Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits
Abstract
:1. Introduction
2. Geologic Background
Metal/Mineral Assemblages/Stages of Evolution | Native Metals | Alloys | Sulfides/Sulfosalts/ Halides/Sulfates/Tellurides | Associated Minerals |
---|---|---|---|---|
Early-stage magmatic | W, Pt, Zn, Bi, Pb, Au | Fe-W, Ti-Co-W, Fe-Pt, Cu-Pt, Ni-Rh-Pt, Pd-Pt, Ni-Cu, Cu-Zn, Cu-Ag, Sn-Zn-Cu, Zn-Cu-Ag, Cu-Ag, Cu-Ag-Au, Cu-Ag-Au-Zn-Ni | Pn, Co-Pn, Po, Mlr, Ccp, Bn, Cu-Ag-S, Fe-Ni-Co-Zn-S, Ag2S, Brt, Pb-Sn-Cl, AgCl, AgI | Ol, Mg-Opx (1), Cpx, Mg-Fe-Cr-Al Spl, Mag, Ilm, Ttn, Rt, Cl-Ap, |
Late-stage magmatic | Au | Cu-Ag, Pb-Sb, Ni-Ag-Zn-Cu-Au, Zn-Cu-Au, Cu-Sn | Pn, Po, Ni-Po, Bn, Mlr, Co-Ni-Sp, Co-Ni-Zn-S, Ag2S, Cu-Ag-Pb-S, Ni-Gn, Sp, Brt | Fe-Opx (2), Amp (3), Bt, Pl, Mag, Ilm, Ttn, Ap, Bdy, Zrn, Aln, Qz, Cer, Aln, Dol |
Metasomatic/Hydrothermal | Ag, Zn, Ni, Au | Cu-Ag-Au, Ag-Au, Cu-Ag, Cu-Zn | Pn, Ccp, Cct, Dg, Hzl, Py, Brt, Cst, Cu-Ag-S, Ag2S, Gn, Cu-Gn, Sb-Pb-Cl, Ag-Cl-S, Cu-Ag-Cl, AgCl, Bi-Cl, Cu-Sb-Ag-Se-S, Cu-Pb-Fe-As-S, Pb-As-S, Cu-Pb-As-S, Ag2S, Fe-Cu-Zn-Pb-S, Ni-Zn-Fe-Cu-S, Cu-Ag-Pb-Se-Te, | Tlc, Chl, Srp, Tr, Cb, Ep, Ab, Or, Ba-Or, Qz, Mag, Rt, Ttn, Aln, Mnz, Xtm |
3. Analytical Methods
4. Results
4.1. Petrology of Gabbro and Adakite
4.2. ITOASS Microinclusions in the Ildeus Arc Root Complex (Stanovoy Suture Zone)
4.3. ITOASS Microinclusions in the Bakening Volcano (Kamchatka)
5. Discussion
6. Conclusions
- Mesozoic gabbro from the Stanovoy active margin and Quaternary adakitic dacite lava from the Bakening volcano in Kamchatka contain iron–titanium oxide–apatite–sulfide–sulfate (ITOASS) microinclusions. Iron–titanium oxides are composed of magnetite, ilmenite and rutile; sulfides are composed of chalcopyrite, pyrite and pyrrhotite; and sulfates are represented by barite.
- Textural and compositional data suggest that ITOASS assemblages crystalized from metal-rich, mantle-derived (Ildeus) or slab-derived (Bakening) fractionating magma at mid-crustal levels (15–20 km below the surface) under slightly reduced to slightly oxidized conditions (from one unit below to one unit above the QFM mineral buffer).
- Magmatic crystallization and metal mobilization within the ITOASS microinclusions in Stanovoy gabbro and Kamchatka adakite were assisted by S-Cl-rich fluids, as indicated by the presence of Cu–Ag–chlorides in plutonic amphibole and volcanic phenocrysts in adakite lava and the elevated chlorine content of apatite in both gabbro and adakite.
