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Abstract: The Changbaishan volcano is well known for its major caldera-forming Millennium
Eruption (ME) in 946 CE (Common Era). We report Hf–O isotopes of zircon grains from pre-caldera
Qixiangzhan (QXZ) and syn-caldera eruptions of the Changbaishan (Baitoushan) volcano to constrain
magma chamber processes. Zircon grains from the pre-caldera QXZ comendite lavas have δ18O
ranging from 4.46 to 5.16 (lower than mantle values) and εHf ranging from −4.47 to +4.37. Zircon
grains from the syn-caldera ME1 charcoal-bearing non-welded comendite pyroclastic flow deposits
have δ18O ranging from 2.25 (lower than mantle values) to 5.51 and εHf from −3.75 to +3.31. By
comparison, zircon grains from the ME2 welded trachytes have δ18O ranging from 5.66 to 6.20 (higher
than mantle zircon values) and εHf from −1.97 to +6.23. There are no correlations between O and
Hf isotopes for all zircon grains in QXZ and ME1 comendites and ME2 trachyte. The ubiquitous
occurrence of low-δ18O zircon grains in QXZ and ME1 comendites indicates shallow remelting of
hydrothermally altered low-δ18O juvenile rocks. By contrast, ME2 trachyte zircons (except for two
zircon grains) have normal δ18O (5.66 to 6.10) values, indicating a lack of remelting processes. Similar
zircon Hf–O isotopes between pre-caldera QXZ comendites and syn-caldera ME1 comendites indicate
tapping of the upper portion of a zoned magma chamber. Higher δ18O in ME2 trachyte zircons
indicate tapping of the deeper portion of a zoned magma chamber free from shallow remelting. The
lack of significant correlations between zircon O and Hf isotopes, and the relatively high εHf values
for all Changbai zircon grains, argue against partial melting of ancient continental crust or significant
contaminations by ancient crustal rocks as an origin for these felsic magmas. The QXZ and ME1
comendites were formed by shallow remelting of hydrothermally altered juvenile volcanic rocks, and
ME2 trachytes were formed by evolution of mantle-derived basaltic magmas free of hydrothermal
assimilations. A proto-caldera likely formed prior to the generation of QXZ lavas at 10 ka.

Keywords: Changbaishan (Baitoushan) volcano; comendite; trachyte; zircon Hf–O isotopes; zoned
magma chamber; Qixiangzhan (QXZ) lava; Millenium Eruption

1. Introduction

The caldera-forming Millenium Eruption (ME) in 946 CE (Common Era) of the Chang-
baishan (Baitoushan) volcano [1–6] on the China-North Korea border (Figure 1) is one of the
two largest eruptions on Earth over the past 1100 years and produced early-stage comen-
dites (ME1) and late-stage trachytes (ME2). Prior to the ME, the pre-caldera Qixiangzhan
(QXZ) eruption of peralkaline rhyolites took place at ~10 ka [7,8]. After the ME, one or
more small eruptions occurred in the past 300 years [9], including the post-caldera 0.3 ka
Baguamiao eruption [7,9]. A stagnant Pacific slab is present beneath northeast Asia [10],
and Changbaishan is located in a Cenozoic rift system that formed as a response to the
subduction of the western Pacific beneath northeast Asia [6].
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Magnetic excursion was discovered in the QXZ lava and may represent the youngest
magnetic excursion on Earth [11]. Earlier reported ages of the QXZ range from 17.1 ± 0.9 ka
by sanidine Ar/Ar [11] to 12.2 ± 1.7 ka by zircon U-series [7]. Recent Ar/Ar dating of
sanidine yielded an age of 10.2 ± 0.8 ka [8], which is more consistent with the zircon
U-series age for QXZ reported by Zou et al. [7].

Zircon U-series ages for the QXZ, ME, and Baguamiao eruptions at the Changbaishan
volcano have been reported [1,7,12,13]. Zircon age populations are 12 ka for QXZ zircons,
1 ka, 10 ka, and 100 ka for ME zircons, and 2 ka and 100 ka for Baguamiao zircons.

