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Abstract: Timely and accurate land use information in open-pit mines is essential for environmental
monitoring, ecological restoration planning, and promoting sustainable progress in mining regions.
This study used high-resolution unmanned aerial vehicle (UAV) imagery, combined with object-
oriented methods, optimal segmentation algorithms, and machine learning algorithms, to develop
an efficient and practical method for classifying land use in open-pit mines. First, six land use
categories were identified: stope, restoration area, building, vegetation area, arterial road, and
waters. To achieve optimal scale segmentation, an image segmentation quality evaluation index
is developed, emphasizing both high intra-object homogeneity and high inter-object heterogeneity.
Second, spectral, index, texture, and spatial features are identified through out-of-bag (OOB) error
of random forest and recursive feature elimination (RFE) to create an optimal multi-feature fusion
combination. Finally, the classification of open-pit mines was executed by leveraging the optimal
feature combination, employing the random forest (RF), support vector machine (SVM), and k-
nearest neighbor (KNN) classifiers in a comparative analysis. The experimental results indicated that
classification of appropriate scale image segmentation can extract more accurate land use information.
Feature selection effectively reduces model redundancy and improves classification accuracy, with
spectral features having the most significant effect. The RF algorithm outperformed SVM and KNN,
demonstrating superior handling of high-dimensional feature combinations. It achieves the highest
overall accuracy (OA) of 90.77%, with the lowest misclassification and omission errors and the highest
classification accuracy. The disaggregated data facilitate effective monitoring of ecological changes in
open-pit mining areas, support the development of mining plans, and help predict the quality and
heterogeneity of raw clay in some areas.

Keywords: UAV; object-oriented; random forest; open-pit mines; land use classification

1. Introduction

Open-pit mines are crucial for economic development, but excessive exploration
has led to concerns over ecological degradation, environmental pollution, and geological
disasters [1]. Therefore, efficiently and accurately capturing mine land use information
holds significant importance. Unlike urban, forest, and farmland, land use in mining areas
is subject to frequent changes, often accompanied by significant geomorphic alterations
such as excavation, accumulation, and subsidence [2,3]. Thus, extracting this information
has been a technical challenge. Traditional surveying and mapping technologies are
constrained by manual dependence, high cost, and limited timeliness in acquiring mine
land use information [4]. Remote sensing technology provides fast, accurate, and large-scale
analysis using multi-temporal, multispectral, and multiresolution data [5]. It has become

Minerals 2024, 14, 1282. https://doi.org/10.3390/min14121282 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min14121282
https://doi.org/10.3390/min14121282
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0009-0009-9504-0569
https://orcid.org/0009-0003-5066-9191
https://doi.org/10.3390/min14121282
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min14121282?type=check_update&version=2


Minerals 2024, 14, 1282 2 of 18

an important tool for understanding the ecological dynamics and resource exploitation in
mining regions.

In the past decade, due to its rapid advancement, remote sensing technology has gar-
nered significant attention in land information extraction research. Satellite multispectral
imagery is used as the basic data for land use information extraction [6,7]. For example,
Myint et al. [8] utilized QuickBird satellite imagery to assess object-oriented classification
methods in Phoenix, Arizona, demonstrating significant improvements in classification
precision, attributable to object-oriented analytical approaches. Akar et al. [9] utilized
airborne hyperspectral imagery and machine learning algorithms such as RF and SVM
for land use/land cover mapping. The study revealed that incorporating Gabor texture
information into machine learning enhanced the classification accuracy by 9%. Hu et al. [10]
proposed the Multi-scale Land Use Multi-classification Network model, a land use clas-
sification method based on remote sensing imagery. The model eliminates the influence
of data category occupancy ratio, improves the structural integrity of land parcels, refines
the classification boundaries, and enhances the overall classification accuracy. However,
satellite remote sensing imagery suffers from high data acquisition costs, susceptibility
to severe weather conditions, and spatial resolution limitations, posing difficulty for ex-
tracting small-scale mining regions. Mitchell et al. [11] noted that the spatial resolution of
satellite remote sensing is insufficient, making it difficult to achieve high-precision land
cover mapping. Shaik et al. [12] utilized the high-resolution images from the PRISMA
satellite for remote sensing mapping, but the susceptibility to atmospheric interference
remains a significant problem. Further investigation is required to address the limitations
of satellite imagery and to enhance the accuracy of land use information extraction.