- Although ITOASS microinclusions in the Stanovoy intrusion were possibly affected by hydrothermal processes during later collision and post-collision tectonic events, primary igneous ITOASS assemblages in the Russian Far East most probably represent the early magmatic roots of some mineralized IOA and IOCG systems.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sillitoe, R. Iron oxide-copper-gold deposits: An Andean view. Miner. Depos. 2003, 38, 787–812. [Google Scholar] [CrossRef]
- Williams, P.; Barton, M.; Fontbote, L.; Mark, G.; Marshick, R. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Econ. Geol. 2005, 100, 371–406. [Google Scholar] [CrossRef]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron oxide copper-gold (IOCG) deposits through earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef]
- Palma, G.; Barra, F.; Reich, M.; Simon, A.C.; Romero, R. A review of magnetite geochemistry of Chilean iron oxide-apatite (IOA) deposits and its implications for ore-forming processes. Ore Geol. Rev. 2020, 126. [Google Scholar] [CrossRef]
- Jonsson, E.; Troll, V.R.; Högdahl, K.; Harris, C.; Weis, F.; Nilsson, K.P.; Skelton, A. Magmatic origin of giant “Kiruna-type” apatite-iron-oxide ores in Central Sweden. Sci. Rep. 2013, 3, 1644. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.D. Iron oxide(-Cu-Au-REE-P-Ag-U-Co) systems. Treatise Geochem. 2013, 13, 515–541. [Google Scholar]
- Simon, A.C.; Knipping, J.; Reich, M.; Barra, F.; Deditius, A.P.; Bilenker, L.; Childress, T. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: Evidence from the Chilean Iron Belt. SEG Spec. Publ. 2018, 21, 89–114. [Google Scholar] [CrossRef]
- Rojas, P.A.; Barra, F.; Deditius, A.; Reich, M.; Simon, A.; Roberts, M.; Rojo, M. New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile. Ore Geol. Rev. 2018, 93, 413–435. [Google Scholar] [CrossRef]
- Del Real, I.; Reich, M.; Simon, A.C.; Deditius, A.; Barra, F.; Rodriguez-Mustafa, M.A.; Thompson, J.F.H.; Roberts, M.P. Formation of giant iron oxide-copper-gold deposits by superimposed episodic hydrothermal pulses. Sci. Rep. 2023, 13, 12041. [Google Scholar] [CrossRef] [PubMed]
- Tornos, F.; Velasco, F.; Hanchar, J.M. The magmatic-hydrothermal evolution of the El Laco deposit (Chile) and its implications for the genesis of magnetite-apatite deposits. Econ. Geol. 2017, 112, 1595–1628. [Google Scholar] [CrossRef]
- Badham, J.P.N.; Morton, R.D. Magnetite-apatite intrusions and calc-alkaline magmatism, Camsell River, N.W.T. Can. J. Earth Sci. 1976, 13, 348–354. [Google Scholar] [CrossRef]
- Lyons, J.I. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico. Econ. Geol. 1988, 83, 1886–1906. [Google Scholar] [CrossRef]
- Hitzman, M.W.; Oreskes, N.; Einaudi, M. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu U Au REE) deposits. Precambrian Res. 1992, 58, 241–287. [Google Scholar] [CrossRef]
- Bauer, T.E.; Andersson, J.B.H. Regional structural setting of late-orogenic IOCG mineralization along the northern Nautanen deformation zone, Norrbotten, Sweden. Ore Geol. Rev. 2023, 163. [Google Scholar] [CrossRef]
- Ootes, L.; Snyder, D.; Davis, W.J.; Acosta-Góngora, P.; Corriveau, L.; Mumin, A.H.; Gleeson, S.A.; Samson, I.M.; Montreuil, J.F.; Potter, E.; et al. A Paleoproterozoic Andean-type iron oxide copper-gold environment, the Great Bear magmatic zone, Northwest Canada. Ore Geol. Rev. 2017, 81, 123–139. [Google Scholar] [CrossRef]