It has been demonstrated that igneous zircon Hf–O isotopes are powerful for deter-
mining magmatic processes and sources [14–18]. Although some zircon Hf–O isotopes
have been reported for Millennium eruptions [19,20], these ME samples came from the
north slope of Changbaishan. ME eruptions, including ME1 charcoal-bearing pyroclastic
flows, were significantly better exposed on the southern side than the northern side [9].
In addition, zircon Hf–O isotopes from the pre-caldera QXZ eruption and ME2 trachyte
remain to be analyzed.
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Figure 1. (a) Location of the Changbaishan volcano between the China –North Korea border. The 5 cm
and 10 cm dashed lines represent the thickness of volcanic ash deposits [21]. (b) Sample locations
from the Changbaishan volcano. ME2 sample 2017.7 (N 41◦53′38.66′′, E 128◦05′47.22′′) and ME1
sample 2017.9 (N 41◦48 49.56, E 128◦06′38.80′′) are located on the south slope of the Chanbaishan
volcano. 02QXZ is located on the north slope of the Changbaishan volcano. Revised after Zou
et al. [12].

This Hf–O isotope study was first presented as an abstract for the 2023 Goldschmidt
Conference [22]. This paper provides details for Changbaishan zircons. Here, we report
low-δ18O zircons for pre-caldera QXZ comendites and normal δ18O oxygen zircons in ME2
trachytes. Our new zircon Hf–O data for ME1 comendites are compared with previous
results. More importantly, comparisons of Hf–O isotopes in QXZ and ME2 zircons with
those of ME1 zircons provide new insights into the magma chamber processes for the
Changbaishan volcano.

2. Materials and Methods

QXZ comendite lavas are porphyritic. Phenocrysts include sanidine, hedenbergite,
and fayalite, and groundmass includes glass and sodic amphibole [7]. ME1 comendites
are composed of glass and unzoned phenocrysts of sanidine, hedenbergite, and fayalite.
ME2 trachytes are composed of glasses and phenocrysts of anorthoclase, hedenbergite, and
fayalite [12].

Rock samples from the Changbaishan volcano were crushed into a 40–60 mesh in
agate mortars. Zircons were separated carefully under a microscope. Representative zircon
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grains were mounted on epoxy resin disks. Cathodoluminescence (CL) images were used
to characterize the internal structures of the zircon grains.

Zircon oxygen isotopic compositions were measured using a CAMECA IMS-1280HR
ion microprobe at the Institute of Geology and Geophysics, Chinese Academy of Sciences.
A 2 nA Cs+ primary beam was focused onto a 20–30-µm-diameter oval spot. Secondary
ions were accelerated at 10 keV. Detailed analytical methods have been documented in Li
et al. [23]. Penglai zircon [24] was used as the external standard for oxygen isotope analyses.

Zircon Hf isotopic compositions were measured using a Thermo Finnigan Neptune
MC-ICP-MS at the Institute of Mineral Resources, Chinese Academy of Geological Sciences,
with helium as a carrier gas to transport the aerosol. Instrument tuning and data acquisition
methods have been documented in Hou et al. [25]. The international zircon standard GJ1
was used as the external standard. Chondrite Hf isotopic compositions [26] are used to
calculate zircon εHf values.

3. Results

Zircon Hf–O isotope data for QXZ, ME1, and ME2 eruption products are provided
in Table 1 and presented in Figure 2. Cathodoluminescence (CL), transmitted light, and
reflected light images are provided in Figure 3 for QXZ zircons, Figure 4 for ME1 zircons,
and Figure 5 for ME2 zircons.

Table 1. Zircon Hf–O isotopic compositions from Changbaishan volcanic rocks.

