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Abstract: Thin layers and high-yield dolomite reservoirs were recently discovered in the Permian
Guadeloupian Maokou Formation. The genetic mechanism of this reservoir is controversial because
of its complex sedimentation and diagenesis in the Maokou Formation. Traditionally, the genesis has
focused on sedimentation, karst, and fracture, whereas the influence of the Emeishan mantle plume
activity (EMP) has been ignored. In this study, we enumerated petrographic (grouped into micritic
bioclastic limestone, limy dolomite, grain dolomite, dolomite cement, calcite cement, and saddle
dolomite) and geochemical data (δ13C, δ18O, REE, and 87Sr/86Sr) from a microscopic perspective to
support the impact of EMP on reservoirs. We conclude that EMP activity altered the sedimentary
environment and induced a complex diagenesis. The paleogeomorphic reconstruction data indicate
that the EMP caused an uplift zone in the NE–SW direction, depositing advantageous high-energy
beach facies. In terms of diagenesis, the abnormally high 87Sr/86Sr ratios and REE with positive Eu
anomalies suggest that dolomitization was influenced by both seawater and hydrothermal fluids.
Based on the above evidence, we established a reservoir genetic model for the Maokou Formation
related to the intensity of the EMP. This study provides a new perspective on the mantle plume
activity for the study of carbonate reservoir genesis.

Keywords: Emeishan mantle plume; central Sichuan Basin; Maokou Formation; genetic model

1. Introduction

The Sichuan Basin occupies a significant position in global oil and gas exploration
because of its extensive resources, diverse reservoir types, and complex geological struc-
tures [1–3]. Reservoirs in the Permian Maokou Formation in the central Sichuan Basin have
attracted considerable attention because of their high-yield gas flows and complex genetic
mechanisms. The Maokou Formation reservoir in the central Sichuan Basin comprises
thin-layered dolomite within limestone strata; as such, it is unique because its composition
differs significantly from reservoirs in other areas [4–9]. There are multiple explanations for
the genesis mechanism of this special reservoir, which can be divided into two categories:
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sedimentary genesis and diagenetic genesis [10–12]. With sedimentary genesis, the reser-
voir is controlled mainly by the distribution of intermediate to high-energy beach facies
within the platform [13–16]. Diagenetic genesis can be further divided into two categories
according to whether the reservoir is controlled by karstification or fracture distribution.
With the former, a thin-layer reservoir is formed by interstratal karst caused by the leaching
effect of meteoric water [17–20]. With the latter, the reservoir is mainly a type controlled
by fracture distribution, based on evidence of highly developed fractures that are filled
or semi-filled with saddle dolomite in the core [21–23]. There is also a composite genesis
of sedimentation and karst jointly controlling reservoirs [24–26]. But most of the causal
mechanisms only focus on a specific factor, ignoring the underlying cause of the Emeishan
mantle plume (EMP) activity.

The sedimentary and early diagenesis stage (~271–260 Ma) of the Maokou Formation
occurred earlier than that of the Emeishan large igneous province (ELIP, ~260 Ma), accom-
panied by EMP activity [27–29]. Owing to the temporal coupling relationship between the
EMP activity and the development of the Maokou Formation, it is considered that all fac-
tors relating to reservoir genesis (including sedimentation, karst, faults) are related to this
intense geological activity. And there have been reports that the EMP activity has changed
the sedimentary environment, leading to uplift and karst processes, on a large scale across
the entire Sichuan Basin [30–32]. Therefore, the genesis of the Maokou Formation reservoir
is likely to be controlled by the EMP activity.

To verify this hypothesis, we conducted research from both sedimentary and diagenetic
perspectives, investigating the changes in the sedimentary environment through core
descriptions, paleogeomorphic reconstruction and the important diagenesis in reservoir
formation based on petrologic and geochemical analyses. The reservoir genesis mechanism
influenced by EMP is established. And the results and conclusion provide guidance for the
exploration and development of carbonate gas reservoirs and provide a new perspective
on the mantle plume activity for the study of carbonate reservoir genesis.

2. Geological Setting

The study region (30◦10′29′′ N, 106◦15′18′′ E) is located in the Sichuan Basin, which is
superimposed on the Upper Yangtze Block and has experienced multiple tectonic move-
ments and complex later reformation [33–36]. The basin is divided into six secondary
tectonic units (Figure 1B): the gentle tectonic belt in central Sichuan where the study region
is located, the high, steep fold belt in eastern Sichuan, the low, steep fold belt in west-
ern Sichuan, the gentle tectonic belt in southwestern Sichuan, the low, steep fold belt in
southern Sichuan, and the gentle tectonic belt in northern Sichuan [37].

2.1. EMP Activity and the ELIP

The ELIP is the only large igneous province recognized by the international academic
community in China owing to continuous arching and EMP activity. The ELIP occurred
between the Guadalupian and Lopingian at ~260 Ma [38–41]. The range of erupted basalt
covers 7 × 105 km2 [42] and is mainly restricted to the junction between Yunnan, Sichuan,
and Guizhou provinces in the southern Sichuan Basin [43–46]. The basalt erupted uncon-
formably on the limestone strata of the Maokou Formation, and its thickness gradually
decreased from the southwest to northeast of the Sichuan Basin [47,48]. The ELIP caused
climate change [49,50] and was associated with the Permian–Triassic (P-T) mass extinction
event [51–55].

