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Abstract: Sandstone-hosted uranium deposits are indeed significant sources of uranium resources
globally. They are typically found in sedimentary basins and have been extensively explored and
exploited in various countries. They play a significant role in meeting global uranium demand
and are considered important resources for nuclear energy production. Erlian Basin, as one of
the sedimentary basins in northern China, is known for its uranium mineralization hosted within
sandstone formations. In this research, machine learning (ML) methodology was applied to mineral
prospectivity mapping (MPM) of the metallogenic zone in the Manite depression of the Erlian Basin.
An ML model of 92% accuracy was implemented with the random forest algorithm. Additionally,
the confusion matrix and receiver operating characteristic curve were used as model evaluation
indicators. Furthermore, the model explainability research with post hoc interpretability algorithms
bridged the gap between complex opaque (black-box) models and geological cognition, enabling the
effective and responsible use of AI technologies. The MPM results shown in QGIS provided vivid
geological insights for ML-based metallogenic prediction. With the favorable prospective targets
delineated, geologists can make decisions for further uranium exploration.

Keywords: MPM; post hoc; machine learning; explainability; random forest; sandstone-hosted uranium

1. Introduction

The International Atomic Energy Agency (IAEA) has developed a descriptive classi-
fication system for uranium deposits. According to this classification, there are 13 types
of uranium deposits recognized worldwide [1]. According to the statistical analysis con-
ducted by the Nuclear Energy Agency of the Organization for Economic Cooperation and
Development (OECD/NEA) and IAEA, there are 1430 sandstone-hosted uranium deposits
globally. These deposits account for 39.6% of the total number of 3610 uranium deposits
in the world, making them the most abundant type of uranium deposit. According to the
information provided, sandstone-hosted uranium deposits account for 7.9% of the world’s
total uranium resources. This places them in the fourth position in terms of quantity,
following black shale-hosted deposits (35.2%), phosphorite-hosted deposits (22.6%), and
lignite coal-hosted deposits (11.4%). Sandstone-hosted deposits have a total resource of
5,095,214 tU of uranium.

Sandstone-hosted uranium deposits are considered an important uranium source glob-
ally and nationally, with 41 sandstone-hosted deposits in China accounting for 28% of the
total in China. Sandstone-hosted uranium deposits are particularly significant in northern
China due to their shallow burial depth and low exploitation cost. Mineral prospectivity
mapping (MPM) with interdisciplinary knowledge has been consistently used to support
decision making in sandstone-hosted uranium exploration in China. MPM geologists
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propose the comprehensive utilization of multiple kinds of geoscience information to estab-
lish quantitative prediction models [2–6]. These models extract significant mineralization
indicators and ore-controlling features from different types of deposits and metallogenic
processes [7–10].

Machine learning, as an AI approach, has been a core area of scientific research since
the 20th century. Various algorithms, such as the Hebbian learning rule, perceptron,
back propagation (BP), decision tree, support vector machine (SVM), random forest (RF),
and deep learning, have been developed and used in best practices over time [11–24].
These algorithms have been applied in different fields in the past two decades, including
statistics, engineering, signal processing, and computer vision. Specifically, the application
of machine learning in MPM has gained significant attention [25–28]. Machine learning
has the capacity to handle a large volume of evidence characteristic layers associated
with mineralization. Moreover, they have the potential to identify nonlinear relationships
between known deposits and evidence layers. With advancements in technology, such as
faster computers and larger datasets, machine learning algorithms have shown their full
potential [29,30]. It is now recognized that a good representation of data and the availability
of large amounts of example data are crucial for successful machine learning [31,32]. ML
has been actively conducted in the mining industry since 2018, primarily for mineral
exploration [33]. And it has been widely utilized in various applications within the mining
and mineral industry [34]. When the fourth wave of data-driven science, known as a
paradigm shift, emerged, the tools used by MPM transitioned from GIS to AI. Geologists
have shown optimism toward this transition, but they have also expressed skepticism
regarding the reliability of AI’s results. This skepticism arises from the limited utilization
of AI’s explanatory capabilities, which differ from the comprehensibility of traditional
methods like weight of evidence (WOE). The paper presents a comprehensive machine
learning workflow for uranium prospectivity mapping. It focuses on the use of post hoc
interpretability algorithms to ensure transparency, gain insights into geological processes,
assess risks, and ensure regulatory compliance.