UAV remote sensing technology has rapidly advanced, offering advantages of simple
operation, easy image acquisition, high spatial resolution, and low weather dependence [13].
These attributes address the limitations often encountered with satellite remote sensing. The
utilization of UAV images in land use classification offers abundant spectral, index, texture,
and spatial features, facilitating efficient extraction of land use data. Fu et al. [14] employed
high-resolution UAV imagery to monitor land use dynamics, overcoming problems as-
sociated with satellite image acquisition in cloudy and foggy mountainous areas. Zhang
et al. [15] applied an improved DeepLabv3+_BA model to classify land use information in
UAV images of the Weibei Plateau in China, achieving good results.

Machine learning and deep learning have yielded fruitful results in land use classi-
fication [16], yet their combined use with UAV imagery for open-pit mine classification
remains rare. In addition, the mixed pixels in mine area images contain a wide range of
complex primitives [17], complicating accurate and efficient information extraction in mine
areas using current methods. This study uses high-resolution UAV imagery to construct a
segmentation quality evaluation index model to achieve optimal segmentation scale. The
influence of various feature categories on classification outcomes is analyzed, and the opti-
mal feature combination is obtained using RFE. On this basis, RF algorithm classification
was determined, aiming to obtain an open-pit mines land use classification method based
on UAV imagery.

The mining activities continue unabated, with concurrent dynamic changes in land use
patterns. UAV aerial photography, leveraging its efficient imaging capabilities, enables the
rapid acquisition and classification of mine imagery, thereby facilitating real-time tracking
and monitoring of land use conditions in mining areas. This study innovatively applies
high-resolution UAV imagery to the extraction of land information in open-pit mines. The
proposed segmentation quality evaluation index model and multi-feature optimization
method hold significant applied value, providing a valuable reference for subsequent
monitoring, management, and protection of open-pit mines.
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2. Materials and Methods
2.1. Study Area

The study area, positioned at coordinates (118◦42′ E, 26◦07′ N), is found in Minqing
County, Fuzhou City, Fujian Province, China, and is depicted in Figure 1. The area is a
typical estuary basin surrounded by mountains, with an overall terrain sloping from west
to east and an elevation between 600 and 1000 m [18]. The study area is a ceramic clay mine,
which is mainly formed by hydrothermal alteration of rhyolite host rock, with uneven and
locally intense alteration. The mine area is hilly, and long-term mining has led to large
topographic slopes, with some side slopes up to 75◦.
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digital surface model of the study area.

2.2. Data Acquisition and Preprocessing

The data were acquired by the DJI M300RTK UAV (Da-Jiang Innovations, Shenzhen,
China) in May 2023, under clear weather conditions with high visibility, resulting in high-
quality images. The drone captured true-color images containing red
(700 ± 16 nm), green (550 ± 16 nm), and blue (450 ± 16 nm) bands. An aggregate of
262 images was acquired, each with a size of 5471 × 3648 pixels, and the imagery yielded
a spatial resolution of roughly 0.04 m. These images were used to generate a three-
dimensional (3D) model through aerial triangulation, dense cloud generation, and 3D
reconstruction using ContextCapture software(v4.4.10, Bentley Systems, Exton, PA, USA).
To enhance the accuracy of data within the study area, this research employed an alignment
model method. Using the 3D model as a reference, the distances between three image
control points (P1, P2, and P3) in different orientations on the model were measured. Com-
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bined with the field tape measurement data on the day of the UAV aerial photography, the
scaling coefficient of the model was calculated (see Table 1) and finally determined to be
1.046. Then the 3D model was enlarged by 1.046 times to improve the accuracy of spatial
matching, and the optimized digital orthophoto map (DOM) and digital surface model
(DSM) were derived (Figure 1d,e).

Table 1. Calculation of scaling coefficient.

