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Abstract: Ion-adsorption rare earth element (REE) deposits are a major source of REEs and are found
mainly in China. The formation of such deposits is affected by a combination of endogenic and
exogenic factors. This study investigated the effect of micro-topography on the REE distribution in
four weathering profiles at different topographic sites on a knoll in Hedi, Zhejiang Province, China.
The weathering profile and REE accumulation are both most developed at mid-slope positions of the
knoll. The intensity of chemical weathering decreases in the order of mid-slope > base > summit. As
weathering progressed, REE enrichment initially increased but later decreased, with a progressive
increase in light/heavy REE fractionation. REE fractionation is more pronounced on the north-facing
slope than on the south-facing slope. Weathering degrees and clay mineral characteristics are key
factors influencing the varying REE distributions on the knoll. Water leaching and the evolution
of clay minerals towards higher maturity reduce REE adsorption capacity. Clay minerals also play
a significant role in REE fractionation; the abundance of these minerals and the presence of illite
enable the retention of more HREEs with minimal desorption. Taking into account water content, it is
inferred that hydrological conditions, modulated by the micro-topography, strongly affect the depth
and extent of REE accumulation, as well as fractionation.

Keywords: ion-adsorption REE deposit; micro-topography; REE accumulation and fractionation;
chemical weathering; Hedi granite

1. Introduction

Rare earth elements (REEs) have unique optical, electromagnetic, and catalytic prop-
erties. They are widely used in agricultural, metallurgical, glass ceramic, and petroleum
industries, as well as advanced technologies including clean energy, aerospace, and health-
care [1,2]. Amongst the various types of REE deposits, ion-adsorption deposits have sig-
nificant economic value due to their high contents of heavy REEs (HREEs), relative ease
of extraction, and lower levels of radioactive elements [3]. Recently, research on ion-
adsorption REE deposits has increased globally, leading to substantial advances in our
understanding of their mineralization processes and mineral exploration techniques [4].

Ion-adsorption REE deposits are found mainly in the southern Chinese provinces of
Jiangxi, Guangxi (Zhuang Autonomous Region), Guangdong, and Fujian, which account
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for the majority of global HREE production. These deposits have also been identified in
some Southeast Asian countries, as well as in Madagascar, Brazil, and the USA [4,5]. The for-
mation of ion-adsorption REE deposits is affected by endogenic factors (e.g., the parent rock
type, composition of primary REE minerals, and physical structure) and exogenic factors
(e.g., climate, topography, and biological activity) [6–8]. Prolonged weathering of bedrock
leads to the development of a thick regolith, where ionic REEs accumulate by adsorption
onto secondary clay minerals or Fe–Mn oxyhydroxides [9–11]. Various factors, such as
water, temperature, pH, and organic matter, collectively affect the geochemical behavior
of REEs within these deposits, which controls REE activation, migration, accumulation,
and fractionation [4,6,12,13]. The prevalence of granitoids in southern China [6,13,14],
combined with its warm, humid, subtropical climate and hilly terrain, creates favorable
conditions for the formation of ion-adsorption REE deposits.

In southern China, ion-adsorption REE deposits are found primarily in low-altitude
(100–300 m), gently sloping, and well-drained hilly regions [12,15,16]. However, such
deposits have also been discovered at higher altitudes and latitudes in southern China,
such as the Hedi area in Zhejiang Province. Topography has a key role in the mineralization
of, and exploration for, ion-adsorption REE deposits [17]. Factors such as the altitude,
slope gradient, relief, and surface dissection affect the spatial distribution of REEs, ore
body thickness, and ore grade [5,16]. However, the relationship between REE enrichment
and micro-topographic features varies amongst different deposits [12,18–20]. For example,
the Cenxi deposit in Guangxi Province and Menghai deposit in Yunnan Province have a
greater deposit thickness and higher ore grades at mid-slope positions [21], whereas the
Chongzuo Jiangzhou deposit in Guangxi Province has thicker deposits and higher ore
grades at hilltops [22]. As such, further research is needed to elucidate how topographic
factors affect REE accumulation and fractionation.

In this study, we selected four distinct topographic locations on a specific knoll within
the Hedi ion-adsorption REE deposit. We compared the mineralogical and geochemical
characteristics of weathering profiles at these locations, with a particular focus on REE
patterns, to examine the effect of micro-topography on REE accumulation and fractionation
during weathering.

2. Hedi Granite

The Hedi Granite is located in Qingyuan County, Lishui City, in southwestern Zhejiang
Province (Figure 1). It has an outcrop area of ~67 km2 and is characterized by a NE–SW-
trending, stock-like intrusion that was emplaced into Late Jurassic volcanic rocks. The
lithology consists of light gray to pink, biotite monzogranitic porphyry and hornblende–
biotite monzogranitic porphyry [18,23]. The pluton yields a zircon U–Pb age of 135 Ma and
a total REE content of 264–311 ppm [23].
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3. Weathering Profile

Qingyuan County is located on the highest and largest plateau in Zhejiang Province,
with elevations of 500–1400 m and an average of ~980 m. The region falls within the Central
Asian subtropical monsoonal climate zone, which is characterized by an average annual
temperature of 18 ◦C, relative humidity of 77%, and annual precipitation of 1747 mm. The
Hedi Granite has undergone intense weathering, leading to the formation of a regolith
that overlies the bedrock. The regolith is typically 8–10 m thick, but locally exceeds 20 m.
The weathering profile has a layered structure that can be divided into several horizons
as follows.