Sample 176Yb/177Hf 2SE 176Lu/177Hf 2SE 176Hf/177Hf 2SE εHf(0) 2σ dO18 2SE

QXZ02
02QXZ-02@1 0.109875 0.001501 0.003030 0.000033 0.282798 0.000030 0.93 1.47 4.59 0.35
02QXZ-02@2 0.112778 0.001381 0.002855 0.000027 0.282788 0.000037 0.56 1.66 5.00 0.19
02QXZ-02@3 0.135472 0.000335 0.003210 0.000012 0.282770 0.000035 −0.07 1.61 5.07 0.20
02QXZ-02@4 0.082368 0.000962 0.002173 0.000032 0.282885 0.000047 4.01 1.95 5.16 0.20
02QXZ-02@5 0.157140 0.000601 0.003592 0.000009 0.282896 0.000041 4.37 1.77 4.88 0.15
02QXZ-02@6 0.121092 0.000694 0.003215 0.000014 0.282754 0.000066 −0.63 2.56 4.52 0.13
02QXZ-02@7 0.095148 0.000458 0.002172 0.000004 0.282837 0.000041 2.31 1.78 4.67 0.18
02QXZ-02@8 0.040053 0.000490 0.001044 0.000006 0.282770 0.000039 −0.07 1.73
02QXZ-02@9 0.130503 0.000557 0.003400 0.000007 0.282872 0.000050 3.55 2.05 4.79 0.19
02QXZ-02@10 0.080459 0.000567 0.002040 0.000008 0.282800 0.000037 0.98 1.66 4.78 0.22
02QXZ-02@11 0.115589 0.000909 0.002743 0.000006 0.282754 0.000049 −0.63 2.02 5.04 0.20
02QXZ-02@12 0.121024 0.000298 0.002879 0.000007 0.282834 0.000033 2.19 1.54 4.87 0.26
02QXZ-02@13 0.047613 0.000120 0.001203 0.000003 0.282725 0.000032 −1.67 1.52 4.94 0.23
02QXZ-02@14 0.094112 0.000372 0.002222 0.000003 0.282646 0.000041 −4.47 1.77 4.69 0.25
02QXZ-02@15 0.115848 0.000215 0.002804 0.000007 0.282748 0.000037 −0.86 1.68 4.83 0.21
02QXZ-02@16 0.067921 0.000375 0.001741 0.000004 0.282693 0.000036 −2.81 1.63 4.92 0.19
02QXZ-02@17 0.109900 0.000159 0.002838 0.000002 0.282771 0.000035 −0.03 1.62 4.46 0.19
02QXZ-02@18 0.088757 0.002044 0.002286 0.000045 0.282862 0.000028 3.18 1.43 4.88 0.22
02QXZ-02@19 0.106776 0.000278 0.002560 0.000017 0.282773 0.000034 0.03 1.59 4.74 0.18
02QXZ-02@20 0.112374 0.000243 0.002648 0.000014 0.282761 0.000039 −0.38 1.73 4.85 0.16
02QXZ-02@21 0.116421 0.000680 0.002718 0.000005 0.282777 0.000035 0.17 1.60 4.66 0.26
02QXZ-02@22 0.116374 0.000337 0.002694 0.000012 0.282724 0.000037 −1.70 1.67 4.67 0.22
02QXZ-02@23 0.115444 0.000248 0.002724 0.000006 0.282731 0.000039 −1.47 1.73 4.81 0.21
02QXZ-02@24 0.121318 0.000487 0.002815 0.000008 0.282821 0.000046 1.74 1.91 4.67 0.18
02QXZ-02@25 0.091317 0.001145 0.002370 0.000035 0.282788 0.000033 0.58 1.56 4.87 0.20
02QXZ-02@26 0.117077 0.000778 0.002729 0.000005 0.282828 0.000055 1.97 2.21 5.00 0.23
02QXZ-02@27 0.117350 0.000625 0.002764 0.000005 0.282835 0.000061 2.23 2.38 4.74 0.14
02QXZ-02@28 0.114655 0.000068 0.002744 0.000012 0.282866 0.000050 3.34 2.03 4.90 0.19
02QXZ-02@29 0.118350 0.000111 0.002684 0.000009 0.282871 0.000073 3.50 2.78 4.98 0.22
02QXZ-02@30 0.110124 0.000356 0.002819 0.000011 0.282789 0.000033 0.59 1.56 4.99 0.28
TCN2019-9 (ME1)
TCNan-2017-9@1 4.56 0.22
TCNan-2017-9@2 0.068849 0.000330 0.001810 0.000005 0.282839 0.000030 2.36 1.47 4.82 0.18
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Table 1. Cont.