Image Control Point
Identification On-Site Measurement Model Measurement Scaling Factor Overall Scaling

Coefficient

P1 to P2 119.53 m 113.95 m 1.049
1.046P1 to P3 85.78 m 82.16 m 1.044

P2 to P3 107.66 m 102.93 m 1.046

2.3. Research Methods

This study proposes a land use classification method for open-pit mines, utilizing visi-
ble imagery captured by unmanned aerial vehicles (UAVs) employing an object-oriented
method combined with machine learning algorithms. The classification method has five key
stages (Figure 2): (1) optimal scale segmentation, involving image segmentation evaluation
index construction, optimal split-scale determination, and image segmentation; (2) features
extraction and selection, using ENVI for image feature extraction and using OOB error of
RF and recursive feature elimination to select an optimal feature combination; (3) classi-
fication implementation, where open-pit mines are classified using RF, SVM, and KNN
algorithms; (4) accuracy evaluation, where the accuracy of the classification results is as-
sessed by metrics such as user accuracy (UA), producer accuracy (PA), OA, and Kappa; and
(5) analysis of classification results.
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2.3.1. Establish Interpretation Markers

Through field surveys and image analysis, the mining area was divided into six
distinct categories: stope, restoration area, building, vegetation area, arterial road, and
waters (Table 2). A total of 390 samples were collected, including 96 stopes, 138 restoration
areas, 36 buildings, 86 vegetation areas, 30 arterial roads, and 4 waters. From the sample
points of each land category, 50% were designated for training, and the other 50% were
assigned for validation.

Table 2. Images and characteristics of the land use categories in open-pit mines.

Land Use Categories Image Characteristics

Stope
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2.3.2. Image Segmentation

Recently, there has been an increasing tendency to use object-oriented methods for
classifying remote sensing images. Selecting an appropriate segmentation scale is critical
for maintaining object homogeneity while preserving inter-object heterogeneity [19]. A
larger scale may lead to under-segmentation, compromising accuracy and integrity, while a
smaller scale may result in over-segmentation, disrupting the image’s continuity [20]. This
study constructs a global segmentation quality evaluation index to balance homogeneity
and heterogeneity. Higher evaluation values indicate better segmentation quality. The
detailed procedure is outlined below:

1. The images were segmented using eCognition Developer 10.3 software across multiple
scales. The study area was segmented 33 times at scales of 100~400 with a step size
of 20.

2. The intra-object homogeneity evaluation index V was calculated by area and standard
deviation [21], as follows:

V =
∑n

i=1 aivi

∑n
i=1 ai

(1)

In which n is the overall count of segmented image objects; vi is the standard deviation
of element i; and ai is the area of element i.

3. The heterogeneity between objects is assessed by the global Moran index (IM) in the
literature [22], as follows:
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IM =
n∑n

i=1 ∑n
j=1 wij(yi − ȳ)

(
yj − ȳ

)(
∑n

i=1(yi − ȳ)2
)(

∑i ̸=j ∑ wij

) (2)

In which n is the total count of elements; Wij is the spatial weighting factor associated
with elements i and j, where Wij = 1 if the elements are adjacent, and 0 otherwise; yi is the
spectral mean of element i.

4. Homogeneity V and heterogeneity IM are normalized as follows:

Vnorm(IMnorm) =
X − Xmin

Xmax − Xmin
(3)

In which X is the value of V (IM) in a certain scale; Xmax and Xmin are the maximum
and minimum values of V (IM) for all partition scales.

5. Combining Vnorm and IMnorm, the image segmentation quality evaluation index GS
is obtained:

GS =
n

∑
i=1

Vnorm + IMnorm

n
(4)

In which n is the count of image bands, and Vnorm and IMnorm are calculated from
Equation (3). The smaller the GS value, the higher the segmentation quality.

2.3.3. Classification Feature Extraction

A total of 58 features were extracted from the objects, as detailed in Table 3.

Table 3. Feature list.

Feature Types Feature Variables Feature Count

Spectral features Mean_R, Mean_G, Mean_B, SD_R,
SD_G, SD_B, Brightness, Max_diff 8

Index features RGRI, NGRDI, EXG, RGBVI, VDVI 5

Texture features

GLCM_Mean1, GLCM_Mean2, GLCM_Mean3, GLCM_Mean4,
GLCM_SD1, GLCM_SD2, GLCM_SD3, GLCM_SD4, GLCM_Ctrst1,

GLCM_Ctrst2, GLCM_Ctrst3, GLCM_Ctrst4, GLCM_Dis1, GLCM_Dis2,
GLCM_Dis3, GLCM_Dis4, GLCM_Hom1, GLCM_Hom2, GLCM_Hom3,

GLCM_Hom4, GLCM_Ent1, GLCM_Ent2, GLCM_Ent3, GLCM_Ent4,
GLCM_Cor1, GLCM_Cor2, GLCM_Cor3, GLCM_Cor4, GLCM_Asm1,

GLCM_Asm2, GLCM_Asm3, GLCM_Asm4

32

Spatial features Elevation, slope, aspect, area, length, width, length/width, pixels,
Bord_Index, Shp_Index, asymmetry, compactness, density 13

1. Spectral features include mean or standard deviation (SD) of the visible light bands
(red, green, and blue), maximum difference (Max_diff), and brightness, totaling 8 [23].