Humus horizon (A1 horizon): This layer extends from the surface to a depth of 0–0.2 m
and is characterized by a dark brown coloration, and abundant plant roots, and consists
primarily of clay minerals and quartz.

Clay horizon (A2 horizon): This horizon occurs at a 0.2–1.5 m depth and exhibits
red–brown to brick red colors and contains few plant roots. It is more compact and less
permeable than the A1 horizon, consisting mainly of clay minerals and minor amounts of
alkali feldspar weathering residues, quartz, biotite (or muscovite) fragments, and black
Fe–Mn oxyhydroxides.

Fully weathered horizon (B horizon): This horizon occurs at a 1.5–8.0 m depth and has
a red–brown to yellow–brown mottled appearance with a soil-like texture. The structure
is loose and highly permeable. Plagioclase is entirely weathered into clay minerals, alkali
feldspar is minimally weathered, biotite is transformed into flaky muscovite, and quartz
particles are residual grains of the bedrock. Locally, black Fe–Mn oxyhydroxides are present.

Semi-weathered horizon (C horizon): This horizon occurs at depths of 7–8 m and
ranges from gray–red to light gray–purple in color. Drillcores often fail to fully penetrate
this horizon owing to strong hardness. It is characterized by well-developed fractures and
weaker weathering as compared with the B horizon, and has a good permeability. Alkali
feldspar only exhibits slight surface weathering into clay minerals, whereas plagioclase is
largely weathered into clay minerals. This horizon contains spheroidal residues of unweath-
ered bedrock, with individual fragments of 10–50 cm in diameter, and locally >100 cm.

Parent rock (D horizon): At a >8 m depth, this horizon consists of light pink biotite
monzonitic granite with a porphyritic texture and blocky structure. Phenocrysts comprise
25–35 vol. % of the rock, including plagioclase, alkali feldspar, quartz, biotite, and horn-
blende. The matrix is light pink in color and consists of alkali feldspar, plagioclase, quartz,
biotite, and accessory chlorite, magnetite, apatite, and zircon.

4. Materials and Methods
4.1. Sampling

The study area is situated in a hilly region with elevations of 900–1300 m, characterized
by gently undulating terrain. The elevation difference between the summit and base of the
knoll is 50 m, with the knoll extending 700 m N–S and 250 m E–W, and slope gradients
ranging from 0◦ to 15◦. Four profiles were sampled along the hillslope, including the
summit, the south (S)-facing mid-slope, the north (N)-facing mid-slope, and the base
(Figure 2). These profiles were drilled to depths of 8.1, 7.9, 8.5, and 7.9 m, respectively. The
stratigraphic characteristics of each profile are shown in Figure 3. The total thickness of the
A2 and B horizons is generally thinner at the summit as compared with the mid-slope and
base. In detail, the B horizon is thickest on the N-facing mid-slope, while the A2 horizon is
thickest on the S-facing mid-slope. A total of 32 regolith samples and 1 sample of parent
rock were collected, with sampling intervals in each borehole of ~1 m. Each sample was
mixed and sealed in polyethylene bags, with a 3 kg aliquot selected for the analysis. The
parent rock sample (Figure 4) was obtained from a deep hard-rock borehole drilled by the
Seventh Geological Brigade of Zhejiang Province, Lishui, China. Given that the A1 horizon
is generally thin, has experienced complex pedogenic processes, and has low REE contents,
sampling commenced at a depth of 1 m.
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cross-polarized light photomicrograph of bedrock. Qz—Quartz; Bt—Biotite; Af—Alkali feldspar;
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4.2. Analytical Methods

After sample collection and packaging, the samples were weighed and transported to
a laboratory, where they were dried in an oven at 105 ◦C for 24 h and then weighed again
before grounding to 200 mesh for a further analysis. The water content can be calculated
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from the difference in mass. The parent rock sample was made into standard thin sections
for petrological observations. Major elements were analyzed by X-ray fluorescence (XRF)
spectrometry with an ARL ADVANT XP instrument (Thermo Fisher Scientific, Beijing,
China) Weighed aliquots of 0.4 g of sample powder were mixed with 4 g of a flux consisting
of lithium tetraborate, lithium metaborate, and lithium fluoride, and then fused into
glass beads using a fusion method. The analytical precision of the major element data
was better than ±1%. The determination of FeO was carried out using the sulfuric acid–
hydrofluoric acid dissolution–potassium dichromate titration method. Trace elements were
measured by inductively coupled plasma–mass spectrometry (ICP–MS) with an ICP–MS
7500ce instrument (Agilent Technologies, Bejing, China). For a trace element analysis, rock
powders were acid-digested in a high-pressure vessel to obtain solutions for the analysis,
with relative errors of less than 5%. Whole-rock geochemical analyses were conducted at the
Key Laboratory of Orogenic Belts and Crustal Evolution, Peking University, Beijing, China.
A mineralogical analysis was performed with a Bruker D8 Advance X-ray diffractometer
(XRD) at the Institute of Mineral Resources, Chinese Academy of Geological Sciences,
Beijing, China. Sample powders were carefully packed into glass sample holders to test,
and the resulting diffractograms were evaluated, and the proportions of various minerals
were determined through Rietveld refinement with JADE 6.5 software.