- Storey, C.D.; Smith, M.P. Metal source and tectonic setting of iron oxide-copper-gold (IOCG) deposits: Evidence from an in situ Nd isotope study of titanite from Norrbotten, Sweden. Ore Geol. Rev. 2017, 81, 1287–1302. [Google Scholar] [CrossRef]
- Parente, C.V.; Verissimo, C.U.V.; Botelho, N.F.; Xavier, R.P.; Menez, J.; de Oliveira Lino, R.; da Silva, C.D.A.; Saraiva dos Santos, T.J. Geology, petrography and mineral chemistry of iron oxide-apatite occurrences (IOA type), western sector of the Neoproterozoic Santa Quiteria magmatic arc, Ceará northeast, Brazil. Ore Geol. Rev. 2019, 112, 103024. [Google Scholar] [CrossRef]
- Skirrow, R.J. Iron oxide copper-gold (IOCG) deposits—A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geol. Rev. 2022, 140, 104569. [Google Scholar] [CrossRef]
- Reich, M.; Simon, A.C.; Barra, F.; Palma, G.; Hou, T.; Bilenker, L.D. Formation of iron oxide-apatite deposits. Nat. Rev. Earth Environ. 2022, 3, 758–775. [Google Scholar] [CrossRef]
- Tornos, F.; Hanchar, J.M.; Steele-MacInnis, M.; Crespo, E.; Kamenetsky, V.S.; Casquet, C. Formation of magnetite-(apatite) systems by crystallizing ultrabasic iron-rich melts and slag separation. Miner. Deposita 2023, 59, 189–225. [Google Scholar] [CrossRef]
- Ménard, J.J. Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean Iron Belt, with emphasis on the El Algarrobo iron deposits (Atacama region, Chile). Miner. Deposita 1995, 30, 268–274. [Google Scholar] [CrossRef]
- Chiaradia, M.; Banks, D.; Cliff, R.; Marschik, R.; De Haller, A. Origin of fluids in iron oxide-copper-gold deposits: Constraints from δ37Cl, 87Sr/86Sri and Cl/Br. Miner. Deposita 2006, 41, 565–573. [Google Scholar] [CrossRef]
- Carew, M.J.; Mark, G.; Oliver, N.H.S.; Pearson, N. Trace element geochemistry of magnetite and pyrite in Fe oxide (±Cu-Au) mineralized systems: Insights into the geochemistry of ore-forming fluids. Geochim. Cosmochim. Acta 2006, 70, A83. [Google Scholar] [CrossRef]
- Gleeson, S.A.; Smith, M.P. The sources and evolution of mineralizing fluids in Fe oxide-apatite and iron oxide-copper-gold systems, Norrbotten, Sweden: Constraints from stable Cl isotopes of fluid inclusion leachates. Geochim. Cosmochim. Acta 2009, 73, 5658–5672. [Google Scholar] [CrossRef]
- Smith, M.P.; Gleeson, S.A.; Yardley, B.W.D. Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: Contrasting metal behavior in aqueous and aqueous-carbonic brines. Geochim. Cosmochim. Acta 2012, 102, 89–112. [Google Scholar] [CrossRef]
- Bernal, N.F.; Gleeson, S.A.; Smith, M.P.; Barnes, J.D.; Pan, Y. Evidence of multiple halogen sources in scapolites from iron oxide-copper-gold (IOCG) deposits and regional NaCl metasomatic alteration, Norrbotten County, Sweden. Chem. Geol. 2017, 451, 90–103. [Google Scholar] [CrossRef]
- Westhues, A.; Hanchar, J.M.; LeMessurier, M.J.; Whitehouse, M.J. Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide-apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology 2017, 45, 571–574. [Google Scholar] [CrossRef]
- La Cruz, N.L.; Simon, A.C.; Wolf, A.S.; Reich, M.; Barra, F.; Gagnon, S.E. The geochemistry of apatite from the Los Colorados iron oxide-apatite deposit, Chile: Implications for ore genesis. Miner. Deposita 2019, 54, 1143–1156. [Google Scholar] [CrossRef]
- Knipping, J.L.; Fiege, A.; Simon, A.; Oeser, M.; Reich, M.; Bilenker, L. In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados, Kiruna-type iron oxide-apatite deposit, Chile. Am. Mineral. 2019, 104, 471–484. [Google Scholar] [CrossRef]
