups: 0.045 mm, 0.074 mm, 0.147 mm, 0.5 mm, 1 mm, 1.43 mm,
2 mm, and 4 mm.

2.1. Materials and GRU Methods

We weighed the ore before putting it into the high-pressure infiltration chamber. The
equivalent diameter of the apatite ore was <60 mm because the inner diameter of the
high-pressure infiltration chamber was 63 mm. The inner volume of the high-pressure
infiltration chamber was approximately 0.003 m3, and according to the volume ratio of
densely packed particles of equal diameter, the porosity was approximately 35%–40%;
therefore, the mass of the apatite ore was about 3 kg. The pressures of the high-pressure
propulsion chamber and high-pressure infiltration chamber were 22 MPa and 25 MPa,
respectively. After sealing, air filling, air substitution, and high water pressure initialization,
the high-pressure infiltration chamber was placed in the collection container to collect the
apatite ore powder; the apparatus is illustrated in Figure 2. Eventually, the rupture disk
burst, and the apatite ore powder sprayed into the collection container.
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Figure 2. Schematic diagram of experimental apparatus.

Currently, the overall process includes air filling in the high-pressure infiltration
chamber and high-pressure propulsion chamber, air substitution in the high-pressure
infiltration chamber, and rapid unloading of air in the high-pressure infiltration chamber.

First, the high-pressure propulsion chamber was connected to the high-pressure
infiltration chamber by a pipe. Between the two chambers, there was a rubber piston,
which was responsible for full-section propulsion. Second, we placed apatite ore into the
high-pressure infiltration chamber. After sealing, we injected high-pressure air. Third,
dissociative air between the apatite ore was substituted by water and collected for cyclic
utilization. Fourth, apatite ore and water spouted out of the high-pressure infiltration
chamber propelled by air in the high-pressure propulsion chamber, based on the rapid
unloading actuated by the rupture disk’s bursting.

2.2. BPMA Methods

BPMA (BGRIMM Process Mineralogy Analyzer) is an automatic analysis system
for process mineralogy. The BPMA system consists of a scanning electron microscope
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(SEM), an energy dispersive spectrometer (EDS), and a set of process mineralogy automatic
testing software (BPMA V1.0), as shown in Figure 3. Compared with similar commercial
software used internationally such as MLA, AMICS, and TIMA, BPMA has unique technical
characteristics, manifesting in accurate adhesion particle segmentation effect and efficiency,
precise mineral phase extraction ability, a complete theoretical mineral energy spectrum
database, and powerful target particle searchability.
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3. Results
3.1. Particle Size Follows MR-R Distribution

The most common mathematical models utilized to describe the experimental particle
size distribution (PSD) of curves are the R-R function and Gates–Gaudin–Schuhmann
(GGS) [33]. Among them, the R-R function was probably the most suitable to describe
the PSD. The general expression of the R-R function is illustrated in to Equation (1). The
expression of the Modified R-R function is illustrated in Equation (2) because the maximum
particle size is not infinite (dm is considered).

F(x) = 1 − e−( x
λ )

k
, 0 ≤ x ≤ +∞ (1)

F(x) = 1 − e−( x
λ

dm−λ
dm−x )

k
, 0 ≤ x ≤ dm (2)

where x is the particle size (mm), dm is the maximum particle size (mm), λ is the particle
size with a cumulative rate under sieve of 63.1%, representing the mean particle size, k
is the non-uniformity coefficient, a measure of the spread of particle sizes, and F(x) is
cumulative rate.

Four group apatite pulverization experiments included high magnesium apatite ore,
Sujiapo apatite ore, Yinjiaping apatite ore, and Chuan apatite ore. Correlation coefficient R2

was, respectively, 99.8%, 99.8%, 99.2%, and 99.8%, as illustrated in Figure 4a–d.
Particle size distribution (PSD) of the particles obtained by high-pressure GRU con-

formed to a normal distribution, and cumulative PSD conformed to the Modified Rosin–
Rammler function. The particles were continuous, and the minimum and maximum sizes
of the particle after the high-pressure GRU were about 10–15 µm and 10–15 mm.
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λ can be obtained from the MR-R function. Both of λ, infiltration pressure P0, propul-
sion pressure Pt, tension strength σt, and shear strength στ complied with a functional
relation as follows:

dm − λ

λ
= A·P0

σt
+ B· Pt

στ
(3)

P0—infiltration pressure, Pt—propulsion pressure.
σt—tension strength, στ—shear strength, A,B—coefficient, obtained by fitting.