2. Index features include the red-green ratio index (RGRI), the normalized green-red
difference index (NGRDI), the excess green index (EXG), the red-green-blue vegetation
index (RGBVI), and the visible-band difference vegetation index (VDVI), totaling 5.
The formula for calculating the vegetation index is presented in Table 4.

Index features can enhance the spectral differences between different land cover types
and reduce the influence of atmospheric, light, and other environmental factors, thereby
improving the accuracy of classification. The ENVI5.6 software was used to calculate the
above vegetation indices. The outcomes are shown in Figure 3.
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Table 4. Visible vegetation index.

Vegetation Index Calculation Formula Theoretical Interval Reference

RGRI RGRI = R
G [0,255] [24]

NGRDI NGRDI = G−R
G+R [−1,1] [25]

EXG EXG = 2G − R − B [−255,510] [26]
RGBVI RGBVI = G2−(R×B)

G2+(R×B)
[−1,1] [27]

VDVI VDVI = 2G−R−B
2G+R+B [−1,1] [28]
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Figure 3. Original image and visible vegetation index image: (a) original image, (b) RGRI image,
(c) NGRDI image, (d) EXG image, (e) RGBVI image, (f) VDVI image. (b, c, d, e, and f were calculated
using ENVI software, version 5.6).

3. Texture features were extracted by the gray-level co-occurrence matrix (GLCM)
methodology. A total of 32 texture features were selected from four directions (0◦,
45◦, 90◦, and 135◦), numbered 1 to 4 in order, and eight categories: mean, standard
deviation, contrast (Ctrst), dissimilarity (Dis), homogeneity (Hom), entropy (Ent),
correlation (Cor), and angular second moment (Asm).

4. Spatial features include object shape features and range features, totaling 13.

2.3.4. Feature Selection

When processing data, using all features for classification can lead to information
redundancy and the “curse of dimensionality” [29,30]. To address this, this study first
used the OOB error of RF to assess feature importance. Following this, the RFE method
was employed to determine the optimal number of features and construct the optimal
feature combination for land use classification in open-pit mines. In the classification
task, each decision tree predicts independently, and the object’s classification is deter-
mined by majority voting [31]. The OOB error is also used to evaluate feature impor-
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tance and misclassification rate. The significance of feature F is determined using the
following formula:

Fimp =
∑N

n=1(OOBn − OOB0)

N
(5)

where OOBn is the OOB error of the nth decision tree after adding noise interference to
feature F; OOB0 is the OOB error of the nth decision tree before adding noise interference;
N is the number of decision trees.

RFE is an iterative machine learning technique for feature selection that operates. It
removes the least important features and retrains the model until achieving the optimal
feature combination [32]. By decreasing the feature count, RFE enhances the predictive
capability of the model. RFE is especially effective when combined with the RF algorithm.

2.3.5. Classification Algorithm

Many methods have been proposed for classifying remote sensing imagery, and the
choice between supervised or unsupervised classification depends on the availability of
prior knowledge [33]. Object-oriented classification methods effectively utilize the spectral,
index, texture, and spatial features of high-resolution UAV imagery to enhance classification
precision. In this study, the randomForest, e1071, and class packages of the R language are
used as the RF, SVM, and KNN algorithms, respectively [34].