5. Results
5.1. Water Content

The water contents of the weathering profile samples are presented in Table 1, with
their variations with depth illustrated in Figure 5. Notably, the upper portion of the base
profile exhibits higher water content compared to the other profiles. At the summit, there is
a progressive decrease in water content with depth. In contrast, at the mid-slope, water
gradually infiltrates the soil, resulting in an increase in water content downward, where
it accumulates between the B and C horizons. At the base, fluctuations in water content
diminish as one progresses deeper into the profile.

Table 1. Water contents for the studied weathering profiles.

Profile
Location

Sample
Number

Depth
(m)

Water
Content

(%)

Profile
Location

Sample
Number

Depth
(m)

Water
Content

(%)

Summit

HD120101 0.6 21.1

N-facing
mid-slope

HD112906 0.4 21.2

HD120102 1.8 22.9 HD112907 1.5 20.8

HD120103 2.9 22.7 HD112908 2.9 22.1

HD120104 3.9 21.7 HD112909 4.3 22.6

HD120105 4.9 22.2 HD112910 5.4 22.7

HD120106 5.9 21.3 HD112911 6.5 23.1

HD120107 6.9 20.9 HD113002 7.6 24.2

HD120108 7.9 21.0 HD113003 8.5 21.9

S-facing
mid-slope

HD113021 0.7 22.4

Base

HD113013 0.6 24.1

HD113022 1.9 20.5 HD113014 1.8 22.2

HD113023 2.9 21.4 HD113015 2.8 22.5

HD113024 3.9 22.0 HD113016 3.9 22.8

HD113025 4.9 NA HD113017 4.9 21.1

HD113026 5.9 22.9 HD113018 5.9 21.9

HD113027 6.9 22.1 HD113019 7.0 22.5

HD113028 7.9 21.6 HD113020 8.1 19.7
NA—This sample was not analyzed.
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Figure 5. Plots of water contents versus depth for the studied weathering profiles. A—humus and
clay horizon; B—fully weathered horizon; C—semi-weathered horizon.

5.2. Mineral Compositions

The whole-rock mineral contents of the samples are summarized in Table 2, and their
variations with depth are shown in Figure 6. The XRD analysis revealed that the regolith
consists primarily of quartz, alkali feldspar, and clay minerals. Quartz contents range from
53 to 88 wt. %, while alkali feldspar contents vary between 3 and 31 wt. %. The quartz
content exhibits fluctuating variation along the vertical profile. The alkali feldspar content
generally increases with depth, with higher contents at the summit and base, and lower
contents at the mid-slope profiles. Clay mineral contents range from 4 to 47 wt. %, with
higher contents at the mid-slope and lower contents at the summit and base. The identified
clay minerals are predominantly kaolinite (halloysite), with minor amounts of illite and
trace amounts of gibbsite. Illite was not detected at either the summit or the base, and
gibbsite was absent at the summit. The variation in clay minerals along the vertical profile
exhibits an inverse correlation with that of alkali feldspar.
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Table 2. Mineral concentrations measured by XRD for the studied weathering profiles.

Profile
Position

Sample
Number

Depth
(m)

Qz
(%)

Af
(%)

Kl
(%)

Ill
(%)

Gib
(%)

Clay
(%)

Profile
Position

Sample
Number

Depth
(m)

Qz
(%)

Af
(%)

Kl
(%)

Ill
(%)

Gib
(%)

Clay
(%)

Summit

HD120101 0.6 81.8 9.3 8.9

BD BD

8.9

N-facing
mid-slope

HD112906 0.4 78.5 BD 8.3 12.9 0.4 21.6

HD120102 1.8 84.5 9.2 6.3 6.3 HD112907 1.5 52.6 BD 39.1 8.0 0.3 47.4

HD120103 2.9 60.9 19.1 20.1 20.1 HD112908 2.9 51.0 8.0 2.9 0.6 0.2 3.7

HD120104 3.9 70.9 21.4 7.7 7.7 HD112909 4.3 NA

HD120105 4.9 81.8 13.7 4.4 4.4 HD112910 5.4 78.6 5.9 9.4 5.5 0.7 15.6

HD120106 5.9 57.2 31.2 11.7 11.7 HD112911 6.5 84.3 5.1 10.6 BD BD 10.6

HD120107 6.9 76.3 17.3 6.4 6.4 HD113002 7.6 85.5 3.5 7.5 3.4 BD 10.9

HD120108 7.9 72.0 21.5 6.5 6.5 HD113003 8.5 NA

S-facing
mid-slope

HD113021 0.7 64.4 3.4 24.6 7.7 BD 32.3

Base

HD113013 0.6 60.0 5.1 32.0

BD

2.9 34.9

HD113022 1.9 62.7 4.8 22.1 10.4 0.1 32.6 HD113014 1.8 73.0 9.1 17.7 0.3 18.0

HD113023 2.9 71.4 3.9 18.8 5.9 BD 24.7 HD113015 2.8 86.2 10.2 3.4 0.2 3.6

HD113024 3.9 77.2 10.4 12.4 BD BD 12.4 HD113016 3.9 65.7 19.1 15.2 BD 15.2

HD113025 4.9 78.7 11.9 9.4 BD BD 9.4 HD113017 4.9 68.7 25.0 6.3 BD 6.3

HD113026 5.9 72.9 9.4 13.7 4.0 BD 17.7 HD113018 5.9 57.1 27.6 15.2 BD 15.2

HD113027 6.9 56.6 28.9 14.4 BD BD 14.4 HD113019 7.0 70.0 24.6 5.4 BD 5.4

HD113028 7.9 87.2 5.2 7.6 BD BD 7.6 HD113020 8.1 59.8 31.3 8.8 0.1 8.9

Qz—Quartz; Af—Alkali feldspar; Kl—Kaolinite; Ill—Illite; Gib—Gibbsite; BD—This mineral content is below the detection; NA—This sample was not analyzed.
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5.3. Major Element Compositions