3.2. Apatite Particles Smaller than 4 mm Completely Dissociated

After high-pressure GRU experiments, the powder obtained was dried and sieved.
Each group of particles was analyzed, as illustrated in Figure 5. Particle distribution was
assessed by scanning electron microscopy. The liberation of apatite particles smaller than
4 mm was sufficient. Impurities such as quartz, dolomite, and calcite were all attached to
the apatite particles with fine-grained particles, and impurities with large particle sizes
were relatively few, as illustrated in Figure 5a–c. Most impurities existed in clusters in
fine-grained intervals smaller than 0.15 mm, and impurities with large particle sizes started
increasing, as illustrated in Figure 5d–f.



Minerals 2024, 14, 1148 6 of 12

Minerals 2024, 14, x FOR PEER REVIEW 6 of 12 
 

 

 

Figure 5. (a) SEM observation images of 2–4 mm apatite particles associated with multiple minerals; 
(b) SEM observation images of 1–2 mm apatite particles associated with multiple minerals; (c) SEM 
observation images of 0.5–1 mm apatite particles associated with multiple minerals; (d) SEM obser-
vation images of 0.15–0.5 mm apatite particles associated with multiple minerals; (e) SEM observa-
tion images of 0.074–0.15 mm apatite particles associated with multiple minerals; (f) SEM observa-
tion images of <0.074 mm apatite particles associated with multiple minerals. 

Impurities appeared as fine particles and adsorbed on the surface of apatite minerals, 
and this was the core factor in reducing the grade in the preferred particle size range. 

3.3. The Relationship of P2O5 Grade and Particle Size 
The complete liberation of minerals was the most important outcome in the benefi-

ciation process, and the uniform infiltration of high-pressure gas was the most crucial con-
dition for facilitating sufficient liberation, compared to multi-stage crushing and ball mill-
ing. 

The mineral composition of Yinjiaping apatite ore mainly included apatite and dolo-
mite, and the two minerals appeared in interlayered style. The quality of apatite ore was 
about 3048 g, as illustrated in Figure 6a. The experimental apparatus and pressure combi-
nation were the same as in Section 2.1. After the first experiment, undissociated apatite 
ore continued to be processed. The remainder of ore quality of Yinjiaping apatite with 
interlayered style was only 285.6 g and 53.6 g after the first and the second experiments, 
accounting for 9% and 1.8% of the total quality of the apatite ore (as illustrated in Figure 
6b,c), which indicated that the majority of interlayered apatite ore dissociated. The P2O5 
grade of the original apatite ore was about 18.25%, and high P2O5 grade of apatite was 
distributed in the particle size interval of 0.5–5 mm, respectively, 20.86%, 21.44%, and 
20.96% processed by high-pressure GRU. P2O5 grade of fine particle size less than 0.1 mm 
was 18.43%, as illustrated in Figure 6d and Table 1. 

Table 1. P2O5 grade of Yinjiaping different particle size intervals. 

Diameter (mm) Quality Proportion (%) P2O5 Grade of Different Intervals (%) P2O5 Quality P2O5 Grade (%) 
>5 42.85% 14.62% 6.26% 14.62% 
3–5 28.46% 20.96% 5.97% 

21.06% 1–3 13.70% 21.44% 2.94% 
0.5–1 12.84% 20.86% 2.68% 

0.1–0.5 2.00% 18.21% 0.36% 
18.38% 

<0.1 7.10% 18.43% 1.31% 
The P2O5 grade of the original ap-

atite ore 
18.25% 

     (a) 2–4 mm                 (b) 1–2 mm               (c) 0.5–1 mm  

(d) 0.15–0.5 mm            (e) 0.074–0.15 mm             (f) <0.074 mm 

Apatite 

Quartz 

Calcite 

Orthoclase 

Dolomite 

Gray calcium 
silicate 

Mica 

Iron oxide  
compounds 

Figure 5. (a) SEM observation images of 2–4 mm apatite particles associated with multiple minerals;
(b) SEM observation images of 1–2 mm apatite particles associated with multiple minerals; (c) SEM
observation images of 0.5–1 mm apatite particles associated with multiple minerals; (d) SEM observa-
tion images of 0.15–0.5 mm apatite particles associated with multiple minerals; (e) SEM observation
images of 0.074–0.15 mm apatite particles associated with multiple minerals; (f) SEM observation
images of <0.074 mm apatite particles associated with multiple minerals.

Impurities appeared as fine particles and adsorbed on the surface of apatite minerals,
and this was the core factor in reducing the grade in the preferred particle size range.