2. Study Area and Mineral Prospectivity Model
2.1. Geological Setting

The Erlian Basin is a large Meso-Cenozoic fault-depression composite basin located
at the tectonic position of the suture between the Siberian plate and the North China
plate [35]. It is developed on the Xingmeng Hercynian folded basement and consists
of six geotectonic units: Wulanchabu depression, Chuanjing depression, Manite depres-
sion, Tenggeer depression, Wunite depression, and Sunite Uplift. Additionally, there are
53 depressions and 22 uplifts within the basin’s internal tertiary geotectonic units [36].
These geological characteristics are essential for understanding the metallogenic processes
of the Erlian Basin [37].

The Manite depression, with the study area shown in Figure 1, is a zonal valley that
was formed via tectonic activity. It exhibits the characteristics of an ancient valley tectonic
formation and was subsequently filled with alluvium and lacustrine sediments [38]. The
strata in this area consist of the Lower Cretaceous Saihan lower group (K1s1), Saihan
upper group (K1s2), the Paleogene Ildinmanha Group (E2y), and the Quaternary (Q). The
Saihan upper group (K1s2) is widely distributed in the study area and has a sedimentary
thickness ranging from 50 to 400 m. The redox zone in this sedimentary stratum exhibits
different colors due to varying degrees of oxidation and is considered the main target for
prospecting sandstone-hosted uranium deposits. The main lithologies found in this group
include sandstone, pebbly sandstone, argillaceous sandstone, and argillaceous siltstone.
These lithologies display various colors such as grey, grey-green, and yellow, which can be
attributed to different levels of oxidation.
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Figure 1. Geological location of study area.

2.2. Prospectivity Model Establishment

The mineral prospectivity model is a crucial component of MPM. It is mainly based
on the study of the metallogenic geological setting and metallogenic period [39]. The
model aims to establish relationships between geological features of deposit formation and
anomalies observed in geoscience data. By summarizing prospectivity criteria, methods,
and approaches, the model provides a qualitative description of the geological settings and
quantitative features of the deposit. The accuracy of the model can vary depending on the
different geological exploration phases [40].

The mineral prospectivity model for the study area is constructed based on the ura-
nium metallogenic theory and the research on the genesis and metallogenic patterns of
sandstone-hosted uranium deposits. The model considers the combination of strata, pale-
ochannel, longitudinal bar, and sand body as the typical metallogenic geological conditions
and ore-bearing patterns in the area. Moreover, inspired by the big data machine learning
prospecting model [41,42], a mineral prospectivity model suitable for MPM in this study
area has been developed. The model list in Table 1 provides a scientific guide for the
quantitative prediction of uranium resources in the study area.

Table 1. Mineral prospectivity model.

Feature Category Feature Type Ore Controlling Features Feature Description

Metallogenic geological setting
Geotectonic setting Depression Manite depression

Formation Saihan upper group Prospecting stratum

Mineralization period

Ore-bearing rock Clastic rock Grey sand body

Sedimentary system Braided fluvial facies Longitudinal bar

Migration conditions River centerline The metallogenic position is
within the range of paleochannel.

Characteristics of ore body The intersection of rivers
The scale of ore body at the

intersection of river
courses increases.
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3. Methodology
3.1. Dataset Establishment

The dataset used in the study was derived from the quantitative features of the mineral
prospectivity model. The data in the dataset should be numerical or able to be transformed
into numerical data. There are four features of the Saihan upper group that make up the
dataset in the study based on inductive bias from the experts, namely sedimentary facies,
sand thickness, sand rate, and grey sand rate. Sedimentary facies (FAS) as discrete data
were cataloged into three facies. The others as continuous data were kept in the original
format. A total of 970 borehole data labeled as 0 or 1 were used to perform supervised
machine learning, as shown in Table 2. The dataset used for training and testing the
machine learning model consisted of 506 negative samples labeled as 0 and 464 positive
samples labeled as 1. The dataset was roughly balanced, with a similar number of samples
for both classes.

Table 2. Feature description of ML dataset.