The whole-rock major element data are presented in Table 3. To characterize the loss or
gain of major elements, the dimensionless mass transfer coefficient τj of j element was cal-
culated. τj = (Cj,r/Ci,r)/(Cj,p/Ci,p) − 1, with i as the inert reference element, C representing
element concentration, and r and p indicating regolith and parent rock, respectively [24–26].
Considering that weathering causes volume changes, the volumetric strain values of the
inert elements Ti, Zr, Nb, and Hf were calculated based on the density of the weathering
profile [26]. Ti is the most suitable element according to the results. The τj values are
plotted versus depth in Figure 7. In the profiles, with the exception of Al, Fe, and Mn, all
other major elements exhibit varying degrees of depletion. Mobile elements such as Na, Ca,
P, and Mg are notably leached, while Si and K are slightly leached and depleted. The extent
of depletion is less pronounced at the summit and more significant at the mid-slope. Rela-
tively stable Al exhibits significant enrichment at the summit. Manganese is progressively
enriched with increasing depth in the profiles.

Table 3. Major element concentrations measured by XRF for the studied weathering profiles and
parent rock.

Profile
Position

Sample
Number

Depth
(m)

Major Elements’ Content (%) CIA
(%)SiO2 Al2O3 CaO FeO TFe2O3 K2O MgO MnO Na2O P2O5 TiO2 LOI

Summit

HD120101 0.6 59.31 26.01 0.02 0.14 3.07 3.62 0.16 0.07 0.20 0.02 0.42 7.03 85.84
HD120102 1.8 60.48 24.58 0.02 0.13 3.03 4.60 0.15 0.09 0.08 0.02 0.41 6.45 82.68
HD120103 2.9 58.72 26.56 0.01 0.09 2.91 4.52 0.17 0.09 0.05 0.02 0.40 6.41 84.14
HD120104 3.9 61.90 23.07 0.02 0.15 2.96 5.17 0.21 0.07 0.02 0.02 0.48 6.02 80.29
HD120105 4.9 59.47 24.21 0.07 0.16 3.49 5.35 0.24 0.07 0.10 0.02 0.57 6.29 79.94
HD120106 5.9 60.87 23.73 0.01 1.40 2.65 4.89 1.20 0.16 0.11 0.02 0.43 5.79 81.20
HD120107 6.9 61.75 22.75 0.01 0.10 3.05 5.93 0.23 0.12 0.16 0.03 0.48 5.30 77.22
HD120108 7.9 65.06 21.27 0.01 0.08 2.36 4.92 0.21 0.12 0.11 0.03 0.38 5.38 79.33

S-facing
mid-slope

HD113021 0.7 57.17 27.88 0.02 0.08 3.82 2.23 0.40 0.12 0.02 0.04 0.62 7.65 91.84
HD113022 1.9 55.75 28.68 0.02 0.19 4.04 3.12 0.34 0.18 0.02 0.03 0.61 7.14 89.28
HD113023 2.9 55.90 29.02 0.01 0.10 3.71 2.92 0.33 0.12 0.02 0.05 0.60 7.29 90.02
HD113024 3.9 57.55 26.69 0.02 0.10 3.78 3.14 0.49 0.09 0.20 0.06 0.55 7.30 87.64
HD113025 4.9 57.15 26.62 0.01 0.95 3.60 3.47 0.93 0.15 0.15 0.05 0.55 7.17 86.86
HD113026 5.9 55.19 28.23 0.02 0.57 3.88 3.97 0.50 0.17 0.22 0.04 0.58 7.08 85.77
HD113027 6.9 53.76 28.18 0.03 0.08 3.94 5.10 0.33 0.20 0.56 0.08 0.55 6.95 81.27
HD113028 7.9 56.14 27.31 0.02 0.13 3.75 4.76 0.44 0.13 0.08 0.07 0.55 6.50 83.70

N-facing
mid-slope

HD112906 0.4 50.78 31.79 0.02 0.09 5.04 1.83 0.53 0.10 0.02 0.04 0.64 9.15 93.97
HD112907 1.5 57.11 27.39 0.01 0.15 3.83 1.71 0.36 0.08 0.05 0.03 0.58 8.82 93.36
HD112908 2.9 55.05 28.46 0.02 0.10 4.24 3.14 0.38 0.16 0.10 0.09 0.64 7.61 88.76
HD112909 4.3 59.08 24.86 0.02 0.10 3.39 3.53 0.43 0.14 0.02 0.09 0.55 7.76 86.50
HD112910 5.4 59.79 24.31 0.02 0.49 3.63 4.06 0.31 0.21 0.06 0.06 0.56 6.79 84.28
HD112911 6.5 61.60 22.93 0.03 0.17 3.42 4.23 0.49 0.12 0.03 0.10 0.55 6.28 83.01
HD113002 7.6 56.59 26.86 0.02 0.11 3.70 4.77 0.58 0.16 0.07 0.06 0.62 6.35 83.45
HD113003 8.5 54.88 26.69 0.02 0.07 4.00 5.67 1.16 0.20 0.06 0.06 0.65 6.28 80.97