3.3. The Relationship of P2O5 Grade and Particle Size

The complete liberation of minerals was the most important outcome in the beneficia-
tion process, and the uniform infiltration of high-pressure gas was the most crucial condition
for facilitating sufficient liberation, compared to multi-stage crushing and ball milling.

The mineral composition of Yinjiaping apatite ore mainly included apatite and dolomite,
and the two minerals appeared in interlayered style. The quality of apatite ore was about
3048 g, as illustrated in Figure 6a. The experimental apparatus and pressure combination
were the same as in Section 2.1. After the first experiment, undissociated apatite ore contin-
ued to be processed. The remainder of ore quality of Yinjiaping apatite with interlayered
style was only 285.6 g and 53.6 g after the first and the second experiments, accounting
for 9% and 1.8% of the total quality of the apatite ore (as illustrated in Figure 6b,c), which
indicated that the majority of interlayered apatite ore dissociated. The P2O5 grade of the
original apatite ore was about 18.25%, and high P2O5 grade of apatite was distributed in
the particle size interval of 0.5–5 mm, respectively, 20.86%, 21.44%, and 20.96% processed
by high-pressure GRU. P2O5 grade of fine particle size less than 0.1 mm was 18.43%, as
illustrated in Figure 6d and Table 1.

Table 1. P2O5 grade of Yinjiaping different particle size intervals.

Diameter (mm) Quality Proportion (%) P2O5 Grade of Different Intervals (%) P2O5 Quality P2O5 Grade (%)

>5 42.85% 14.62% 6.26% 14.62%
3–5 28.46% 20.96% 5.97%

21.06%1–3 13.70% 21.44% 2.94%
0.5–1 12.84% 20.86% 2.68%

0.1–0.5 2.00% 18.21% 0.36%
18.38%<0.1 7.10% 18.43% 1.31%

The P2O5 grade of the
original apatite ore 18.25%
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Figure 6. High-grade apatite concentrated in the specific particle size interval. (a) Apatite associated
with dolomite, (b) apatite associated with dolomite after the first experiment, (c) apatite associated
with dolomite after the second experiment, (d) P2O5 grade of Yinjiaping, (e) apatite associated with
shale, (f) P2O5 grade of Sujiapo.

The mineral composition of Sujiapo apatite ore mainly included apatite and shale, as
illustrated in Figure 6e. The P2O5 grade of the original apatite ore was about 28%. The
experimental apparatus and pressure combination were the same as above. After the
experiment, the high P2O5 grade of apatite was distributed in the particle size interval of
0.5–4 mm, respectively, 36%, 37%, and 34% after processing by high-pressure GRU. The
P2O5 grade of fine particle size less than 0.15mm was 24%–25%, as illustrated in Figure 6f
and Table 2.

In addition, the P2O5 grade of the particle size greater than 5 mm was lower by 2%–3%
than that of the original ore, which revealed that apatite was separated from impurities
and entered the preferred particle size interval.

The average P2O5 grade of the preferred particle size interval was 33.94%, as illustrated
in Table 2. It was about 3%–5% higher than the original ore. Simultaneously, the average
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P2O5 grade of fine particles was lower than the original ore. Most impurity minerals
became fine particles and separated from the apatite.

Table 2. P2O5 grade of Sujiapo different particle size intervals.

Diameter (mm) Quality Proportion (%) P2O5 Grade of Different Intervals (%) P2O5 Quality P2O5 Grade (%)

>20 0.14% 25.61% 0.036%

23.45%

16–20 0.65% 28.85% 0.19%
10–16 5.81% 22.20% 1.29%
8–10 6.08% 27.85% 1.69%
6–8 9.86% 24.03% 2.37%
4–6 17.38% 23.29% 4.05%

2–4 14.9% 34.04% 5.07%

33.94%
1–2 16.05% 36.69% 5.89%

0.5–1 6.76% 35.58% 2.41%
0.18–0.5 7.94% 29.12% 2.31%

0.15–0.18 3.26% 28.07% 0.92%

0.074–0.15 3.57% 25.38% 0.91%
24.40%<0.074 7.25% 23.91% 1.73%

Reducing the percentage of apatite in fine particles was the outstanding advantage of
this method. Because the strength of apatite was higher than dolomite and shale, although
their densities were similar, apatite was concentrated in the coarse-grained particles, while
dolomite and shale were both distributed in the fine-grained particles, which was beneficial
for the beneficiation process. It could be possible to achieve a tailings grade of less than
10% after extracting apatite from the fine particles.