The mantle plume hypothesis has been widely adopted to explain the origins of large
igneous provinces, and sedimentologic, geophysical, and geochemical evidence has proven
that the ELIP was caused by EMP activity [56–58]. Mantle plume activity is a process in
which high-temperature material arches up causing the crust to uplift and rupture, and the
high-temperature material finally erupts to form basalt [59–63]. Based on differences in the
degree of erosion around the ELIP center, the eroded zones can be divided into three parts:
inner, middle, and outer zones [64] (Figure 1A). The Sichuan Basin is located in the outer
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zone of the ELIP, but previous studies have also reported basalt outcrops in this area [41],
indicating that EMP activity also had a significant effect on reservoirs in the central Sichuan
Basin. The Maokou Formation has undergone varying degrees of erosion owing to the
influence of EMP activity.
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Figure 1. (A) Distribution of the Emeishan Large Igneous Province (ELIP) [64]. According to
the magnitude of strata uplift and erosion, the ELIP can be divided into the inner, intermediate,
and outer zones. (B) Location of the study area and tectonic units; (C) location of Sichuan Basin;
(D) stratigraphic column of the Maokou Formation (Permian) in the central Sichuan Basin. In the
study area, Mbr4 has been eroded, leaving Mbr1, Mbr2, and Mbr3. There is unconformity contact
between Mbr3 and the Longtan Formation.

The Sichuan Basin has undergone a series of tectonic movements throughout its
geological history. The Dongwu Movement (DM) occurred in the Middle Permian, related
to EMP activity [65,66]. The DM significantly influenced the sedimentation and early
diagenesis of the Maokou Formation reservoir. The DM was a multiphase movement, and
many division schemes have been proposed for its active stages [67–72]. The latest proposed
scheme divides the DM into four stages [73], and these are related to the development
of the Maokou Formation as follows: The first stage (DM1) occurred at the beginning of
the deposition of the Mbr 1, characterized by local uplift of the strata and relative sea
level decline. The second stage (DM2) occurred between the deposition of Mbr 2 and
Mbr 3, characterized by continuous uplift and the formation of local plateaus, leading to
differentiation of sedimentary environments. The third stage (DM3) occurred after the
deposition of Mbr 4, which directly led to erosion and loss of Mbr 4, and the fourth stage
(DM4) was accompanied by the ELIP, where faults generated by the tectonic movement
provided channels for the upward migration of basalt. Based on EMP activity and these
four most recently defined stages of the DM, this study provides further evidence of the
causal relationship between the EMP and the formation of Maokou Formation reservoirs.
In addition, the main controlling factors and formation models of Maokou Formation
reservoirs are investigated.

2.2. Stratigraphy and Depositional Setting

After a long hiatus in the Late Carboniferous–Early Permian, a large-scale trans-
gression occurred in the Upper Yangtze region during the Kungurian; this was followed
by a steady decrease in sea level, transitioning from coal-bearing clastic shore facies to
carbonate platform facies [74]. Under this depositional setting, the Maokou Formation
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was deposited in the Middle Permian, which conformably overlies the Qixia Formation
and unconformably underlies the Longtan Formation, and it has an estimated age of
270–260 Ma [75]. The Maokou Formation can be divided into four lithological members
from top to bottom, with Mbr 1 to Mbr 3 being a depositional cycle and Mbr 4 being
another one. Mbr 4 in most areas of the Sichuan Basin is missing due to the influence of the
Dongwu Movement. In the late stage of the Middle Permian Maokou Formation, the strata
were up-lifted and eroded, resulting in the unconformity of the Longtan Formation shale
covering Mbr 3 in the study area [13,17].

Mbr 1 is a transgressive systems tract (TST). During this period, the Sichuan Ba-sin
experienced a major transgression process, and the paleogeomorphology still showed a
trend of high in the west and low in the east. The seawater in the basin gradually became
shallower from east to west. This period was the highest sea level of the Lower Permian
and lasted for a long time, with relatively low sea water energy and mostly developed
gentle slope facies. The Mbr 1 sediment is mainly composed of dark gray and grayish black
mudstone and layered micritic bioclastic limestone. Layered limestone exhibits undulating
features, forming eyelids and eyeball shaped limestone. Paleontology is characterized
by the Cryptospirifer brachiopod fauna. Mbr 2 to Mbr 3 form a high-stand systems tract
(HST). During this period, the seawater in the basin has gradually receded from west
to east, marking the lowest relative sea level period of the Maokou Formation. At this
time, the seawater energy is relatively high, and the main sedimentary facies is the open
platform facies. Mbr2 is mainly composed of bioclastic limestone and dolomite, with gray
dolomite developed between the limestone and dolomite. Mbr 3 is mainly composed
of light-gray clastic limestone. During the sedimentation process of Mbr 3, the sea level
gradually increased, and the energy of seawater decreased.

3. Materials and Methods

From a macro perspective, the residual thickness method and impression method
were used to reconstruct the paleogeomorphology. The restoration of paleogeomorphology
mainly relies on geological thickness data. Due to the marine invasion during the Mbr 1
sedimentary period, the restoration of paleogeomorphology in the Qixia Formation was
carried out using the impression method, utilizing the stratigraphic thickness data of Mbr 1.
The residual thickness method is used to restore the paleogeomorphology of Mbr 2, mainly
utilizing the sedimentary thickness data of Mbr3.