Base

HD113013 0.6 45.61 34.40 0.04 0.23 5.92 1.67 0.55 0.04 0.11 0.07 0.73 10.82 94.33
HD113014 1.8 53.30 29.88 0.01 0.12 4.19 3.40 0.39 0.10 0.01 0.04 0.66 7.85 88.99
HD113015 2.8 56.33 27.58 0.02 0.13 3.68 4.70 0.27 0.11 0.02 0.02 0.62 6.55 84.28
HD113016 3.9 58.00 25.94 0.02 0.14 3.43 4.84 0.26 0.14 0.05 0.04 0.53 6.48 82.88
HD113017 4.9 59.70 23.79 0.01 0.19 3.47 5.02 0.80 0.12 0.19 0.03 0.56 6.08 80.48
HD113018 5.9 56.58 27.02 0.02 0.15 3.64 5.36 0.28 0.12 0.06 0.04 0.59 5.99 81.97
HD113019 7.0 59.31 24.66 0.01 0.10 3.44 5.43 0.28 0.14 0.03 0.04 0.51 5.85 80.59
HD113020 8.1 60.65 23.38 0.03 0.10 3.21 5.51 0.47 0.13 0.13 0.05 0.50 5.59 78.97

Bedrock HDZK05 32.0 65.10 16.06 2.38 1.35 3.09 4.99 0.77 0.08 3.78 0.17 0.57 2.74 50.17
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profiles. A—humus and clay horizon; B—fully weathered horizon; C—semi-weathered horizon.

The chemical index of alteration (CIA) was used to quantify the degree of chemical
weathering. CIA = Al2O3/(Al2O3 + CaO* + Na2O + K2O) × 100, where the oxides represent
molar quantities, and CaO* refers to CaO only in silicates, using McLennan’s method for
correction [27]. All the profiles have high CIA values (>85%) in A horizons, which decrease
progressively from the surface to greater depths (Figure 8). The sequence of average CIA
values is as follows: mid-slope (87) > base (84) > summit (81). From Table 3 and Figure 8, it
can be observed that in the S-facing mid-slope profile, the CIA values of both the A and B
horizons are greater than 85%, while in the N-facing mid-slope profile, the CIA values of
the A horizon and most of the B horizon are also greater than 85%. The layers with CIA
values greater than 85% can reach a depth of 5 m in these two mid-slope profiles. However,
in the summit profile, only the A horizon above 1 m has CIA values greater than 85%. The
conditions observed in the base profile are intermediate between those of the mid-slope
and summit profiles. This trend correlates with variations in the total thickness of the A
and B horizons, mineral abundances, and the loss and enrichment of major elements within
the weathering profiles. The intensity of chemical weathering is greatest at the mid-slope
and least at the summit.
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5.4. REE Compositions

The REE data are presented in Table 4, and chondrite-normalized REE patterns are
presented in Figure 9. The chondrite data are sourced from C1 chondrite [28]. The REE
contents are plotted versus depth in Figure 9. The parent rock has a total REE content
of 235 ppm, with a total light REE (LREE) content of 200 ppm, which is much higher
than the total HREE content of 35 ppm, resulting in an LREE/HREE ratio of 5.7. This
characteristic is apparent for all four weathering profiles, which are LREE-dominated based
on the chondrite-normalized REE patterns (Figure 9). However, the profiles exhibit varying
degrees of REE enrichment, with contents of 247–1111 ppm at the mid-slope, 256–728 ppm
at the summit, and 255–544 ppm at the base. In the four profiles (Figure 10), the REEs are
predominantly enriched in the B horizon, exhibiting either convex or concave patterns with
depth. At the mid-slope, the REEs are mainly concentrated in the middle of the B horizon.
At the base, the enrichment is shallower and located primarily in the upper B horizon. At
the summit, the enrichment is deeper, and mainly concentrated near the interface between
the B and C horizons. The LREE/HREE values of the profiles are 1.6–20.5, with an average
of 6.3 (n = 32), which is slightly higher than that of the parent rock. The accumulation depth
of the HREEs is lower as compared with the LREEs, and the degree of REE fractionation is
more pronounced at the N-facing mid-slope as compared with the S-facing mid-slope.