1. RF uses a majority voting method to obtain prediction results through bootstrapping
and a feature random selection strategy. The RF flowchart is shown in Figure 4.
RF performs well in regression and classification tasks, offering robustness, an-ti-
overfitting ability, and efficient parallel processing capabilities [35]. Bootstrapping is
the process of training different subsets of the dataset simultaneously using differ-ent
decision trees, ensuring that each decision tree in the RF model is unique, thus in-
creasing the diversity and generalization ability of the model [36,37]. As the number
of decision trees in the random forest increases, the misclassification rate decreases
sharply before stabilizing. When the number of trees reaches around 500, the mis-
classification rate stabilizes. Therefore, the number of trees is set to 500 for training
the random forest model, and the number of features for classification nodes was
de-termined to be the square root of the total number of features.
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2. SVM operates on the principles of minimizing structural risk and is grounded in
statistical learning theory [38]. SVM has strong generalization ability and is suitable
for high-dimensional, nonlinear problems and small sample scenarios. This study
uses an SVM algorithm with a radial basis function kernel for land use classification
to reduce computational costs and prevent the “curse of dimensionality” [39]. The
SVM flowchart is shown in Figure 5.
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3. KNN is a traditional supervised learning algorithm, and its core principle is that ob-
jects are assigned to the majority category of the k nearest objects in feature space [40];
the KNN flowchart is shown in Figure 6. The KNN algorithm was used in this study
to take advantage of its lack of prior assumptions in dealing with different datasets
and its robustness to outliers. Compared to the traditional nearest neighbor method,
KNN reduces sensitivity to outliers and noisy data, thereby improving classification
accuracy [41].
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2.3.6. Classification Accuracy Evaluation

The UA [42], PA [42], OA [43], and Kappa [43] are utilized to evaluate the classification
accuracy of the models. UA represents the percentage of accurately categorized items
relative to the overall count of specific objects, whereas PA represents the ratio of the
number of correctly classified objects of a certain land category to the total number of land
use categories. These metrics are calculated from the confusion matrix and provide an
extensive evaluation of the model’s performance. The formulas are as follows:

UA =
Pii
Pi+

× 100% (6)

PA =
Pii
P+i

× 100% (7)
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OA =
∑n

i=1 Pii

P
× 100% (8)

Kappa =
P∑n

i=1 Pii − ∑n
i=1(Pi+P+i)

P2 − ∑n
i=1(Pi+P+i)

(9)

In the formula, Pii represents the total number of samples correctly classified as
land use information in category i; Pi+ represents the total number of the i-th row of the
confusion matrix, corresponding to the i-th class of features in the prediction sample; P+i
represents the total number of the i-th column, corresponding to the sum of the i-th class of
features in the validation sample; n represents the number of land use categories; and P
represents the total number of samples.

3. Results and Analysis
3.1. Segmentation Parameter Determination

The efficacy of object-oriented land use classification is intimately correlated with
the quality of image segmentation. As shown in Figure 7, within the segmentation scale
range of 100 to 400, the segmentation quality evaluation index (GS) demonstrates an initial
increase followed by a decrease and then a subsequent increase. The peak value occurs
between 280 and 320. When the scale is less than 200, over-segmentation occurs, which
slows down calculation. When the scale is greater than or equal to 340, under-segmentation
occurs, meaning that different land features were merged into a single object. The lowest
point appeared at a scale of 280, registering a GS of 0.9553, showing minimal difference
compared to the value at a scale of 300. To improve classification accuracy, additional
experiments were conducted at scales of 285, 290, and 295. The optimal segmentation scale
was finally determined to be 285, where GS reached the lowest value of 0.9242, signifying
the optimal segmentation result. Taking into account the shape and distribution of land
categories within the study area, the shape factor and compactness were adjusted to 0.2
and 0.6, respectively.
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3.2. Evaluation of Optimal Segmentation Results

To test the optimal segmentation scale, this study performed multi-scale segmentation
of the UAV images at a scale of 360, keeping other parameters constant. A new RF model
was also trained based on this and applied to the study area. Figure 8a displays the
confusion matrix of the classification results. The diagonal values represent the recall rate
of each class. The OA is 88.21%, and the Kappa is 0.8455. In comparison to the results
obtained with an optimal segmentation scale of 285, the OA and Kappa decreased by
2.05% and 0.0262, respectively, indicating that the optimal segmentation scale significantly
improves the object integrity, thereby improving classification accuracy.
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3.3. Evaluation of Features Importance

Regarding the land use classification of open-pit mines, different features have dif-
ferent impacts on the model performance. The importance of features is evaluated by the
OOB error of RF. Figure 9 shows the optimal feature combination and importance ranking
in this paper. The mean value of the green band in the spectral features ranks highest
among all features, followed by the VDVI index in the index features. Although spectral
and index features share comparable significance, the optimal feature combination slightly
favors spectral features over index features, suggesting their marginally greater importance.
In contrast, texture features, despite their variety, exhibit lower overall importance, with
the highest-scoring GLCM_Ctrst3 only reaching the fifth place. The proportion of texture
features in the top 19 is low, indicating that their overall importance is lower than that of
index features. Spatial features, totaling 13, rank relatively lower at the 7th, 15th, and 17th
positions among the top 19 features, indicating their lesser importance. In summary, the
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descending order of feature importance in this study is as follows: spectral features, index
features, texture features, and spatial features.
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Figure 9. Feature importance ranking.