Based on the above macro-analysis, 16 samples were selected in different paleogeomor-
phological positions within drill cores from Wells HS2, HS4, and HS6, and dolomite, lime-
stone, and cement samples were collected and used for microscopic analysis and testing.

Thin sections were impregnated with blue epoxy to highlight porosity and stained
with Alizarin Red S to conduct a detailed petrographic study. All samples were washed
with distilled water, dried overnight to ensure purity, extracted with a dental drill, and
ground to <200 mesh using an agate mortar [76]. All geochemical experiments and analyses
(δ13C and δ18O, 87Sr/86Sr, trace earth elements) were performed at the Key Laboratory of
Carbonate Reservoir, China National Petroleum Corporation.

To conduct δ13C and δ18O analyses, ~200–300 µg of powder was reacted with 105%
H3PO4 at 50 ◦C for 4 h, and the CO2 produced was measured using a DELTA V Advantage
isotope ratio mass spectrometer coupled to Gasbench II. The δ13C and δ18O values were
calculated relative to the Vienna Pee Belemnite scale. Under analysis precision monitor-
ing with the NBS-19 standard and two internal standards of GBW04405 and GBW04406,
the standard deviation of δ13C and the δ18O were found to be better than ±0.1‰ and
±0.2‰, respectively.

For the Sr isotope analysis, 50–100 mg of powder was dissolved in 1 mL HNO3
in a Teflon container for 48 h at 190 ◦C. Sr was extracted from the supernatant using a
conventional ion-exchange program and an ion-exchange resin. 87Sr/86Sr analyses were
performed using a Triton Plus thermal ionization mass spectrometer calibrated using
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the estimated SRM-987 standard. The average error of the 87Sr/86Sr ratio was a mere
±0.5 × 10−5 (2σ).

For the trace elements analyses, ~40 mg of power was dissolved in 5 mL HNO3
in a Teflon container and dried. Another 5 mL HNO3 (1.42 g/mL) was then added to
the container for 3 h at 130 ◦C to remove the effects of aluminum silicates and other
contaminants. Trace earth elements were analyzed using inductively coupled plasma mass
spectrometry (ICP-MS). All REE concentrations were standardized using PAAS [77,78]. In
this study, Ce anomalies were calculated using the following formula [79,80]:

Ce/Ce* = CeN/(PrN × PrN/NdN) (1)

La anomalies were calculated using the formula [79,80]

La/La* = LaN/(PrN × (PrN/NdN)2) (2)

and Eu anomalies were calculated using the formula

Eu/Eu* = EuN/(SmN* 2/3 + TbN* 1/3) (3)

This was used to calculate the Eu anomalies (Eu/Eu* > 1 indicates a positive anomaly
related to hydrothermal processes) [81,82].

4. Results
4.1. Petrography

An interpretation of the logging data shows that the Maokou Formation reservoir
segment in the central Sichuan region is mainly concentrated in Mbr 2 of the Maokou
Formation. According to the size, distribution, and surface shape of crystals, the lithology
can be divided into six types (Figure 2). The matrix rocks can be divided into two categories:
limestone and dolomite. Most of the limestone is micritic bioclastic limestone (LIM) which
is rich in bioclast. Dolomite can be further divided into limy dolomite (LD) and grain
dolomite (GD) based on the difference in its degree of dolomitization. The types of cement
can be divided into saddle dolomite (SD), dolomite cement (DC), and calcite cement (CAL).
All types of cement have medium to coarse crystals which are larger than matrix rocks.
Among them, there is a curved surface crystal shaped SD. The details of these six types of
lithology are provided below.

LIM: All seven LIM hand specimens were light-gray and black. Bubbles were gener-
ated violently after dropping 5% HCL. Examination under an optical polarizing microscope
showed large amounts of biological debris within the limestone (Figure 2A). The main
matrix type of LIM is mainly micritic matrix, indicating that it was formed in a deep-water
sedimentary environment with weak water energy. There are few intergranular pores.
Spatially, LIM was widely distributed above and below the dolomite layer, which is the
primary lithological component of the Maokou Formation.

LD (Figure 2B): The two LD hand specimens were grayish black, darker than the
limestone, and they showed weak blistering after dropping 5% HCL. Microscopic thin-
section observations indicated that the lithology mostly comprised fine-medium crystal
GD with some calcite particles that turned red when stained with Alizarin Red S. Most of
the LD develops in Mbr 2, which is the shallowest stage of the Maokou Formation seawater
and has strong water energy. LD is mainly developed in the transitional zone between the
limestone and dolomite layers.

GD: GD is the main lithology of the Maokou Formation reservoir, and its color is gray-
black and darker than the other components. Thin-section identification showed that it
was mainly composed of fine-to-medium crystal dolomite particles (Figure 2C). Compared
with LD, the GD was completely dolomitized. Similar to LD, GD mainly develops in Mbr 2
and is also deposited in high-energy and shallow environments. The GD is concentrated
within the thin dolomite reservoir of the Maokou Formation.
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DC: DC exists in the fissures generated in GD, and no reaction was observed after
dropping 5% HCL. Under a polarizing microscope, the DC particles were seen to be signifi-
cantly larger than the surrounding GD, and they mainly comprised medium coarse crystal
particles (Figure 2D), which would have formed during diagenesis. Cross polarization
showed that the dolomite particles were relatively straight, and there was no undulating
extinction (Figure 2E); therefore, they were not of a hydrothermal origin.