Feature FAS ST SR GR Target

Full Name Sedimentary Facies Sand Thickness Sand Rate Grey Sand Rate Mineralized Borehole

Variable Types Categorical Numeric Numeric Numeric Categorical

Value Domain 4, 5, 6 9.14 m~106.43 m 20%~89.4% 9.77%~82.99% 0, 1

Geological
Description

4—Channel
5—Longitudinal Bar

6—Floodplain

0—No mineralization
1—Mineralization

In the study, the vectorized feature maps of sedimentary facies, sand thickness, sand
rate, and grey sand rate and borehole data were converted into rasterized grids with an
equal resolution of 200 m. Each grid cell extracted from the four feature maps represents
1 of 100,388 records from the dataset of the study area. Spatial analysis tools in QGIS
were used to assist in this process. The resulting dataset for machine learning consisted of
four attributes derived from the feature maps, assigned with a corresponding label from
borehole data based on the geographical location, as shown in Figure 2.
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3.2. Explorational Data Analysis

Exploratory data analysis (EDA) is a data analysis approach and methodology used to
explore the internal structure and patterns of data through various technical means, primar-
ily data visualization [43]. EDA can be used to acquire geoscience insights by analyzing
data. It aids in comprehending the relationships between geological features in both green-
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fields (undeveloped land) and brownfields (previously developed land that may require
redevelopment). It involves consulting experts to acquire experiences and knowledge, as
well as extracting important features, detecting outliers, testing basic assumptions, and
establishing preliminary models by using scientific data insights.

The Pearson product-moment correlation coefficient (r) is commonly used for ex-
ploratory analysis of data to measure the strength and direction of the linear correlation
between two features [44]. In this study, the correlation between different geological fea-
tures in the context of uranium mineralization, as shown in Figure 3, can be summarized
as follows: This relationship was analyzed using statistical methods to understand the
connection between geological features and their potential impact on uranium mineral-
ization. There was a strong positive correlation between SR and ST. This indicates that as
the sand rate increases, the sand thickness also increases, potentially favoring uranium
mineralization. There was also a strong positive correlation between GR and ST. There
was a moderate positive correlation between SR and GR. This implies that as the sand
rate increases, there is a moderate increase in the grey sand rate, which may be related to
uranium mineralization.
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Based on the geological study of the area, the uranium mineralization in the Saihan
upper group is primarily of the paleochannel type. It is mainly concentrated in the lon-
gitudinal bar and sand within the channel during the I and II cycles of the Saihan upper
group [45]. According to the correlation analysis between FAS and Target [46], the face of
the longitudinal bar shows a higher number of mineralized samples compared to the other
facies. This suggests that the face of a longitudinal bar is more conducive to mineraliza-
tion (Figure 4). And in order to investigate the relationship between mineralization and
sedimentary facies, we proceed to the target plot for the face of the longitudinal bar [47] in
Figure 5. Out of the total 970 samples, 638 samples were in the face of the longitudinal bar.
The average target value of mineralization in this area was 57.4%. This indicates that, on
average, there was a 57.4% probability of finding uranium mineralization in the face of the
longitudinal bar in this study.
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The violin plot is a type of data visualization technique created by integrating the
box plot and kernel density plot. It is commonly used to represent continuous data, such
as sand rate, sand thickness, and grey sand rate in the study, to provide a compact and
attractive visualization of the data [48]. In a violin plot, the central part represents the box
plot, showing the median and interquartile range of the data statistically. The width of this
central part indicates the density or frequency of the data at different values.

The violin plot of sand rate shows a relatively even distribution for non-mineralized
samples. Mineralized samples, on the other hand, have fewer occurrences of low values
and relatively more occurrences of high values. The distribution of mineralized samples
is most concentrated around the median of 70%, and 50% of the data fall between 62%
and 78%, as shown in Figure 6. Similarly, in the violin plot of grey sand rate in Figure 7,
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the mineralized samples are most concentrated around a median of 60%. However, in
the violin plot of sand thickness, both non-mineralized and mineralized samples have a
similar distribution pattern, indicating that this feature does not have a significant impact
on mineralization (Figure 8).
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3.3. Random Forest Classification

The “No Free Lunch” theorem suggests that there is no universally optimal algorithm
for machine learning [49]. The performance of an algorithm depends on the specific
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problem at hand. Different algorithms may perform well on certain problems but poorly
on others [50]. Therefore, it is important to carefully choose an algorithm that is well suited
to the classification problem within MPM in order to achieve optimal results.