- Melfou, M.; Richard, A.; Tarantola, A.; Villeneuve, J.; Carr, P.; Peiffert, C.; Mercadier, J.; Dean, B.; Drejing-Carroll, D. Tracking the origin of metasomatic and ore-forming fluids in IOCG deposits through apatite geochemistry (Nautanen North deposit, Norrbotten, Sweden). Lithos 2023, 438–439, 106995. [Google Scholar] [CrossRef]
- Ye, Z.; Mao, J.; Yang, C.; Usca, J.; Li, X. Trace elements in magnetite and origin of the Mariela iron oxide-apatite deposit, Southern Peru. Minerals 2023, 13, 934. [Google Scholar] [CrossRef]
- Oreskes, N.; Einaudi, M.T. Origin of hydrothermal fluids at Olympic Dam: Preliminary results from fluid inclusions and stable isotopes. Econ. Geol. 1992, 87, 64–90. [Google Scholar] [CrossRef]
- Barton, M.D.; Johnson, D.A. Evaporitic-source model for igneous-related Fe-oxide-(REE-Cu-Ag-Au) mineralization. Geology 1996, 24, 259–262. [Google Scholar] [CrossRef]
- Chen, H. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan. Ore Geol. Rev. 2013, 51, 74–78. [Google Scholar] [CrossRef]
- Li, W.; Audétat, A.; Zhang, J. The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: Evidence from LA-ICP-MS analysis of fluid inclusions. Ore Geol. Rev. 2015, 67, 264–278. [Google Scholar] [CrossRef]
- Benavides, J.; Kyser, T.K.; Clark, A.H.; Oates, C.J.; Zamora, R.; Tarnovschi, R.; Castillo, B. The Mantoverde iron oxide-copper-gold district, III Región, Chile: The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ. Geol. 2007, 102, 415–440. [Google Scholar] [CrossRef]
- Duan, C.; Li, Y.; Mao, J.; Zhu, Q.; Xie, G.; Wan, Q.; Jian, W.; Hou, K. The role of evaporite layers in the ore-forming processes of iron oxide-apatite and skarn Fe deposits: Examples from the middle-lower Yangtze River metallogenic belt, East China. Ore Geol. Rev. 2021, 138, 104352. [Google Scholar] [CrossRef]
- Guo, D.; Li, Y.; Duan, C.; Fan, C. Involvement of evaporite layers in the formation of iron oxide-apatite ore deposits: Examples from the Luohe deposit in China and the El Laco deposit in Chile. Minerals 2022, 12, 1043. [Google Scholar] [CrossRef]
- Park, C.F. A magnetite “flow” in northern Chile. Econ. Geol. 1961, 56, 431–441. [Google Scholar] [CrossRef]
- Barra, F.; Reich, M.; Selbe, D.; Rojas, P.; Simon, A.; Salazar, E.; Palma, G. Unraveling the origin of the Andean IOCG clan: A Re-Os isotope approach. Ore Geol. Rev. 2017, 81, 62–78. [Google Scholar] [CrossRef]
- Henriquez, F.; Martin, R.F. Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. Can. Mineral. 1978, 16, 581–589. [Google Scholar]
- Frietsch, R. On the magmatic origin of iron ores of the Kiruna type. Econ. Geol. 1978, 73, 478–485. [Google Scholar] [CrossRef]
- Travisany, V.; Henriquez, F.; Nyström, J.O. Magnetite lava flows in the Pleito-Melon district of the Chilean Iron Belt. Econ. Geol. 1995, 90, 438–444. [Google Scholar] [CrossRef]
- Chen, H.; Clark, A.H.; Kyser, T.K. The Marcona magnetite deposit, Ica, South-Central Peru: A product of hydrous, iron oxide-rich melts? Econ. Geol. 2010, 105, 1441–1456. [Google Scholar] [CrossRef]
- Troll, V.R.; Weis, F.; Jonsson, E.; Andersson, U.B.; Majidi, S.A.; Högdahl, K.; Harris, C.; Millet, M.-A.; Chinnasamy, S.S.; Koijman, E.; et al. Global Fe-O isotope correlation reveals magmatic origin of “Kiruna-type” apatite-iron oxide ores. Nat. Commun. 2019, 10, 1712. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, F.; Nyström, J.O. Magnetite bombs at El Laco volcano, Chile. GFF 1998, 120, 269–271. [Google Scholar] [CrossRef]
- Nyström, J.O.; Henriquez, F.; Naranjo, J.A.; Naslund, H.R. Magnetite spherules in pyroclastic iron ore at El Laco, Chile. Am. Mineral. 2016, 101, 587–595. [Google Scholar] [CrossRef]