During model training, integrating multi-feature information can improve the robust-
ness, reliability, and generalization ability of the model. However, increasing the number
of features does not necessarily improve accuracy. Adding too many features can introduce
information redundancy, which will affect the classification effect. Hence, this study em-
ploys a recursive feature elimination approach to select spectral, index, texture, and spatial
features, aiming to achieve the optimal feature combination that can enhance classification
accuracy. To study the correlation between the number of features and the OOB error,
the OOB error was computed across various feature counts by sequentially removing the
features with the lowest importance scores. The results are visually represented in Figure 10.
As the feature count rises, the OOB error initially experiences a sharp decline, followed
by slow increases and fluctuations. The OOB error reaches its minimum when the feature
count hits 19. Therefore, this study selected the features with importance scores ranking
from 1 to 19 as the optimal feature combination.
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3.4. Evaluation of Classification Results

In order to evaluate the impacts of different classification methods on the performance
of land use classification, this study compared the classification results of RF, SVM, and
KNN algorithms based on the optimal feature combination (Figure 11). The results in-
dicate that waters are primarily located in the central zone of the study area, covering a
small area; the stopes are predominantly located in the middle region of the study area,
exhibiting a continuous and expansive distribution; the restoration area and vegetation
area are dispersed throughout the study area in an overlapping pattern; and buildings are
predominantly situated in the northwest section of the study area, displaying a relatively
clustered distribution. The classification results of SVM are more fragmented, with poor
consistency in land feature distribution. KNN is able to recognize most buildings, and its
overall classification performance is superior to SVM but inferior to RF.
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The classification results of the study area indicate that the RF algorithm outperforms
the other two algorithms in terms of classification performance and can accurately identify
most land use categories. The study area covers 37.75 hectares, including stope, restoration
area, buildings, waters, natural vegetation, and arterial roads. The stope is the most widely
distributed, covering an area of 10.98 hectares, accounting for 29.07% of the entire study
area. The restoration area and the vegetation area cover an area of 10.34 hectares and
9.05 hectares, respectively, accounting for 27.38% and 23.97% of the study area. The area of
the arterial roads (3.86 hectares) and buildings (3.45 hectares) is relatively small, accounting
for 10.23% and 9.13% of the study area, respectively. Waters cover the smallest area, only
0.08 hectares, and is predominantly situated in the central region.

This study quantitatively examined the accuracy of land use classification utilizing
confusion matrices. And an accuracy evaluation data are shown in Table 5. Figure 8b–d
present the confusion matrices for RF, SVM, and KNN classifications, respectively. Com-
pared to the SVM algorithm, the RF algorithm achieved improvements of 6.67% in OA
and 0.0876 in Kappa, particularly excelling in identifying vegetation, arterial roads, and
buildings. As evident from the classification results, the RF algorithm outperforms SVM in
distinguishing between vegetated and non-vegetated areas. However, there is still room
for improvement in identifying restoration and vegetation areas. The RF algorithm is able
to recognize schools accurately, while the SVM and KNN algorithms have high misclassi-
fication rates, especially KNN. Additionally, RF has the highest accuracy rate in terms of
main road recognition.

The confusion matrix accuracy evaluation table (Table 5) indicates that the RF algo-
rithm exhibits superior classification performance, achieving an OA of 90.77% and a Kappa
of 0.8786. In addition, the PA and UA of most categories exceed 84%. Compared to KNN
and SVM, the RF algorithm has shown improvement in classification accuracy, demonstrat-
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ing the effectiveness of this method in enhancing the accuracy of land use classification in
open-pit mines.

Table 5. Accuracy evaluation of RF and SVM algorithms.