Random forest is a popular choice for mineral prospectivity mapping due to its
excellent performance and effectiveness in handling imbalanced data; it is an ensemble
method that combines multiple decision trees to make predictions [51]. After the ML dataset
was randomly split into 70% for training and 30% for testing, which is based on hold-out
methodology, a Python function named RandomForestClassifier in the scikit-learn ensemble
module was used to implement machine learning in this study. It creates a collection of
decision trees, and each decision tree is built using a random subset of the training data.
This randomness helps to reduce overfitting and improve the model’s generalization ability.
During training, each decision tree tries to find the best splits in the data based on the
features and their values. The splitting process continues recursively until a criterion is met,
which is the GINI index. The optimal partition is established when the smallest Gini index
is calculated, and the calculation formula is shown in Equation (1). Once all of the decision
trees are trained, each tree votes for a class, and the class with the most votes becomes the
final prediction.

Gini_index(D, a) =
V

∑
v=1

|Dv|
|D| Gini(Dv) (1)

where D is the dataset, a is the feature, and V is the number of all of the values of a.

3.4. Hyperparameter Tuning

In random forest, each decision tree is trained using a bootstrap sample of the original
dataset, which means that some samples are left out “out-of-bag” (OOB). It helps to
introduce randomness and diversity in the training process, which improves the overall
performance and robustness of the random forest model [52]. As a result of bootstrapping,
approximately 36.8% of the dataset is not used as the training dataset for each tree in
the random forest, and the formula is as shown in Equation (2). The OOB estimate as
the indicator of evaluation is then calculated by averaging the prediction errors of all of
the out-of-bag samples. This estimate provides an unbiased evaluation of the model’s
performance because it is based on samples that were not used in the training process.

lim
n→∞

(
1 − 1

n

)n
→ 1

e
≈ 0.368 (2)

Hyperparameter tuning is a necessary step to optimize the hyperparameters of the
random forest algorithm to improve the model’s performance. There are several methods
available for hyperparameter tuning, and one commonly used method is GridSearchCV from
the scikit-learn module [53]. In the study, GridSearchCV traverses all specified parameter
values and evaluates the model’s performance using 10-fold cross-validation. It then
determines the optimal values for the hyperparameters based on the score of the OOB
estimate, and the hyperparameters include the total number of trees, maximum depth of
trees, and minimum number of samples required to split a node. The RF classification
model was established subsequently based on parameter optimization. Table 3 lists the
adjusted parameters.

3.5. Model Evaluation
3.5.1. Confusion Matrix

The performance of a random forest classification model is evaluated by using a
confusion matrix based on the testing dataset, which consists of 30% of the entire ML
dataset and is not used in the training process. It provides a tabular representation of the
model’s predictions compared to the actual values. In the confusion matrix in Figure 9,
the model correctly predicted 131 instances as negative (true negatives) and 126 instances
as positive (true positives). However, it incorrectly predicted 10 instances as positive
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when they were actually negative (false positives) and 24 instances as negative when they
were positive (false negatives). The confusion matrix allows for the calculation of various
evaluation metrics in classification tasks, such as accuracy, precision, recall, and F1 score.
These metrics are commonly used together to evaluate the performance of a classification
model and provide insights into its effectiveness in correctly classifying instances (Table 4).
Statistically speaking, accuracy provides an overall assessment of the model’s performance
but may not be suitable for imbalanced datasets. Precision indicates how well the model
identifies true positives and avoids false positives. Recall indicates how well the model
captures all positive instances and avoids false negatives. The F1 score indicates the
harmonic mean of precision and recall, which provides a balanced measure of the model’s
performance. Macro average is calculated by taking the average of the metric calculated for
each class individually (not mineralization and mineralization). It treats each class equally
and does not consider class imbalance. On the contrary, weighted average considers class
imbalance and gives more weight to classes with more samples. The two metrics are very
much the same due to the roughly balanced set of positive and negative datasets.

Table 3. Adjusted parameters of RF.