Sample 176Yb/177Hf 2SE 176Lu/177Hf 2SE 176Hf/177Hf 2SE εHf(0) 2σ dO18 2SE

TCNan-2017-9@3 0.051259 0.000085 0.001498 0.000004 0.282861 0.000030 3.13 1.47 4.62 0.25
TCNan-2017-9@4 0.049261 0.000120 0.001384 0.000002 0.282811 0.000030 1.38 1.48 4.87 0.21
TCNan-2017-9@5 0.039404 0.000293 0.000991 0.000002 0.282765 0.000033 −0.25 1.55 4.58 0.18
TCNan-2017-9@6 0.101594 0.001062 0.002642 0.000016 0.282790 0.000033 0.62 1.56 4.80 0.19
TCNan-2017-9@7 0.045483 0.000286 0.001363 0.000006 0.282809 0.000045 1.31 1.89 4.65 0.27
TCNan-2017-9@8 0.054058 0.000318 0.001447 0.000012 0.282775 0.000031 0.11 1.50 4.75 0.18
TCNan-2017-9@9 0.041381 0.000282 0.001239 0.000007 0.282854 0.000028 2.89 1.41 5.11 0.18
TCNan-2017-9@10 0.057394 0.000318 0.001893 0.000009 0.282754 0.000034 −0.62 1.59 2.25 0.29
TCNan-2017-9@11 0.046228 0.000328 0.001401 0.000009 0.282832 0.000030 2.14 1.48 4.80 0.15
TCNan-2017-9@12 0.063075 0.000215 0.001819 0.000007 0.282790 0.000030 0.62 1.48 4.83 0.17
TCNan-2017-9@13 0.055606 0.000790 0.001548 0.000024 0.282666 0.000030 −3.75 1.47 5.00 0.19
TCNan-2017-9@14 0.071142 0.000354 0.002034 0.000011 0.282865 0.000033 3.31 1.54 4.70 0.20
TCNan-2017-9@15 0.043023 0.000288 0.001361 0.000008 0.282775 0.000029 0.12 1.46 4.79 0.16
TCNan-2017-9@16 0.049592 0.000662 0.001367 0.000016 0.282714 0.000029 −2.04 1.45 5.15 0.19
TCNan-2017-9@17 0.045210 0.000477 0.001284 0.000011 0.282763 0.000024 −0.30 1.33 4.92 0.19
TCNan-2017-9@18 0.037986 0.000164 0.001231 0.000006 0.282809 0.000031 1.32 1.51 4.80 0.23
TCNan-2017-9@19 0.028984 0.000088 0.000843 0.000003 0.282725 0.000029 −1.65 1.46 5.08 0.22
TCNan-2017-9@20 0.054602 0.000424 0.001640 0.000011 0.282826 0.000028 1.90 1.44 5.28 0.22
TCNan-2017-9@21 0.037966 0.000536 0.001143 0.000014 0.282809 0.000032 1.30 1.52 4.91 0.18
TCNan-2017-9@22 0.065069 0.000258 0.001964 0.000007 0.282802 0.000038 1.06 1.70 4.62 0.19
TCNan-2017-9@23 0.052940 0.000481 0.001650 0.000012 0.282783 0.000033 0.38 1.56 5.05 0.23
TCNan-2017-9@24 0.073384 0.000280 0.002188 0.000012 0.282677 0.000044 −3.34 1.87 5.06 0.21
TCNan-2017-9@25 0.036474 0.000594 0.001110 0.000018 0.282845 0.000029 2.57 1.45 5.51 0.54
TCN2017-7 (ME2)
TCNan2017-7@1 0.064156 0.000376 0.001805 0.000005 0.282821 0.000032 1.74 1.52 5.91 0.33
TCNan2017-7@2 0.046074 0.000034 0.001253 0.000004 0.282789 0.000028 0.60 1.43 5.84 0.20
TCNan2017-7@3 0.049470 0.000165 0.001487 0.000001 0.282796 0.000031 0.86 1.50 5.78 0.23
TCNan2017-7@4 0.041150 0.000225 0.001278 0.000003 0.282859 0.000033 3.09 1.55 5.98 0.25
TCNan2017-7@5 0.094709 0.000290 0.002723 0.000004 0.282862 0.000030 3.20 1.47 5.95 0.23
TCNan2017-7@6 0.100152 0.000458 0.002921 0.000006 0.282808 0.000031 1.28 1.50 5.87 0.23