SD: SD is a typical hydrothermal mineral [83]. Core observations revealed that large
amounts of SD were filled or semi-filled in fissures and holes developed in GD. The curved
crystal shape of SD was observed in the hand specimen. Under a polarizing microscope, the
saddle-shaped dolomite grains were observed to be mainly macrocrystalline particles, and
they were larger than the DC and accompanied by an asphalt filling (Figure 2F). Undulating
extinction characteristics were observed using an orthogonal polarizer (Figure 2G).

CAL: Unlike SD and DC, CAL was seen to exist mainly in limestone fractures (Figure 2H).
During thin section observations, fine-to-medium crystal particles and coarse crystal parti-
cles were seen within the CAL. In the orthogonally polarized image, fine-medium crystal
horse-tooth CAL is seen at the edge of the sample; this represents early filling, while the
macrocrystalline particles in the middle of the CAL represent later filling (Figure 2I).
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4331.95 m); (B) microphotograph of LD: light red particles are calcite stained by Alizarin Red S; gray-
white particles are dolomite particles (HS4-4335.20 m); (C) microphotograph of GD (HS4-4337.85 m);
(D) microphotograph of DC: white band is a dolomite cement vein, and the grey is grain dolomite
surrounding rock (HS4-4337.15 m); (E) crossed polarized microphotograph of Figure 3 (D). The DC
has no undulating extinction characteristics and is therefore not related to a hydrothermal gene-
sis. (F) Microphotograph of SD: asphalt exists between coarse particles and pores (HS6-4539.3 m);
(G) crossed polarized microphotograph of Figure 3 (F). The SD has undulating extinction, which
represents a hydrothermal genesis. (H) Microphotograph of CAL: the gray–white bands and clumps
are calcite cements, and the dark gray parts are limestone surrounding rock (HS2-4334.03 m);
(I) crossed polarized microphotograph of Figure 3 (H). Tooth-shaped fine particles exist at the
edge of the vein (related to early filling) and coarse crystal particles exist in the middle of the vein
(late filling).
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tion was caused by the activity of EMP. (A) Paleogeomorphology of the end of the Qixia Formation;
(B) paleogeomorphology of the second member of the Maokou Formation.

4.2. Geochemistry
4.2.1. Stable Carbon and Oxygen Isotopes

The δ18O distribution range within the Maokou Formation is generally negative
compared with that of Permian seawater [84] (Table 1). The δ13C values of LIM ranged
from 1.58‰ to 4.53‰ (average 3.51‰), while the δ18O isotope values ranged from −6.54‰
to −8.14‰ (average −7.20‰). The δ13C values of GD spanned from 3.41‰ to 4.06‰
(average 3.86‰), and the δ18O values ranged from −5.44‰ to −8.18‰ (average −7.53‰).
For LD, the δ13C values were from 4.07‰ to 4.10‰ (average 4.08‰), and the δ18O values
were from −7.60‰ to −7.64‰ (average −7.62‰). Only one sample was extracted from
SD, and the δ13C and δ18O values were 5.05‰ and −7.62‰, respectively.

Table 1. Isotope data (δ13C, δ18O, and 87Sr/86Sr) of micritic bioclastic limestone (LIM), limy dolomite
(LD), grain dolomite (GD), and saddle dolomite (SD) from the Maokou Formation in the central
Sichuan Basin.

Sample ID Well Lithology δ18OPDB‰ δ13CPDB‰ 87Sr/86Sr
Elemental Analysis

Sr/ppm Mn/ppm Mn/Sr

4527 HS2 LIM −6.74 3.85 0.707317 389.98 61.94 0.16
4531 HS2 LIM −7.77 4.04 0.707231 352.66 80.33 0.23
4533 HS2 LIM −6.54 1.58 0.707015 368.06 123.94 0.34
4543 HS4 LIM −8.14 4.53 0.707266 422.83 43.03 0.10
4545 HS4 LIM −7.92 4.24 0.707330 518.31 47.57 0.09
4547 HS4 LIM −6.54 2.64 0.707178 384.35 121.95 0.32
2028 HS6 LIM −6.82 3.66 0.707362 473.70 10.10 0.02
4548 HS4 LD −7.60 4.10 0.707380 222.66 92.75 0.41
4549 HS4 LD −7.64 4.07 0.707324 281.64 78.71 0.28
4550 HS4 GD −7.42 3.87 0.707676 133.34 170.08 1.27
4551 HS4 GD −5.44 3.41 0.707264 746.21 23.39 0.03
2024 HS6 GD −8.13 4.06 0.707696 84.94 31.27 0.37
2025 HS6 GD −7.91 4.03 0.707953 65.57 31.21 0.47
2026 HS6 GD −8.12 3.89 0.707908 68.52 40.73 0.59
2029 HS6 GD −8.18 3.88 0.707879 66.30 31.44 0.47
2027 HS6 SD −7.62 5.05 0.708225 120.00 48.11 0.40
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4.2.2. Radiogenic Sr Isotopes

The 87Sr/86Sr ratios of the lithologies examined within the Maokou Formation were
abnormally high (Table 1). The 87Sr/86Sr ratios of LIM and LD ranged from 0.707015 to
0.707362 and 0.70732 to 0.70738, respectively; therefore, the values of both LIM and LD lie
within the approximate 87Sr/86Sr ratio range for Permian seawater (0.70680–0.70807) [84].
However, the 87Sr/86Sr ratios of GD were abnormally high. The 87Sr/86Sr ratio of the GD
ranged from 0.707264 to 0.70908. In addition, the SD value of SD was 0.708225, which is
abnormally located in the range of Permian seawater.