Parameters Description Optimized Value

n_estimators The number of trees in the forest 108

criterion The function to measure the quality of a split “gini”

max_depth The maximum depth of the tree 81

min_samples_split The minimum number of samples required
to split an internal node 2

max_features The number of features to consider when
looking for the best split 1

min_samples_leaf The minimum number of samples required
to be at a leaf node 1

oob_score Whether to use out-of-bag samples to
estimate the generalization score TrueMinerals 2024, 14, 128 10 of 21 
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Table 4. Confusion matrix report.

Precision Recall F1 Score Support

Not mineralization 0.85 0.93 0.89 141

Mineralization 0.93 0.84 0.88 150

Accuracy 0.88 291

Macro average 0.89 0.88 0.88 291

Weighted average 0.89 0.88 0.88 291

3.5.2. Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve is a graphical representation of the
performance of the random forest classification model at different thresholds. It is created
by plotting the true positive rate (sensitivity) against the false positive rate (1—specificity) at
various threshold settings [54,55]. The closer the ROC curve is to the top-left corner of the
plot, the better the model’s performance. The ROC curve can also provide an appropriate
classification threshold that balances the trade-off between the true positive rate and false
positive rate, depending on the relative importance of false positives and false negatives in
the study of MPM application.

The area under the ROC curve (AUC) is a commonly used metric to represent the
probability that a randomly chosen positive instance will be ranked higher than a randomly
chosen negative instance by the model. And the calculation formula is as shown in
Equation (3). An AUC of 1 indicates a perfect classifier, and an AUC of 0.5 suggests a
random classifier [56]. The implicit goal of AUC is to deal with situations where one
has a skewed sample distribution and does not want to overfit to a single class, and
AUC is a better measure than accuracy based on formal definitions of discriminancy and
consistency [57]. In this study, the AUC of the random forest classification model was found
to be 0.92, as shown in Figure 10. This indicates that the model has good discriminatory
power and performs well in distinguishing between positive and negative instances.

AUC =
1
2

m−1

∑
i=1

(xi+1 − xi) · (yi + yi+1) (3)

where x and y are the coordinates and m is the max value of x.
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3.6. Model Explainability

There is no mathematical definition of explainability, which is the degree to which
people are able to understand the reasons for a decision and are able to predict the outcome
of a model consistently. It is important to have insights into how a model arrives at
its predictions, especially in domains where interpretability is crucial, such as mineral
prospectivity mapping. There are various techniques available for model explainability
to make the model’s behavior transparent, including simulatability, decomposability, and
algorithmic transparency [58]. The more explainable an ML model, the easier it is for people
to understand why certain decisions or predictions are made. If the decisions of one model
are easier to understand than those of another, then it is more explanatory than another.

3.6.1. Features Importance

The permutation_importance function in the scikit-learn module is used to measure the
importance of features. It calculates the decrease in model performance when the values
of a particular feature are randomly shuffled. The larger the decrease in performance,
the more important the feature is considered to be [59]. This information can be used for
feature selection or understanding the underlying geological relationships in the dataset.
The permutation importance ranks the results with the most important feature at the top
for this study in Table 5. The first number in each row indicates how much the performance
of the model has decayed, and the number with ± indicates the standard deviation.

Table 5. Permutation importance of features.

Serial Number Weight Value Feature

1 0.1527 ± 0.0421 Sand Rate

2 0.0182 ± 0.0381 Grey Sand Rate

3 0.0109 ± 0.0388 Longitudinal Bar

4 0.0018 ± 0.0073 Floodplain

5 −0.0109 ± 0.0178 Channel

6 −0.0291 ± 0.0313 Sand Thickness

3.6.2. Partial Dependence Plots

A partial dependence plot (PDP) shows the relationship between a feature and the
model’s predictions while holding other features constant. Comparing the findings from
the PDP with metallogenic knowledge helps in understanding how the model’s predictions
change with variations in a specific feature [60].

The PDP of the sand rate exhibits a positive trend, indicating that as the sand rate
increases above 70%, the prediction probability also significantly improves (Figure 11).
The sand thickness variable has a negative effect on the prediction probability within
specific ranges. Specifically, the negative effect is observed when the sand thickness is
above 80 m in Figure 12. The grey sand rate has a significant impact on the prediction
probability within certain ranges, indicating that higher values within the range of 45% to
75% approximately lead to improved prediction results, while values exceeding 75% lead
to decreased prediction probability, as shown in Figure 13.