TCNan2017-7@7 0.107003 0.000490 0.003109 0.000005 0.282749 0.000031 −0.81 1.50 5.78 0.17
TCNan2017-7@8 0.059984 0.000410 0.001974 0.000015 0.282805 0.000034 1.18 1.58 6.10 0.30
TCNan2017-7@9 0.115905 0.001021 0.003294 0.000019 0.282732 0.000033 −1.41 1.56 5.87 0.17
TCNan2017-7@10 0.078112 0.000620 0.002313 0.000013 0.282850 0.000031 2.76 1.50 5.88 0.21
TCNan2017-7@11 0.101072 0.001351 0.002687 0.000033 0.282834 0.000034 2.18 1.59 5.83 0.20
TCNan2017-7@12 0.107792 0.000943 0.003047 0.000019 0.282829 0.000037 2.01 1.66 5.97 0.19
TCNan2017-7@13 0.069185 0.000425 0.001934 0.000017 0.282744 0.000036 −0.98 1.63 5.96 0.19
TCNan2017-7@14 0.081124 0.000183 0.002309 0.000002 0.282914 0.000045 5.02 1.88 6.10 0.20
TCNan2017-7@15 0.074576 0.000215 0.002004 0.000008 0.282748 0.000031 −0.84 1.49 5.79 0.15
TCNan2017-7@16 0.082377 0.000681 0.002468 0.000016 0.282871 0.000030 3.52 1.48 5.88 0.19
TCNan2017-7@17 0.076482 0.000353 0.002569 0.000012 0.282875 0.000045 3.65 1.90 3.56 1.89
TCNan2017-7@18 0.062085 0.000330 0.001839 0.000005 0.282771 0.000037 −0.04 1.67 6.04 0.20
TCNan2017-7@19 0.080927 0.000504 0.002472 0.000024 0.282875 0.000040 3.65 1.75 5.82 0.17
TCNan2017-7@20 0.057417 0.000547 0.001653 0.000008 0.282874 0.000059 3.60 2.32 6.04 0.21
TCNan2017-7@21 0.040722 0.000256 0.001396 0.000005 0.282768 0.000034 −0.14 1.59 6.02 0.23
TCNan2017-7@22 0.099720 0.001199 0.002918 0.000028 0.282824 0.000028 1.85 1.43 5.83 0.21
TCNan2017-7@23 0.041053 0.000255 0.001466 0.000007 0.282747 0.000036 −0.88 1.63 6.07 0.17
TCNan2017-7@24 0.078873 0.000143 0.002264 0.000010 0.282813 0.000031 1.44 1.51 5.93 0.21
TCNan2017-7@25 0.108831 0.001245 0.003455 0.000034 0.282716 0.000031 −1.97 1.49 5.80 0.22
TCNan2017-7@26 1.68 0.27
TCNan2017-7@27 0.109531 0.000290 0.003631 0.000008 0.282786 0.000042 0.50 1.81 5.66 0.21
TCNan2017-7@28 0.057431 0.000286 0.001899 0.000008 0.282834 0.000029 2.20 1.46 5.89 0.21
TCNan2017-7@29 0.102275 0.001089 0.002865 0.000025 0.282948 0.000033 6.23 1.56 4.81 0.17
TCNan2017-7@30 0.083293 0.000215 0.002536 0.000004 0.282900 0.000033 4.52 1.55 5.89 0.27
TCNan2017-7@31 0.046286 0.000123 0.001680 0.000004 0.282739 0.000033 −1.17 1.56 6.12 0.25
TCNan2017-7@32 0.040661 0.000214 0.001492 0.000010 0.282737 0.000034 −1.23 1.59 6.20 0.21
TCNan2017-7@33 0.121413 0.000809 0.004071 0.000030 0.282790 0.000041 0.65 1.78 6.06 0.19
TCNan2017-7@34 0.120128 0.000073 0.003816 0.000003 0.282883 0.000030 3.94 1.47 6.04 0.18
TCNan2017-7@35 6.20 0.27
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Zircon grains from the Qixiangzhan (QXZ) comendite lavas on the northern slope of
the Changbai volcano have δ18O ranging from 4.46 to 5.16 and εHf ranging from −4.47 to
+4.37. Their δ18O values are lower than the mantle zircon values of 5.3 ± 0.3 [27].