Minerals 2024, 14, x FOR PEER REVIEW 11 of 18 
 

 

HD120108 7.9 120 153 23 77 15 2 10 1 8 1 4 1 4 1 39 458 5.7 

S-facing 
mid-slope 

HD113021 0.7 105 209 24 78 15 2 7 1 5 1 3 0 3 0 20 473 10.7 
HD113022 1.9 188 213 44 154 30 4 15 2 8 2 4 1 4 1 37 706 8.7 
HD113023 2.9 205 97 46 151 30 5 17 2 10 2 5 1 5 1 45 621 6.1 
HD113024 3.9 232 102 48 177 37 7 26 3 17 3 9 1 8 1 84 755 4.0 
HD113025 4.9 252 199 50 178 40 8 34 5 27 5 13 2 11 1 137 963 3.1 
HD113026 5.9 252 121 48 168 43 9 41 6 36 7 17 2 14 2 188 955 2.0 
HD113027 6.9 170 135 32 112 29 6 31 5 31 6 14 2 12 2 173 758 1.8 
HD113028 7.9 86 106 16 57 13 3 13 2 14 3 7 1 6 1 82 408 2.2 

N-facing 
mid-slope 

HD112906 0.4 30 208 5 19 4 1 2 0 2 0 1 0 2 0 10 285 14.7 
HD112907 1.5 55 118 12 34 5 1 3 0 2 0 1 0 2 0 11 247 10.9 
HD112908 2.9 243 99 54 192 30 4 13 1 6 1 3 0 3 0 24 675 11.8 
HD112909 4.3 367 115 71 249 50 9 33 4 19 3 9 1 7 1 83 1021 5.4 
HD112910 5.4 288 174 51 186 49 10 48 8 43 8 19 3 15 2 209 1111 2.1 
HD112911 6.5 160 88 28 97 25 5 28 5 30 5 14 2 10 1 159 659 1.6 
HD113002 7.6 60 81 11 40 8 2 7 1 6 1 3 0 3 0 35 259 3.6 
HD113003 8.5 53 114 11 39 8 1 5 1 4 1 2 0 2 0 23 267 5.7 

Base 

HD113013 0.6 37 268 6 18 4 1 3 0 2 0 1 0 1 0 9 350 20.5 
HD113014 1.8 93 131 21 77 13 2 8 1 5 1 3 0 3 0 24 383 7.5 
HD113015 2.8 149 108 34 125 23 4 16 2 11 2 6 1 5 1 56 544 4.4 
HD113016 3.9 132 54 28 101 22 4 16 2 14 3 7 1 6 1 72 463 2.8 
HD113017 4.9 97 142 20 70 15 3 11 2 9 2 5 1 4 1 50 430 4.1 
HD113018 5.9 77 99 16 55 12 2 8 1 6 1 3 0 3 0 32 317 4.7 
HD113019 7.0 60 90 12 43 9 2 6 1 5 1 3 0 2 0 24 257 5.2 
HD113020 8.1 54 108 11 38 8 1 5 1 4 1 2 0 2 0 20 255 6.3 

Bedrock HDZK05 32.0 50 95 10 36 8 1 5 1 4 1 2 0 2 0 20 235 5.7 

 
Figure 9. Chondrite-normalized REE patterns of the weathering profiles and parent rock. Figure 9. Chondrite-normalized REE patterns of the weathering profiles and parent rock.



Minerals 2024, 14, 1178 11 of 18

Table 4. REE concentrations measured by ICP-MS for the studied weathering profiles and parent rock.

Profile
Location

Sample
Number

Depth
(m)

REE Content (ppm) REE
(ppm)

LREE
/HREELa Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y

Summit

HD120101 0.6 41 149 9 31 6 1 3 0 2 0 1 0 1 0 10 256 12.7
HD120102 1.8 151 129 32 100 18 2 10 1 6 1 3 0 3 0 27 484 8.4
HD120103 2.9 203 188 40 130 24 3 15 2 9 2 5 1 4 1 45 672 7.1
HD120104 3.9 189 93 37 115 23 3 15 2 11 2 5 1 5 1 51 552 5.0
HD120105 4.9 214 113 40 134 26 4 18 3 14 3 7 1 6 1 70 653 4.3
HD120106 5.9 171 283 32 107 22 3 16 2 13 2 6 1 6 1 64 728 5.6
HD120107 6.9 142 114 27 90 18 2 12 2 10 2 5 1 5 1 52 481 4.4
HD120108 7.9 120 153 23 77 15 2 10 1 8 1 4 1 4 1 39 458 5.7

S-facing
mid-slope

HD113021 0.7 105 209 24 78 15 2 7 1 5 1 3 0 3 0 20 473 10.7
HD113022 1.9 188 213 44 154 30 4 15 2 8 2 4 1 4 1 37 706 8.7
HD113023 2.9 205 97 46 151 30 5 17 2 10 2 5 1 5 1 45 621 6.1
HD113024 3.9 232 102 48 177 37 7 26 3 17 3 9 1 8 1 84 755 4.0
HD113025 4.9 252 199 50 178 40 8 34 5 27 5 13 2 11 1 137 963 3.1
HD113026 5.9 252 121 48 168 43 9 41 6 36 7 17 2 14 2 188 955 2.0
HD113027 6.9 170 135 32 112 29 6 31 5 31 6 14 2 12 2 173 758 1.8
HD113028 7.9 86 106 16 57 13 3 13 2 14 3 7 1 6 1 82 408 2.2

N-facing
mid-slope

HD112906 0.4 30 208 5 19 4 1 2 0 2 0 1 0 2 0 10 285 14.7
HD112907 1.5 55 118 12 34 5 1 3 0 2 0 1 0 2 0 11 247 10.9
HD112908 2.9 243 99 54 192 30 4 13 1 6 1 3 0 3 0 24 675 11.8
HD112909 4.3 367 115 71 249 50 9 33 4 19 3 9 1 7 1 83 1021 5.4
HD112910 5.4 288 174 51 186 49 10 48 8 43 8 19 3 15 2 209 1111 2.1
HD112911 6.5 160 88 28 97 25 5 28 5 30 5 14 2 10 1 159 659 1.6
HD113002 7.6 60 81 11 40 8 2 7 1 6 1 3 0 3 0 35 259 3.6
HD113003 8.5 53 114 11 39 8 1 5 1 4 1 2 0 2 0 23 267 5.7