4.2.3. Trace Earth Elements

The highest Sr concentrations in the study areas were observed in LIM (352.67–518.31 ppm,
average 415.70 ppm), compared with those of GD (65.57–746.21 ppm, average 194.14 ppm)
and LD (222.67–281.65 ppm, average 252.15 ppm) (Table 1). The manganese (Mn) contents
of LIM were 10.10–123.94 ppm (average 69.84 ppm) and slightly higher than those of GD
(23.39–170.08 ppm, average 54.68) but lower than those of LD (78.71–92.75 ppm, average 85.73).
The ratios of Mn to strontium (Sr) were characterized by ranking according to the degree
of dolomitization as follows: LIM (0.02–0.33, average 0.17) < LD (0.27–0.41, average 0.34)
< GD (0.03–1.27, average 0.53). The REE concentrations in different samples are presented
in Table 2, and the post-Archean Australian shale (PAAS) [77]. The REE patterns of LIM
were similar to those of LD, and they exhibited a seawater-like profile with enriched heavy
REEs (HREEs). GD showed two REE pattern types: one was similar to LIM and LD with
negative Eu anomalies (Eu/Eu*: 0.84–0.90), and the other had positive Eu anomalies (Eu/Eu*:
1.03–1.5).
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Table 2. Rare earth element (REE) abundance of micritic bioclastic limestone (LIM), limy dolomite (LD), grain dolomite (GD), and saddle dolomite (SD) from the
Maokou Formation in the central Sichuan Basin.

ID Well Lithology La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Eu/Eu*

4527 HS2 LIM 0.00569 0.00459 0.00481 0.00476 0.00554 0.00491 0.0069 0.00605 0.0063 0.00775 0.00804 0.00861 0.00748 0.00777 0.85992
4531 HS2 LIM 0.00856 0.00656 0.00767 0.00771 0.00943 0.00924 0.01363 0.01346 0.01408 0.01557 0.01671 0.0181 0.01578 0.01658 0.85866
4533 HS2 LIM 0.00775 0.00519 0.00569 0.00612 0.0066 0.0087 0.01147 0.01083 0.01221 0.01473 0.01513 0.01588 0.01328 0.0136 1.08843
4543 HS4 LIM 0.00509 0.0045 0.00468 0.00467 0.00559 0.00578 0.00667 0.00617 0.00682 0.00731 0.0084 0.00924 0.00781 0.0078 0.99944
4545 HS4 LIM 0.01847 0.01744 0.0188 0.01882 0.02456 0.02382 0.02893 0.02829 0.02959 0.03231 0.03406 0.03871 0.03394 0.03548 0.92358
4547 HS4 LIM 0.01281 0.01134 0.01209 0.01164 0.01353 0.01271 0.01589 0.01543 0.01698 0.01784 0.01937 0.01965 0.01896 0.02048 0.89775
2028 HS6 LIM 0.01345 0.0118 0.01249 0.01222 0.01469 0.01574 0.01694 0.0151 0.01494 0.01728 0.01836 0.01768 0.01482 0.01638 1.06161
4548 HS4 LD 0.01451 0.01296 0.01389 0.0136 0.01586 0.01446 0.01908 0.01757 0.0184 0.02096 0.02266 0.02582 0.02404 0.02438 0.88046
4549 HS4 LD 0.02168 0.01972 0.02008 0.01921 0.02292 0.0228 0.02608 0.02609 0.02734 0.02999 0.0294 0.03314 0.02836 0.03063 0.95138
4550 HS4 GD 0.02281 0.0206 0.02246 0.02181 0.02527 0.02198 0.0287 0.02722 0.02952 0.03142 0.03515 0.03841 0.03498 0.03741 0.84796
4551 HS4 GD 0.01967 0.02041 0.02088 0.02019 0.02233 0.02221 0.01974 0.01733 0.01623 0.01566 0.01602 0.01793 0.01601 0.01626 1.07405
2024 HS6 GD 0.01392 0.00902 0.00857 0.00739 0.00673 0.01111 0.00857 0.00877 0.00933 0.01013 0.01174 0.01366 0.01168 0.01257 1.50055
2025 HS6 GD 0.0048 0.00455 0.00484 0.00501 0.00629 0.0061 0.00815 0.00772 0.00846 0.00989 0.01161 0.01298 0.01168 0.00975 0.9017
2026 HS6 GD 0.00648 0.00562 0.00586 0.00576 0.00624 0.00716 0.00835 0.0084 0.00819 0.01005 0.01067 0.0115 0.01081 0.0096 1.03051
2029 HS6 GD 0.01425 0.01021 0.00941 0.00824 0.00797 0.009 0.00934 0.00919 0.00969 0.01034 0.01284 0.01367 0.01099 0.01222 1.07478
2027 HS6 SD 0.0108 0.0093 0.01021 0.01068 0.01177 0.01224 0.01335 0.01406 0.0146 0.01806 0.01837 0.01589 0.01579 0.01461 0.97714
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5. Discussion
5.1. EMP Activity Altered the Sedimentary Environment

The most salient manifestation of EMP activity is a dome-shaped uplift on the Earth’s
surface [85–88] that subsequently triggered robust tectonic movements. Crustal uplift
occurred globally before the eruption of the five major igneous provinces of the Emeis-
han (260 Ma), Siberia (251 Ma), Deccan (65 Ma), North Atlantic (161 Ma, 255 Ma), and
Yellowstone (26 Ma) [89–94].