Zircon grains from the ME1 charcoal-bearing non-welded comendite pyroclastic flow
deposit on the southern slope of the Changbaishan volcano have δ18O ranging from 2.25 to
5.51 and εHf from −3.75 to +3.31. Their δ18O values are also lower than the mantle zircon
values of 5.3 ± 0.3. Our zircon Hf–O isotope data for ME1 comendites are in agreement
with the zircons reported for ME zircons from the northern side [19,20].
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zircons from QXZ comendites and the ME1 comenditic non-welded pyroclastic flow deposit.

In comparison, most zircon grains from ME2 welded trachytes on its southern slope
have δ18O ranging from 5.66 to 6.20 (higher than mantle values) and εHf from −1.97 to
+6.23. One zircon has δ18O of 4.81, similar to the QXZ and ME zircons. One zircon has δ18O
of 3.56, but this zircon has a large error (Table 1) and is not plotted. The third zircon has
very low δ18O of 1.68. This zircon does not have Hf isotope data and thus is not plotted in
Figure 3.
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Figure 3. Pre-caldera QXZ zircon CL images (top), transmitted light images (middle), and reflected
light images (bottom). The white real numbers are oxygen isotope compositions in δ18O; the yellow
real numbers are Hf isotopic compositions in εHf. Circles represent analysis spots. The integers (e.g.,
1, 2) represent spot numbers.

There are no correlations between O and Hf isotopes for all zircon grains from QXZ,
ME1 comendites and ME2 trachyte (Figure 2).
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Figure 4. ME1 (sample 2017.9) zircon CL images (top), transmitted light images (middle), and
reflected light images (bottom). The white real numbers are oxygen isotope compositions in δ18O;
the yellow real numbers are Hf isotopic compositions in εHf. Circles represent analysis spots. The
integers (e.g., 1, 2) represent spot numbers.
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occurrence of low-18O zircons in the pre-caldera QXZ lavas may indicate that an earlier 
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Figure 5. ME2 (sample 2017.7) zircon CL images (top), transmitted light images (middle), and
reflected light images (bottom). The white real numbers are oxygen isotope compositions in δ18O;
the yellow real numbers are Hf isotopic compositions in εHf. Circles represent analysis spots. The
integers (e.g., 1, 2) represent spot numbers.

4. Discussion

4.1. Low-δ18O Zircons in QXZ and ME1 Comendites by Shallow Remelting

Earlier studies have shown that ME zircons from the north slope of the Changbaishan
volcano have low δ18O values relative to mantle zircon δ18O values. Our ME data from the
south slope reveal similarly low-δ18O zircons in ME1 comendites (Figure 6) but normal
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zircons in ME2 trachytes. We further show that pre-caldera QXZ zircons also have low
δ18O values, similar to the ME1 comendites.
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Figure 6. Comparison of ME zircons from this study (open square) and previous data (x, ME
Cheong [13]; +, ME Liu [20]). All three studies yield similar ME zircon Hf–O isotope data.

Low-δ18O zircons in volcanic rocks may indicate the assimilation or remelting of
hydrothermally altered low-δ18O juvenile rocks [28–32]. The ubiquitous occurrence of
low-δ18O zircons in QXZ comendite lava and ME1 charcoal-bearing comendites indicates
shallow remelting of hydrothermally altered low-δ18O juvenile rocks in the Changbaishan
magma chamber.

The occurrence of low-δ18O zircons in pre-caldera QXZ zircons suggests that the
shallow remelting process occurred earlier than the eruption age of QXZ at 10 ka. Similar
zircon Hf–O isotopes between QXZ comendites and ME1 comendites suggest tapping of
the same shallow magma chamber.

If a caldera collapse is often needed for the generation of low-18O rhyolites, then the
occurrence of low-18O zircons in the pre-caldera QXZ lavas may indicate that an earlier
proto-caldera might have existed before the eruption of the 10 ka QXZ lavas, significantly
prior to the ME eruption in 946 CE. The proto-caldera might have formed during the
eruption of the Yellow Pumice at the northern rim.

The depth of shallow remelting can be estimated from the present-day magma chamber
depth. The depth of the current magma chamber has been estimated as 4 to 8 km [33–37].
It has been demonstrated that surface waters may penetrate to a depth of 8–10 km in the
caldera or rift zone extensional setting [38]. Thus, the shallow depth of the Changbaishan
magma chamber provide ideal conditions to form low-δ18O QXZ and ME1 comendites.