The relationship between sand rate, sand thickness, grey sand rate, and a target
variable is probably not independent and has interactions. The PDP of multiple feature
interactions on the target variable is different from the features’ individual effects [61]. The
2D PDP diagram provides insights into the relationship between the input variables (sand
rate, grey sand rate, and sand thickness) and the predicted outcome. Based on the diagram
in Figures 14 and 15, the prediction is optimal when the sand rate is above approximately
70%, the grey sand rate is within the range of 54% to 68%, and the sand thickness is within
the range of 60 m to 70 m.
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3.6.3. Shapley Additive Explanations

Shapley additive explanations (SHAP) is a powerful method for interpreting model
predictions and understanding the contribution of each feature to the model’s output [62]. It
is a post hoc method and can provide insights into the decision-making process of machine
learning models and help in understanding the underlying mechanisms [63]. The core
idea of SHAP is to calculate the marginal contribution of features to the model output and
explain the predictions from both global and local perspectives. This method does not
depend on the structure of any machine learning model and can consider the synergies
between features.

The feature density shows a relationship between the feature value and SHAP value for
each feature in Figures 16 and 17. The feature in each row is sorted in order of importance,
and the wider the distribution, the greater the influence of the feature. Red represents a
data point with a higher value of the feature, and blue represents a data point with a lower
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value of the feature; the more right the point, the higher the positive effect of this feature
on the prediction of mineralization. In this instance, the impact of SR was big and wide;
meanwhile, the face of the floodplain had an impact on a small subset.
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A SHAP decision diagram shows how the model makes decisions, which is easy to
interpret and helps easily identify the magnitude and direction of the primary impact. A
sample was selected from the validation dataset to demonstrate the process from the base
value to the final score of the model at the top of the diagram step by step, as shown in
Figure 18.
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4. Results and Discussion
4.1. MPM Results

The application of the random forest algorithm in the mineral prospectivity mapping
(MPM) of regional uranium mineralization has been successfully completed. The model
utilized 100,388 grid values as input and generated probabilities of uranium mineralization
potentials ranging from 0 to 1. The visualization of these probabilities in QGIS demon-
strated that areas with probabilities above 50% should be considered potential uranium
mineralization zones based on a roughly balanced set of positive and negative datasets [64].
As the probability increased, the potential areas became more concentrated and smaller in
size, as shown in Table 6.

From the visualization of MPM results in Figure 19, it can be observed that there is a
relationship between the feature characteristic distribution and the prediction results for
sedimentary facies, sand thickness, sand rate, and grey sand rate in the Saihan upper group
formation. It is evident that the prediction results are mainly located in the channel face of
the sedimentary facies and are closely related to the spatial distribution of the longitudinal
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bar face. Most of the prediction results are found in the transitional zone between the
channel face and the longitudinal bar face.

Table 6. Uranium mineralization potentials report.

Serial Number Probability Number of Grids Percentage of Grids

1 >0.5 3958 3.94%

2 >0.6 2077 2.07%

3 >0.7 1004 1.00%

4 >0.8 353 0.35%

5 >0.9 77 0.08%
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Moreover, the areas with small sand thickness are not favorable for mineralization.
Based on the variation in sand thickness, it can be inferred that the water flow direction
is from southwest to northeast along the paleochannels and the thickness of the sand
body gradually increases due to sedimentation. The prediction results do not show a clear
indication of sand thickness in the entire study area, but, in a small area, there is good
agreement between the high-value area of sand thickness and the prediction results. So, it
can be concluded that when the sedimentation reaches a greater thickness in a small area,
it is favorable for mineralization. Additionally, according to the diffusion theory, in the
downstream direction, the uranium-bearing material will decrease as it is transported and
deposited, hence requiring a larger sand thickness to achieve mineralization compared to
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areas with lower sand thickness upstream. The same applies to the sand rate and grey sand
rate; the quantity of sand bodies has an impact on the mineralization potential.