The paleogeomorphological construction conducted in this study showed that strong
uplift occurred between the end of Qixia Formation development and the sedimentary
stage of Mbr 2 of the Maokou Formation, and this altered the sedimentary environment
and facies. During the sedimentary stage of the Qixia Formation, the paleogeomorphology
was characterized by high values in the southwest and low values in the northeast in the
study area (Figure 3A), whereas a NW-SE uplift zone was formed in the study area during
the sedimentary stage of Mbr 2 of the Maokou Formation (Figure 3B). In the stratigraphic
thickness section (Figure 4), it was also found that the sedimentary thickness of Mbr3 is
thinner in the uplift zone, indicating that there was a local differential uplift in the late
stage of sedimentation in Mbr 2. Differential uplift refers to the varying degrees of uplift
in different regions, which determines the distribution of sedimentary environments and
facies.

The changes in Paleogeomorphology caused by EMP activities lead to changes in the
sedimentary environment and differential distribution of sedimentary facies (Figure 5A).
Due to the formation of the NW-SE uplift zone, the originally deep-water sedimentary
environment in the study area has changed to a shallow water sedimentary environment,
and seawater energy has also increased from weak to strong.

In the uplift zone and its surrounding areas, high-energy beach facies are formed based
on shallow water and strong energy. This sedimentary facies mainly develops limestone
composed of fine-medium crystalline particles, and after varying degrees of dolomitization,
LD (Figure 2B) and GD (Figure 2C) are formed, which are also identification indicators of
this type of sedimentary facies. In addition, there are more abundant intergranular pores
in this type of sedimentary facies (Figure 5B), which is beneficial for the development of
reservoirs. The gentle slopes and depressions far away from the uplift zone have deep-
water and low-energy environments. There are gentle slope and low-energy beach facies
extending outward in the uplift zone and its surrounding areas. Although these facies zones
are also beach facies, the energy of seawater is relatively weakened, and the sediment type
changes to fine crystalline particles, with relatively fewer intergranular pores (Figure 5C).
The main sedimentary facies developed in the depression are intertidal marine facies, which
mainly consist of mud crystal bioclastic LIM (Figure 2A) with a micritic matrix, and there
are almost no intergranular pores. Overall, the high-energy beach facies that developed in
the slope zone owing to the EMP uplift formed the material basis for the development of
high-quality reservoirs.
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Figure 5. (A) Sedimentary facies distribution map of Mbr 2 of the Maokou Formation in the central
Sichuan region; (B) microphotograph of GD, which is representative of a high-energy beach facies with
abundant intergranular pores and was obtained from well of HS4 (4339.70 m); (C) microphotograph
of GD, which is representative of gentle slope facies with low energy and poor intergranular pores
and was obtained from well HS6 (4539.30 m). The comparison between (B,C) proves that high-energy
sedimentary facies contain comparatively more intergranular pores.

5.2. Complex Diagenesis Resulting from EMP Activity
5.2.1. Abnormally High Geothermal Temperature

Mantle plume activity is an important heat loss mechanism that occurs in relation to
energy being released from the Earth’s interior [95,96]. Numerical simulations have been
conducted to understand the thermal structure, heat loss, and recovery of the basalt melting
temperature of mantle plumes [97–99]. There is also geochemical evidence that EMP activity
caused abnormal geothermal temperatures, such as that relating to the decarbonization
reaction, which resulted in sharp δ13C decreases in the Maokou Formation [32]. In addition,
vitrinite reflectance studies have estimated that the abnormal geothermal gradient caused
by EMP activity reached 43 ◦C/km [100,101].

In this study, we provide two types of evidence for the abnormally high ground
temperature caused by the EMP. In this respect, we first refer to a section of basalt in
contact with the Maokou Formation in the Huaying area within the eastern part of the
study area (Figure 6). Obvious baking and crushing phenomena are observed near the
contact surface between the basalt and the Maokou Formation, indicating that the Maokou
Formation experienced abnormally high thermal effects in the study area and that the
reservoir of the Maokou Formation was strongly influenced by EMP activity. Second, based
on the δ13C and δ18O data obtained from cores HS2, HS4, and HS6 in this study, and those
obtained from GC2, GT2, and T4 in previous studies [18,21,22,102,103], we determined the
existence of strong negative δ18O values in the Maokou Formation (Figure 7A) compared
to global Guadalupian seawater. This negative feature was caused by thermal fractionation
accompanied by high temperatures. In addition, the degree of negative bias in LIM, GD, and
SD was observed to gradually increase, thereby indicating that abnormally high geothermal
temperatures existed during both the sedimentary and shallow burial periods. Furthermore,
a value of δ18O < −10% in an SD sample indicated the influence of diagenetic alteration.
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Figure 6. Photograph of Huangkongcao section. (A) Fragmented baked contact is observed between
the basalt and the Maokou Formation, which indicates that the Maokou Formation experienced ab-
normally high thermal effects. The location of the profile is shown in Figure 1B. (B) Microphotograph
of basalt.
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Figure 7. (A) Cross-plot of δ13C versus δ18O values of micritic bioclastic limestone (LIM), limy
dolomite (LD), grain dolomite (GD), saddle dolomite (SD), dolomite cement (DC). The δ18O values
are negative in relation to the abnormal high geothermal temperature associated with the EMP.
(B) 87Sr/86Sr ratio of LIM, LD, GD, SD, and DC. The 87Sr/86Sr ratio of GD is similar to that of LIM in
some parts and similar to SD in others, and values of >0.712 represent the influence of meteoric water.
Some of the data were obtained from previous research [18,21,22,102,103]. The global Permian δ13C,
δ18O, and 87Sr/86Sr distribution range was obtained from Veizer [84].