Although deep melting of subducted oceanic crust that has interacted with seawater
at high temperature can generate low-δ18O magmas [39–41] and can explain the genesis of
Quaternary low-δ18O magmas in East Sea (Sea of Japan) [17], we prefer shallow remelting
of early formed volcanic rocks for Changbaishan QXZ and ME1 rocks, as the less evolved
ME2 trachytes show normal δ18O signatures (next section).
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4.2. Normal-δ18O Zircons in ME2 Trachytes at a Deeper Level

Zircon grains from ME2 trachytes (sample 2017.7) have δ18O values between 5.6 and
6.2, slightly higher than mantle zircon values at 5.3 ± 0.3 (Figure 5). The dominant presence
of normal-δ18O zircons in the ME2 trachytes indicate that the ME2 trachytes were not
affected by shallow remelting processes, unlike the ME1 zircons for Changbaishan.

This is consistent with the generation of ME2 trachytes at a greater depth than QXZ
comendites and ME1 comendites [12]. Higher δ18O values in trachyte zircons indicate
tapping of the deeper portion of a zoned magma chamber or a separate deeper magma
chamber (Figure 7). The depth of the trachyte magma chamber below Changbaishan
is estimated as 13–30 km [34], likely beyond the reach of surface water penetrations at
Changbaishan (Figure 7). The ME2 trachytes were formed by differentiation of mantle-
derived basaltic magmas under reducing conditions [12].
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Figure 7. (a) Proto-caldera prior to 10 ka and (b) mature caldera in 946 CE for the Changbaishan
volcano. Low-δ18O zircons formed in the shallow magma chamber rather than the deep magma
chamber.

Despite different oxygen isotope compositions between comendites and trachytes,
their ranges of Hafnium isotopic compositions are very similar. This is because oxygen
isotopes are sensitive to surface water–rock interactions, whereas hafnium isotopes are not
affected by surface water interactions.

4.3. Lack of Hf–O Isotope Correlations for Changbaishan Zircons

QXZ, ME1, and ME2 zircon grains do not show any significant correlations between
zircon O and Hf isotopes. This contrasts with the negative zircon Hf–O isotope correlations
for Tengchong volcanics from the SE Tibetan Plateau [14,15], where magma contaminations
by country rocks took place (Figure 8). The lack of Hf–O isotope correlations and the
relatively high εHf values for all Changbaishan zircons argue against partial melting of
ancient continental crust as an origin for these felsic magmas.

Although we do not have Hf isotope compositions for the whole rocks in this paper,
we have Hf isotope compositions for similar rocks from Changbaishan. Their whole-rock
176Hf/177Hf values are 0.282776 ± 4 for P-2 (ME1 comendite) and 0.272779 ± 3 for P-4
(ME2 trachyte). Thus, their εHf values are 0.15 for P-2 and 0.23 for P-4, similar to the
chondritic values. Note that their εNd values are also close to the chondritic values: −1.1
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for P-2 and −1.0 for P-4 [42]. Whole-rock Hf-Nd isotopes for ME1 comendites and ME2
trachytes resemble each other and are similar to the chondritic values. These chondritic
Hf-Nd values for Changbaishan felsic magmas also argue against partial melting of ancient
continental crust.
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Figure 8. Comparison of Changbaishan zircon Hf–O with Tengchong zircon Hf–O isotopes. Teng-
chong zircons [14,15] show negative Hf–O isotope correlations whereas Changbaishan zircons show
no significant correlations.

5. Conclusions

1. Zircons from pre-caldera QXZ comendites and syn-caldera ME1 comendites have δ18O
values lower than the mantle zircon values. If low-δ18O zircons generally occur in
caldera-forming eruptions, then a proto-caldera at Changbaishan might have formed
before the QXZ eruption at 10 ka.

2. Zircons from ME2 trachytes have δ18O values slightly higher than normal mantle
values.

3. There are no correlations between zircon O and Hf isotopic compositions for QXZ,
ME1, and ME2 zircons.

4. Shallow-level remelting produced the low-δ18O zircon crystals in QXZ and ME1
peralkaline rhyolites.

5. ME2 trachytes with normal mantle values were not affected or assimilated by shallow-
level remelting and were tapped from a deeper magma chamber.
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