3.4. Quality Proportion and Liberation Degree

The key to improving the P2O5 grade within the preferred particle size interval was to
remove dolomite and shale. These impurities are easy to reduce to fine-grained particles
because of their lower strength. The impurities separated from apatite and became fine-
grained intervals, which was why the P2O5 grade in the preferred particle size interval was
higher than that of the original ore.

Based on the experimental result of Section 3.3, the quality proportion and liberation
degree were available. The ratio of molecular mass between P2O5 and apatite was 0.423. We
can obtain the mass proportion of apatite in different particle size intervals, as illustrated in
Figure 7a. The liberation degree is an indicator used to characterize the difficulty of mineral
processing. When it is greater than 80%, it indicates that mineral processing is easy to
achieve. As illustrated in Figure 7b, the liberation degree of apatite was greater than 88% in
all particle size intervals less than 4 mm, indicating that the apatite sufficiently dissociated.

3.5. Liberation and Energy Consumption Compared to the Traditional Methods
3.5.1. Liberation Comparison

G28-L28 expresses that propelling and infiltration pressure were both 28 MPa. Yinjiap-
ing apatite ore with a 5 mm dolomite interlayer is illustrated in Figure 8. We conducted a
comparative experiment. Samples were the same as in Figure 6a. The results suggested
that the particle size distribution pattern of apatite ore with dolomite interlayers crushed
by traditional crushing was consistent with dolomite ore crushed by the GRU method.
However, it was different from interlayered apatite ore crushed through the GRU method.
The results indicated that the particle mass proportion caused by traditional crushing was
less than that of the GRU methods in the particle size range of 0.5 to 4 mm. Based on
Sections 3.2 and 3.3, the high P2O5 grade of apatite was among the particle size range of
0.5 to 4 mm. Compared to the traditional crushing method, the GRU method had a higher
degree of liberation and concentration in the particle size range of 0.5 to 4 mm.
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3.5.2. Energy Consumption Comparison

We conducted comparative experiments. The feed size of apatite ore is about 100 mm,
and the discharge size of apatite was less than 20 mm. Energy consumption of the high-
pressure GRU method included water pre-loading, gas substitution, gas propulsion, and
rubber piston resetting. Each energy consumption was 0.96 kW·h/t, 0.0015 kW·h/t,
0.4 kW·h/t, 0.4 kW·h/t. The total was about 1.76 kW·h/t. The energy consumption
of the traditional method is shown in Figure 9. Even if all particle sizes were about 20 mm,
the energy consumption was about three kW·h/t.
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4. Discussion

Because of the uniform permeation of high-pressure gas and its mechanism to over-
come the tensile strength of ores, the high-pressure GRU method demonstrated charac-
teristics of liberation by grain boundary fracture and low energy consumption. It was
especially well-suited for porous, brittle materials. Mineral liberation and concentration
helped significantly to reduce energy consumption in ore crushing.

Furthermore, high-pressure gas pushing high-pressure water and ore obtained mineral
liberation. Since water is incompressible, it consumes less energy even if the water pressure
is higher. As a result, there will be more opportunities for the high-pressure GRU (or
water) method. Interlayered rocks are common in nature, especially in sedimentary rocks.
Furthermore, most ores have a low grade and irregular mineral distribution, especially
in China. Thus, further investigation into mineral concentration in mineral processing is
warranted. Because the current procedures for dissociating interlayered ores are either
complex or ineffective, many interlayered ores are treated as trash, which is a heavy loss.

The method promotes the transformation of existing material multi-stage crushing
and ball milling processes and could facilitate the efficient development and utilization
of global mineral resources. As a result, the high-pressure GRU method offers a potential
remedy for the growing problems with mineral resources that many nations face globally.

5. Conclusions

The method induced tensile failure and comminuted the apatite ore into micron-sized
particles. It tore apart minerals along the mineral bonding surface. High-pressure gas
within the ore comminuted the ore along the mineral bonding surface or micro-cracks. It
was the physical foundation of continuous particle size distribution produced by high-
pressure GRU methods.

Cumulative PSD conforms to the Modified Rosin-Ramller function. The liberation of
apatite particles smaller than 4 mm was sufficient by high-pressure GRU methods, and
high-grade apatite concentrated in the particle size range of 0.5 to 4 mm. The average
grade of the preferred particle size interval was 33.94%. It was about 3%–5% higher than
the original ore. Liberation degrees of apatite less than 4 mm were above 88%, which
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was beneficial for mineral processing. Compared to the traditional crushing method, the
GRU method had a higher liberation and concentration in the particle size range of 0.5 to 4
mm. The total energy consumption was about 1.76 kW·h/t, less than that of the traditional
crushing method.
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