5.2.2. Multiple Diagenetic Fluids

Affected by EMP activities, the early diagenetic stage of the Maokou Formation was
influenced by various diagenetic fluids, such as seawater, meteoric water, and hydrother-
mal fluids. This study analyzed both the 87Sr/86Sr ratio and trace earth elements. It is
generally agreed that carbonates with Mn/Sr < 1.5 did not experience significant diagenetic
alteration [104,105]. In this respect, the Mn/Sr ratios of all LIM samples in this study were
<0.35, indicating that the LIM samples had not undergone significant diagenetic alteration
and that the ratios were related to the composition of ancient seawater. However, the Mn/Sr
ratios of most GD samples were higher than those of the LIM but lower than 1.5, which
suggested that they experienced minor diagenetic alteration (Table 1). The 87Sr/86Sr values
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of LIM were similar to those of LD, and some GD values were distributed in the Permian
seawater range (Figure 7B), indicating that the diagenetic fluid was mainly seawater. The
REE patterns of LIM, LD, and of some GD samples were all characterized by enriched
HREEs and negative Eu anomalies (Eu/Eu*: 0.84–0.90) (Figure 8A–C), which proves that
seawater was the main diagenetic fluid. Abnormally high 87Sr/86Sr values similar to those
of SD were found in some GD samples (Figure 7B). The REE patterns of these GD samples
also exhibited rich HREE characteristics, but the patterns differed from those of LIM, LD,
and others in that positive Eu anomalies were noted (Eu/Eu*: 1.03–1.5) (Figure 8D). This
is an important characterization of the influence of hydrothermal fluids on diagenetic
processes, and the diagenesis of these GD sample types was therefore influenced by hy-
drothermal fluids. The 87Sr/86Sr values of small amounts of GD were greater than 0.712
(Figure 7B), which signifies a meteoric water diagenetic environment. Moreover, significant
karstification was observed in the study area, as detailed in Section 5.2.3, which indirectly
proves the influence of meteoric water during diagenesis of the Maokou Formation.
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positive Eu anomalies). The PAAS data were obtained from Taylor and Mclennan [77]. The REE
patterns of LD and GD (sea water) are similar to those of LIM, with rich HREEs and negative Eu
anomalies indicating the origin of sea water. The REE patterns of GD (hydrothermal) show positive
Eu anomalies indicating the influence of hydrothermal fluid.

5.2.3. Karst and Fractures

Karstification is a pivotal factor in the genesis of reservoir spaces [106]; it serves as the
main driver of secondary porosity and is a key enhancer of reservoir properties. In the core
description and images obtained from the formation microimager (FMI), dissolution pores
were seen to be developed (Figure 9A,B) as a result of uplift and dissolution occurring
during the penecontemporaneous or shallow burial period. Section 5.2.2 showed that an
87Sr/86Sr value of GD was higher than 0.712 (Figure 7B), which provides evidence that Mbr
2 of the Maokou Formation experienced dissolution in meteoric water. The EMP activity
resulted in stratigraphic uplift differences, and the karstification degree in HS2 and HS4
well cores were greater than that in HS6: both HS2 and HS4 are located on the slope of the
NW-SE direction uplift zone, which was caused by EMP activity (Figure 3B), and the water
energy in this area was extremely strong and karst pores were readily formed. This slope
zone is also the main location of a high-energy particle shoal facies, where the intergranular
pores between particles provided a material basis for karstification.

The FMI image showed that karst pores were accompanied by the development of
fissures (Figure 9C). Under a polarizing microscope, fractures were observed to be widely
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distributed and partially accompanied by dissolution pores, with CD, CAL, and asphalt
filling the fracture and pore interiors (Figure 9D,E). Based on the different filling minerals
observed, the filling process of cracks can be divided into three stages: CD is the earliest
filling mineral; it has coarse and straight particles and is mainly distributed in the inner
walls of cracks and pores. The second phase relates to asphalt filling between CD and
CAL. CAL is the third filling mineral; it appears as red coarse crystalline calcite in the thin
sections stained by Alizarin Red S and is distributed in the center of fractures and pores.