Base

HD113013 0.6 37 268 6 18 4 1 3 0 2 0 1 0 1 0 9 350 20.5
HD113014 1.8 93 131 21 77 13 2 8 1 5 1 3 0 3 0 24 383 7.5
HD113015 2.8 149 108 34 125 23 4 16 2 11 2 6 1 5 1 56 544 4.4
HD113016 3.9 132 54 28 101 22 4 16 2 14 3 7 1 6 1 72 463 2.8
HD113017 4.9 97 142 20 70 15 3 11 2 9 2 5 1 4 1 50 430 4.1
HD113018 5.9 77 99 16 55 12 2 8 1 6 1 3 0 3 0 32 317 4.7
HD113019 7.0 60 90 12 43 9 2 6 1 5 1 3 0 2 0 24 257 5.2
HD113020 8.1 54 108 11 38 8 1 5 1 4 1 2 0 2 0 20 255 6.3

Bedrock HDZK05 32.0 50 95 10 36 8 1 5 1 4 1 2 0 2 0 20 235 5.7
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6. Discussion
6.1. Comparison of Weathering Degrees Along the Hillslope

The mineral composition of all profiles on the knoll is relatively simple, characterized
by high quartz content, low concentrations of alkali feldspar, and kaolinite as the dominant
clay mineral, indicating an intense degree of weathering [29,30]. Primary minerals prone to
weathering, such as plagioclase, biotite, amphibole, and apatite, are largely absent from the
profiles. In comparison, the mid-slope exhibits lower alkali feldspar concentrations and
higher clay content, distinguishing it from both the summit and base, suggesting that it has
undergone more pronounced chemical weathering. The absence of gibbsite at the summit
indicates its relatively low weathering degree. The complete depletion of active Na and Ca
and the enrichment of inert Al elements indicate that weathering has advanced to a signifi-
cant stage. At the summit, the depletion of K and Si is less pronounced than in other profiles,
while Al is distinctly enriched at the summit but remains unchanged in the other profiles,
indicating a relatively lower weathering intensity. The CIA provides a clearer metric for
assessing chemical weathering [27], with results indicating mid-slope > base > summit.
The quantitative results provide robust support for the preceding analyses of mineral
composition and major element concentrations.

6.2. REE Enrichment and Leaching

The relationship between REE content and chemical weathering intensity (Figure 11a)
shows that for 65% < CIA < 85%, REE contents positively correlate with CIA values. In this
range, mildly acidic precipitation and soil humus contribute to the release of REEs from
bedrock, enabling them to migrate as free ions or complexes [31–33]. Ion exchange facilitates
REE adsorption onto secondary clay minerals, leading to REE enrichment [13,34,35].

Conversely, when the CIA exceeds 85%, the REE content shows a negative correlation
with CIA (Figure 11a). In profiles, clay mineral concentration increases from bottom to
top; however, REE content does not follow this trend. Researchers note that secondary
clay minerals evolve from diverse types to a more homogeneous form as weathering pro-
gresses, shifting from a 2:1 type with higher REE adsorption capacity to a less effective 1:1
type [15,20]. In the upper layers, the evolution of clay minerals combined with intensified
water leaching and changes in physicochemical conditions (e.g., increased acidity) makes
REE adsorption less favorable [5,36,37].
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In the mid-slope, intensified weathering releases sufficient ionic REEs and increases
clay mineral content, which boosts REE adsorption, especially due to illite’s superior
adsorption efficiency compared to kaolinite [38,39]. This combination contributes to greater
REE enrichment across the knoll’s mid-slope. However, at the summit, weathering is
weaker, yet REE content and enriched layer thickness are higher than at the base, likely
due to the strong leaching effects of the base (discussed in Section 6.4).

6.3. REE Fractionation and Anomaly of Ce and Eu

Due to the distinct physicochemical characteristics of LREEs and HREEs, including
their redox behavior and hydrolysis constants, weathering processes preferentially leach
HREEs over LREEs, resulting in REE fractionation [40–42]. In the profiles of the knoll, the
LREE/HREE ratios increase in correlation with CIA values (Figure 11b), reflecting that
enhanced chemical weathering leads to significant LREE/HREE fractionation [43–45].

For a given CIA value, the order of LREE/HREE ratios in profiles is as follows: summit
> base > mid-slope, with N-facing mid-slope > S-facing mid-slope (Figure 11b). This reflects
the hierarchical degree of REE fractionation. It is essential to recognize that clay minerals
also play a significant role in REE fractionation; the abundance of these minerals and the
presence of illite enable the retention of more HREEs with minimal desorption. This could
explain the lower degree of REE fractionation on mid-slopes.