Classification
Algorithm Accuracy Stope Restoration Area Building Vegetation Area Arterial Road Waters

RF
algorithm

PA/% 93.75 85.51 88.89 91.86 100 100
UA/% 93.75 93.65 94.12 84.78 81.58 100

OA/% 90.77

Kappa 0.8786

SVM
algorithm

PA/% 89.58 75.36 88.89 86.05 93.33 100
UA/% 86.00 89.66 88.89 75.51 77.78 100

OA/% 84.10

Kappa 0.791

KNN
algorithm

PA/% 91.67 73.91 94.44 93.02 93.33 100
UA/% 86.27 96.23 89.47 76.92 77.78 100

OA/% 86.15

Kappa 0.8189

Based on the optimal feature combination, different algorithms were used for object-
oriented classification. The misclassification and omission errors for each land use category
are shown in Figure 12a,b, respectively. Among them, the misclassification errors for
vegetation area and arterial roads are large, and the omission errors for restoration area,
buildings, and vegetation area are large. Introducing multiple categories of features is
beneficial for describing the characteristics of various land types from multiple perspectives,
thereby reducing the errors of misclassification and omission. The RF algorithm exhibits
relatively small misclassification and omission errors for various land use categories,
whereas the SVM and KNN algorithms demonstrate larger classification errors for these
categories. The results further confirm the superiority of the RF algorithm in dealing with
high-dimensional features.

Minerals 2024, 14, x FOR PEER REVIEW 15 of 19 
 

 

Table 5. Accuracy evaluation of RF and SVM algorithms. 

Classification Al-
gorithm 

Accuracy Stope Restoration Area Building Vegetation 
Area 

Arterial 
Road 

Waters 

RF 
algorithm 

PA/% 93.75 85.51 88.89 91.86 100 100 
UA/% 93.75 93.65 94.12 84.78 81.58 100 
OA/% 90.26 
Kappa 0.8717 

SVM 
algorithm 

PA/% 89.58 75.36 88.89 86.05 93.33 100 
UA/% 86.00 89.66 88.89 75.51 77.78 100 
OA/% 84.10 
Kappa 0.791 

KNN 
algorithm 

PA/% 91.67 73.91 94.44 93.02 93.33 100 
UA/% 86.27 96.23 89.47 76.92 77.78 100 
OA/% 86.15 
Kappa 0.8189 

The confusion matrix accuracy evaluation table (Table 5) indicates that the RF algo-
rithm exhibits superior classification performance, achieving an OA of 90.26% and a 
Kappa of 0.8717. In addition, the PA and UA of most categories exceed 84%. Compared to 
KNN and SVM, the RF algorithm has shown improvement in classification accuracy, 
demonstrating the effectiveness of this method in enhancing the accuracy of land use clas-
sification in open-pit mines. 

Based on the optimal feature combination, different algorithms were used for object-
oriented classification. The misclassification and omission errors for each land use cate-
gory are shown in Figure 12a,b, respectively. Among them, the misclassification errors for 
vegetation area and arterial roads are large, and the omission errors for restoration area, 
buildings, and vegetation area are large. Introducing multiple categories of features is 
beneficial for describing the characteristics of various land types from multiple perspec-
tives, thereby reducing the errors of misclassification and omission. The RF algorithm ex-
hibits relatively small misclassification and omission errors for various land use catego-
ries, whereas the SVM and KNN algorithms demonstrate larger classification errors for 
these categories. The results further confirm the superiority of the RF algorithm in dealing 
with high-dimensional features. 

 
Figure 12. (a) Misclassification error and (b) omission error of different classification algorithms. Figure 12. (a) Misclassification error and (b) omission error of different classification algorithms.



Minerals 2024, 14, 1282 15 of 18

4. Discussion

The classification results of different models reveal that the RF model outperforms
both the KNN and SVM models, coinciding with the results of other studies [44–46]. The RF
model derives the final classification result through a majority voting mechanism, effectively
handling high-dimensional data and being insensitive to noise. With an OA > 90%
and Kappa > 0.87, RF exhibits feasibility and high classification accuracy in land use
classification for open-pit mines using low-altitude UAV imagery. The SVM performs well
in binary classification but has limitations in multi-class classification [47]. The KNN is a
simple, intuitive, and easily implementable classification algorithm that primarily relies on
the similarity between training samples and test samples for classification [48]. However,
KNN is prone to misclassification and omission when faced with high computational
loads and imbalanced sample distributions. Therefore, the RF algorithm, with its robust
resistance to overfitting and parallel processing capabilities, continues to exhibit favorable
classification performance in complex open-pit mining scenarios. Apart from machine
learning, artificial neural networks (ANNs) are also widely used algorithms for land
use classification, but numerous studies have indicated that RF typically demonstrates
greater accuracy compared to ANNs in classifications involving small areas and limited
samples [49,50].