Karstification and fractures are the two most important factors resulting in the forma-
tion of secondary pores within the Maokou Formation. Against the background of EMP
activities, karst was prone to occur within the slope zone, and dissolution pores are formed
within it. With a relatively dense fracture distribution, the formation of large-scale fractures
and porous reservoir systems is more likely to have occurred.
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Figure 9. Abundant karst pores associated with fractures, proving that karstification is intense
and fractures are the dominant channels within areas of karstification. (A) Core photograph of
dissolved pores from well HS4 (4338.70–4338.94 m); (B) FMI image of dissolved pore from well
HS4 (4340.5–4341.5 m); (C) FMI image of dissolved pores associated with fissures from well HS4
(4348–4349.5 m); (D) microphotograph of fractures filled with dolomite cement (DC) and asphalt in
well HS4 (4339.25 m); (E) microphotograph of fractures and pores successively filled with dolomite
cement (DC), asphalt, and calcite cement (CAL) in well HS4 (4339.53 m).

5.3. Model of Reservoir Genesis Associated with EMP Activity

Under the influence of EMP activity, significant changes occurred in the sedimentary
environment and in the diagenesis of Maokou Formation reservoirs within the central
Sichuan Basin. In this study, we established a genetic model for a reservoir within the
Maokou Formation in central Sichuan that is based on the intensity and stage of EMP
activity as follows: Stage 1: EMP activity began at the end of the sedimentary period of
the Qixia Formation (Figure 10A). Stage 2: in the early stage of low-intensity EMP activity
(from the end of the Qixia Formation to the depositional beginning of Mbr 2 of the Maokou
Formation), the paleogeomorphology changed, and a NW-SE oriented uplift zone was
formed; this resulted in the deposition of high-energy beach facies around the uplift zone
(Figure 10B). Stage 3: during the continuous uplift stage of the EMP (the sedimentary stage
from Mbr 2 to Mbr 4 of the Maokou Formation), the intensity of the stratigraphic uplift
continued to increase, resulting in exposed dissolution and the formation of structural
fractures (Figure 10C). Stage 4: with the increasing EMP activity (the period of intense uplift
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after the deposition of Mbr 4 of the Maokou Formation), the maximum stratigraphic uplift,
dissolution, and fracturing degrees were reached in the central Sichuan Basin (Figure 10D).
The deposition of high-energy beach facies on an uplifted slope provided the foundation
for the diagenetic transformation due to the presence of abundant intergranular pores.
Seawater, hydrothermal fluid, and meteoric water jointly affected the early diagenesis of
the reservoir and seawater, and hydrothermal fluids promoted dolomitization under high
geothermal conditions. Meteoric water-controlled karstification mainly occurred on the
uplifted slopes, and fractures were the dominant karst channels, leading to the relationship
between fractures and karst pores.
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Figure 10. Reservoir genesis model of the Maokou Formation in the Sichuan Basin in association
with the influence of EMP activity; (A) start of EMP activity following development of the Qixia
Formation; (B) EMP activity leads to the formation of uplift zones, resulting in sedimentary differ-
entiation in the second member of the Maokou Formation; (C) continuous EMP activity results in
the generation of fractures and karst during the sedimentary stage from the second member to the
fourth member of Maokou Formation; (D) during most intense EMP uplift period, which occurred
following deposition of the fourth member of Maokou Formation, the karst was the strongest and
accompanied by fractures.
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6. Conclusions

This study focuses on the impact of Emeishan mantle plume activity on the genesis
of the Maokou Formation reservoir. The sedimentation and early diagenesis stages of the
Maokou Formation were accompanied by EMP activity, all of which had a significant impact
on the genetic mechanisms of the reservoir. With respect to sedimentation, uplift from the
EMP altered the paleogeomorphology of the area, and local uplift zones were formed in a
NW–SE direction. High-energy beach facies developed on uplifted slopes, and these are
the most advantageous sedimentary facies. GD is the main associated lithofacies, and its
multiple intergranular pores provided the material basis for diagenetic transformation.

The diagenesis of the Maokou Formation was influenced by various fluids due to
EMP activity, and these included seawater, hydrothermal fluids, and meteoric water. Fur-
thermore, the dolomitization process of the Maokou Formation was influenced by both
hydrothermal and seawater processes under a high geotherm. EMP activity provided
a high geothermal temperature for the Maokou Formation, which resulted in extremely
strong thermal fractionation and a strong negative δ18O feature. The 87Sr/86Sr value range
of GD was found to be relatively large and within the range of Permian seawater, but higher
values similar to those of SD with a hydrothermal origin were also detected in GD samples.
The REE patterns of GD also display two characteristic origins: seawater (enriched HREEs
and negative Eu anomalies) and hydrothermal (enriched HREEs and negative Eu anoma-
lies) origins. The continuous tectonic uplift of the EMP caused dissolution of the Maokou
Formation via meteoric water leaching. Karstification occurs mainly on the slope of the
uplift zone, which is also the location of high-energy beach facies. During the mantle plume
uplift process, abundant fractures (karstification channels) were generated in the Maokou
Formation. Based on the above evidence and results, we established a reservoir genetic
model of the Maokou Formation in the central Sichuan Basin that shows the influence of
EMP activity based on the associated intensity and stage.

The results of this study imply that large-scale fractured and porous reservoir systems
were easily formed in the uplifted slope zone, and these contain abundant fractures. This
study provides guidance for the exploration and development of carbonate gas reservoirs
and provides reference for the study of mantle plume activity and carbonate reservoir
genesis. However, there are shortcomings in the research on the process of diagenetic
evolution in this study, which is the goal of the next step of this work.
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