4.2. Discussion

The ML-based MPM approach was applied to the Uranium Metallogenic zone in the
Manite depression of the Erlian basin, China. The research utilized the random forest (RF)
algorithm and data science tools to gain geological insights through explorational data
analysis, ML model evaluation, and an explainability study. The findings indicate that
features such as sand rate, grey sand rate, and the sedimentary face of the longitudinal bar
have a positive impact on sandstone-hosted uranium mineralization. The MPM results
were effectively visualized in QGIS using hierarchical probabilities, providing valuable
information for future exploration and mining activities in the study area.

The input dataset’s uncertainty can originate from various sources, including the
inherent variability and complexity of real-world data, data collection issues, and human
errors during data entry. In this article, the ML dataset was generated through data
processing by geologists. Some data are obtained from geological logging, such as boreholes,
while others require geological understanding and inference, which introduces uncertainty.
This uncertainty can greatly affect the performance and reliability of machine learning
models. To mitigate this uncertainty, several approaches can be employed, including data
cleaning, feature engineering, data augmentation, ensemble methods, and robust machine
learning techniques [65].

RF is a classifier that utilizes ensemble learning and is composed of multiple decision
trees. During the training process, each decision tree in the random forest is constructed by
randomly selecting a subset of the training samples through a process called bootstrapping.
This means that each decision tree is trained on a fraction of the total samples. However,
if the dataset has a severe class imbalance, where the number of positive and negative
samples varies greatly, it can potentially affect the classification results. In such cases, the
random forest may exhibit a bias toward classifying samples as negative and may overlook
the positive samples due to the larger number of negative samples. Consequently, this can
lead to a decrease in the accuracy of the classifier, particularly when dealing with a small
number of sample categories. In this article, the positive and negative sample sets had a
balanced ratio of approximately 1:1, and the potential impact of varying sample sizes was
considered to be negligible.

5. Conclusions

The study utilized machine learning (ML) methodology, specifically the random forest
algorithm, for mineral prospectivity mapping (MPM) in the Manite depression of the
Erlian Basin. The data on sedimentary facies, sand thickness, sand rate, and grey sand
rate of the Saihan upper group formation and borehole were used to establish the ML
dataset. The random forest algorithm was used in the machine learning process after the
hyperparameters were optimized and tuned. The ML model achieved an accuracy of 92%
in uranium mineralization prediction in the study area, and it was evaluated using the
confusion matrix and receiver operating characteristic curve. And feature importance,
PDP analysis, and SHAP were put into practice to verify the reliability of the explainable
artificial intelligence (XAI) in the domain of uranium MPM. The MPM results, visualized in
QGIS, provided valuable geological insights and identified prospective targets for further
uranium exploration.

This ML-based approach can assist uranium geologists in making informed decisions
regarding the locations of future mineral exploration activities. However, ML algorithms
cannot be fully understood due to human limitations, commercial barriers, data wildness,
and algorithmic complexity [66–68]. The internals of machine learning are often considered
opaque models, also known as a black-box, leading to distrust from geologists. The primary
focus of this research was on post hoc interpretability, which plays a crucial role in XAI. The
main objective was to address the issue of the black-box effect caused by opaque models,



Minerals 2024, 14, 128 18 of 20

which can be perplexing for readers. To illustrate the concept of explainability, the random
forest algorithm was deliberately chosen as an example due to its strong interpretability
and ease of comprehension. In the next stage of research on XAI for MPM of uranium
resources, other algorithms such as support vector machines and neural networks will be
explored to further enhance the overall XAI research technology system. Fortunately, there
are existing studies that offer valuable insights and can serve as a source of inspiration for
future research endeavors [69,70].

To address this issue, it is crucial to develop algorithms that prioritize the needs of
humans and incorporate model explainability from the start. And also, post hoc inter-
pretability algorithms offer a solution to understanding and explaining the decision-making
process and predictions of machine learning models. These algorithms utilize various ex-
plainable approaches to provide insights into how the model generates predictions based
on input data. This enables us to interpret the results, identify any biases or uncertainties
in the model, and enhance its credibility and reliability. Ultimately, combining human-
centered algorithms and post hoc interpretation empowers us to make informed decisions
and applications by gaining a better understanding of the model’s outputs.
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