In open-pit mines, stopes, buildings, and waters are relatively easy to identify, whereas
restoration areas, vegetation areas, and arterial roads are not easily distinguishable. Due to
their small size and distinct spectral characteristics, the waters within the study area exhibit
high classification accuracy across various algorithms. The classification accuracy for stopes
and buildings is generally high, but they are prone to being misclassified due to their high
similarity with arterial roads. Restoration areas were not easily recognized, mainly due to
the fact that some areas were overexposed by excessive sunlight. In addition, KNN and
SVM algorithms performed poorly in classifying the classification accuracy of restoration
areas and vegetation areas, primarily due to the spectral features between them, which
often results in the misclassification of restoration areas as vegetation areas. The PA of the
arterial roads exceeded 90% for all classification algorithms, but the UA is relatively low,
primarily due to the misclassification of stopes, restoration areas, and buildings as arterial
roads. Overall, the RF algorithm demonstrates higher classification accuracy in stopes,
restoration areas, vegetation areas, and arterial roads; especially in restoration areas, the RF
algorithm achieves a significant improvement in PA by 10.15% and 11.60% compared to
the SVM and KNN algorithms, respectively.

This study identified spectral features as the most critical for land use classification,
preceded by index features. In contrast, texture and spatial features, particularly spatial
ones, hold a relatively minor significance. In this study, index, texture, and spatial features
are added to the spectral features to enrich the object information and improve the classifi-
cation accuracy. Nonetheless, empirical evidence suggests that an increase in the number
of features does not invariably result in enhanced classification accuracy. Once the number
of features reaches a saturation point, further additions may not significantly improve the
separability of the categories but may lead to overfitting, thereby potentially compromising
the classification performance. To maximize the classification accuracy, it is recommended
to use feature importance ranking and the RFE method to construct an optimal feature
combination, which not only reduces the computational cost but also significantly enhances
classification efficiency.

The analysis of algorithm accuracy shows that the RF algorithm based on the optimal
segmentation scale and optimal feature combination achieved the highest OA and Kappa.
This may be attributed to the following points: (1) Using the optimal segmentation scale
evaluation model can improve the object purity and boundary clarity. (2) The RF algorithm
randomly selects feature subsets for splitting when constructing decision trees, reducing the
risk of overfitting. When the optimal segmentation scale and optimal feature combination
are adopted, this advantage is further amplified. (3) Although the spectral features of
UAV images are less than those of satellite remote sensing imagery, the combination of
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index, texture, and spatial features can effectively improve the classification accuracy.
(4) Reducing the number of feature combinations from the original 58 to 19 minimizes the
OOB error to 5.32%, simplifies the model, and improves the classification efficiency.

5. Conclusions

This current study selects an open-pit mine in Fuzhou City, Fujian Province, China,
as the research area and proposes an open-pit mine land use classification method that
integrates an object-oriented method with the RF algorithm based on UAV images. The
results indicated that after switching from a segmentation scale of 360 to an optimal
segmentation scale, the OA increased from 88.21% to 90.77%, indicating that optimal scale
segmentation can significantly improve classification accuracy. After using the optimal
feature combination, the OOB error of RF was reduced to a minimum, indicating that it is
necessary to select the most suitable feature combination to assist classification. The results
indicate that the RF algorithm significantly improves classification accuracy compared to
the KNN and SVM algorithms, indicating that this method can be prioritized for land use
classification in small sample and small area open-pit mines. However, this study only
obtained visible imagery of the mines, which has relatively limited diversity. In addition,
the processing of the illumination conditions of the images is still insufficient. Subsequent
research can be expanded to multispectral or hyperspectral imagery of the mines and
integrate an image processing algorithm with better illumination adaptability.

UAVs offer distinct advantages in remote sensing monitoring due to their portability,
high mobility, efficient data processing capabilities, and ability to provide high-resolution
imagery. These advantages make high-resolution UAV imagery a promising alternative
to traditional ground surveys and satellite remote sensing methods. However, UAVs also
encounter some challenges in practical applications, such as large volumes of image data,
resolution loss during multi-image stitching, and limited battery life. Therefore, high-
resolution UAV imagery is suitable for land use classification in small-area open-pit mines
and holds vast potential in monitoring and managing open-pit mines.
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