Ce and Eu are sensitive to redox processes, and their anomalies reflect the degree
of separation from other REEs and are widely used to assess redox conditions during
weathering [46]. δCe = CeN/((LaN × PrN)1/2) and δEu = EuN/((SmN × GdN)1/2), where
N represents normalization by C1 chondrite [28]. The δCe curve exhibits a “C” shape, with
Ce showing a positive anomaly in the A horizon of all profiles that gradually transitions to
a stable negative anomaly at greater depths. In contrast, δEu displays a distinct negative
anomaly (Figure 12). In the A horizon, Ce3+ oxidizes to Ce4+, forming CeO2 precipitates
and resulting in a positive anomaly, while Eu shows a negative anomaly inherited from
the bedrock. Simultaneously, the Fe3+/Fe2+ ratio is utilized for verification, indicating that
oxidation intensifies from the bottom of the B horizon upwards to the A horizon, aligning
with δCe results (Figure 12).
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6.4. Illuviation Effects on REE Distribution

In the preceding discussion, it is clear that the redistribution of REEs on the knoll is
linked to illuviation effects. While the water content across the four profiles represents a
transient condition within the context of prolonged weathering processes, it nonetheless
provides a robust foundation for a further analysis. In granite regions characterized
by a uniform lithology and minimal tectonism, the redistribution of water within the
weathering profile of a knoll is affected mainly by the topography [47–49]. Under the
influence of topography, the direction and intensity of water infiltration and leaching,
coupled with chemical weathering, collectively determine the depth and extent of secondary
REE enrichment horizons on the knoll (Figure 13a).
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At the summit, water enters the weathering profile and flows divergently, with sig-
nificant lateral divergence allowing for effective drainage (Figure 13b). Due to weaker
chemical weathering, the A2 and B horizons are thin, leading to minor REE release from
primary minerals. Some REEs are lost laterally with the water flow [20], resulting in modest
enrichment at the interface between the B and C horizons. At the mid-slope, vertical
leaching is more prominent (Figure 13c). With advanced chemical weathering and a high
clay mineral content, significant REEs are released and adsorbed, enriching in the middle
B horizon [50,51]. At the base, the area is a runoff zone with abundant lateral water flow
(Figure 13d). Although chemical weathering is more intense here compared to the summit,
high lateral flow can carry REEs away, resulting in only minor REE enrichment in the upper
B horizon.

Topographically controlled hydrological processes significantly affect LREE/HREE
fractionation. The HREEs are more susceptible to transport by water infiltration and
leaching compared to LREEs. At the summit, water flow is divergent, and at the base,
lateral water flow is abundant. In both profiles, HREEs experience greater leaching. This
dynamic leads to stronger REE fractionation at the summit and the base compared to the
mid-slope. Discrepancies in REE fractionation between the N-facing and S-facing midslopes
are noted. The slope aspect influences solar radiation levels, leading to varying temperature
and moisture conditions. Due to the higher water content and greater thickness of the A
and B horizons, the N-facing mid-slope profile experiences reduced evaporation and a
stronger vertical leaching process. The N-facing mid-slope leaches more HREEs, likely due
to this enhanced leaching process, thereby yielding a higher LREE/HREE ratio compared
to the S-facing mid-slope [52–55].

On the knoll, the REE distribution varies significantly in different topographic settings.
Topography controls the hydrological conditions, with water flow serving as both an
external agent and a medium for REE migration. This makes water flow a key factor in
controlling the geochemical behavior of the REEs [20,56–59]. Along with factors such as
the parent rock, climate, and vegetation, the topography affects the activation, migration,
fractionation, and enrichment of REEs [6,8,24,60–62]. These combined effects promote
the development of ion-adsorption REE deposits. Gaining a deeper understanding of
how micro-topographic factors affect the REEs in weathering profiles is important for the
exploration, resource estimation, and efficient utilization of ion-adsorption REE deposits.

7. Conclusions

This study investigated the mineralogical and geochemical characteristics of weath-
ering profiles developed at various topographic positions on a knoll within the Hedi ion-
adsorption REE deposit in Zhejiang Province, China. The main conclusions are as follows.

1. The weathering profiles are layered. The mid-slope features the thickest and best-
developed A2 and B horizons, followed by the base and then summit. The thickness,
mineral composition, and major element characteristics of these horizons correlate
with the CIA. The order of the CIA values is mid-slope > base > summit. This suggests
that the highest intensity of chemical weathering is at the mid-slope and the lowest
intensity is at the summit.

2. The REEs are most concentrated in the B horizon, with the greatest enrichment at the
mid-slope, followed by the summit and then base. The depths of enrichment are in
the order summit > mid-slope > base. The REE fractionation in the regolith is more
pronounced than in the parent rock, with the HREEs being concentrated at greater
depths as compared with the LREEs. In addition, REE fractionation is stronger on the
N-facing mid-slope as compared with the S-facing mid-slope.

3. The enrichment and fractionation of REEs are closely linked to the chemical weather-
ing intensity and clay minerals. During weathering, REE contents initially increase
before decreasing. The intensified weathering and higher clay mineral content com-
bined with the presence of illite are reasons for higher REE concentration in mid-slopes.
Chemical weathering enhances LREE/HREE fractionation. Clay minerals also play a
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significant role in REE fractionation. The Ce anomaly result supports the viewpoint
that oxidation conditions enhance upward in the profile.

4. Water leaching influenced by the micro-topography affects both the depth and extent
of REE enrichment. Micro-topographic hydrological variations affect LREE/HREE
fractionation. In addition, the slope orientation affects REE fractionation due to
variations in temperature and moisture.
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