- Velasco, F.; Tornos, F.; Hanchar, J.M. Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): Evidence for a magmatic origin for the magnetite deposits. Ore Geol. Rev. 2016, 79, 346–366. [Google Scholar] [CrossRef]
- Berdnikov, N.V.; Nevstruev, V.G.; Kepezhinskas, P.K.; Krutikova, V.O.; Konovalova, N.S. Silicate, Fe-oxide, and Au-Cu-Ag microspherules in ores and pyroclastic rocks of the Kostenga iron deposit, in the Far East of Russia. Russ. J. Pacific Geol. 2021, 15, 236–251. [Google Scholar] [CrossRef]
- Ovalle, J.T.; La Cruz, N.L.; Reich, M.; Barra, F.; Simon, A.C.; Konecke, B.; Rodriguez-Mustafa, M.A.; Childress, T.; Deditius, A.; Morata, D. Formation of massive iron deposits linked to explosive volcanic eruptions. Sci. Rep. 2018, 8, 14855. [Google Scholar] [CrossRef]
- Bain, W.M.; Steele-MacInnis, M.; Li, K.; Li, L.; Mazdab, F.K.; Marsh, E.E. A fundamental role of carbonate-sulfate melts in the formation of iron oxide-apatite deposits. Nat. Geosci. 2020, 13, 751–757. [Google Scholar] [CrossRef]
- Liedo, H.L.; Naslund, H.R.; Jenkins, D.M. Experiments on phosphate-silicate liquid immiscibility with potential links to iron oxide apatite and nelsonite deposits. Contrib. Mineral. Petrol. 2020, 175, 111. [Google Scholar] [CrossRef]
- Didenko, A.N.; Kaplun, V.B.; Malyshev, Y.F.; Shevchenko, B.F. Lithospheric structure and Mesozoic geodynamics of the eastern Central Asian orogen. Russ. Geol. Geophys. 2010, 51, 492–506. [Google Scholar] [CrossRef]
- Donskaya, T.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Ivanov, A.V. Late Paleozoic-Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. Asian Earth Sci. 2013, 62, 79–97. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Kepezhinskas, N.P.; Berdnikov, N.V.; Krutikova, V.O. Native metals and intermetallic compounds in subduction-related ultramafic rocks from the Stanovoy mobile belt (Russian Far East): Implications for redox heterogeneity in subduction zones. Ore Geol. Rev. 2020, 127, 103800. [Google Scholar] [CrossRef]
- Kepezhinskas, K.B. Structural-metamorphic evolution of late Proterozoic ophiolites and Precambrian basement in the Central Asian foldbelt of Mongolia. Precambr. Res. 1986, 33, 209–233. [Google Scholar] [CrossRef]
- Safonova, I.; Kotlyarov, A.; Krivonogov, S.; Xiao, W. Intra-oceanic arcs of the Paleo-Asian Ocean. Gondwana Res. 2017, 50, 167–194. [Google Scholar] [CrossRef]
- Furnes, H.; Safonova, I. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings. Geosci. Front. 2019, 10, 1255–1284. [Google Scholar] [CrossRef]
- Natal’in, B.A.; Parfenov, L.M.; Vrublevsky, A.A.; Karsakov, L.P.; Yushmanov, V.V. Main fault systems of the Soviet Far East. Phil. Trans. R. Soc. Lond. 1986, 317, 267–275. [Google Scholar]
- Berdnikov, N.; Kepezhinskas, P.; Konovalova, N.; Kepezhinskas, N. Formation of gold alloys during crustal differentiation of convergent zone magmas: Constraints from an Au-rich websterite in the Stanovoy Suture Zone (Russian Far East). Geosciences 2022, 12, 126. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Berdnikov, N.V. Krutikova, V.O.; Kepezhinskas, N.P.; Astapov, I.A.; Kirichenko, E.A. Silver mineralization in deep magmatogenic systems of ancient island arcs: The Ildeus ultrabasic massif, Stanovoy mobile belt (Russian Far East). Russ. J. Pacific Geol. 2023, 17, 322–349. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Krutikova, V.; Astapov, I. Magmatic-hydrothermal transport of metals at arc plutonic roots: Insights from the Ildeus mafic-ultramafic complex, Stanovoy Suture Zone (Russian Far East). Minerals 2023, 13, 878. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans. R. Soc. Edinb. 1996, 87, 205–215. [Google Scholar]
- Defant, M.J.; Kepezhinskas, P. Evidence suggests slab melting in arc magmas. EOS Trans. Amer. Geophys. Union 2001, 82, 65–69. [Google Scholar] [CrossRef]
- Kepezhinskas, P. ’ Berdnikov, N.; Kepezhinskas, N.; Konovalova, N. Adakites, high-Nb basalts and copper-gold deposits in magmatic arcs and collisional orogens: An overview. Geosciences 2022, 12, 29. [Google Scholar] [CrossRef]
- Kepezhinskas, N.; Kamenov, G.D.; Foster, D.A.; Kepezhinskas, P. Petrology and geochemistry of alkaline basalts and gabbroic xenoliths from Utila Island (Bay Islands, Honduras): Insights into back-arc processes in the Central American Volcanic Arc. Lithos 2020, 352–353, 105306. [Google Scholar] [CrossRef]
- Erlich, E.N.; Gorshkov, G.S. Quaternary volcanism and tectonics in Kamchatka. Bull. Volcanol. 1979, 49, 13–43. [Google Scholar]
- Kepezhinskas, P.; McDermott, F.; Defant, M.J.; Hochstaedter, A.; Drummond, M.S.; Hawkesworth, C.J.; Koloskov, A.; Maury, R.C.; Bellon, H. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta 1997, 61, 577–600. [Google Scholar] [CrossRef]
- Dorendorf, F.; Churikova, T.; Koloskov, A.; Wörner, G. Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): Volcanic geology and geochemical evolution. J. Volcanol. Geotherm. Res. 2000, 104, 131–151. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N. Metals in Avachinsky peridotite xenoliths with implications for redox heterogeneity and metal enrichment in the Kamchatka mantle wedge. Lithos 2022, 412–413, 106610. [Google Scholar] [CrossRef]
- Bence, A.E.; Albee, A.L. Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol. 1970, 76, 382–403. [Google Scholar] [CrossRef]
- Albee, A.L.; Ray, L. Correction factors for electron probe analysis of silicates, oxides, carbonates, phosphates, and sulfates. Anal. Chem. 1970, 42, 1409–1414. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Defant, M.J.; Drummond, M.S. Na metasomatism in the island arc mantle by slab melt-peridotite interaction: Evidence from peridotite xenoliths in the North Kamchatka arc. J. Petrol. 1995, 36, 1505–1527. [Google Scholar]
- Plechov, P.Y.; Tsai, A.E.; Shcherbakov, V.D.; Dirksen, O.V. Opacitization conditions of hornblende in Bezymyannyi volcano andesites (March 30, 1956 eruption). Petrology 2008, 16, 19–35. [Google Scholar] [CrossRef]
- Kiss, B.; Harangi, S.; Ntaflos, T.; Mason, P.R.D.; Pál-Molnár, E. Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: A case study from Ciomadul volcano (SE Carpathians). Contrib. Mineral. Petrol. 2014, 167, 986. [Google Scholar] [CrossRef]
- D’Mello, N.G.; Zelmer, G.F.; Negrini, M.; Kereszturi, G.; Procter, J.; Stewart, R.; Prior, D.; Usuki, M.; Iizuka, Y. Deciphering magma storage and ascent processes of Taranaki, New Zealand, from the complexity of amphibole breakdown textures. Lithos 2021, 398–399, 106264. [Google Scholar] [CrossRef]
- Mutch, E.J.F.; Blundy, J.D.; Tattitch, B.C.; Cooper, F.J.; Brooker, R.A. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib. Mineral. Petrol. 2016, 171, 85. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K. Lateral variations in composition of the minerals along the margin of the Bering Sea. Int. Geol. Rev. 1989, 31, 680–687. [Google Scholar] [CrossRef]
- Bindeman, I.N.; Bailey, J.C. A model of reverse differentiation at Dikii Greben’ Volcano, Kamchatka: Progressive basic magma vesiculation in a silicic magma chamber. Contrib. Mineral. Petrol. 1994, 117, 263–278. [Google Scholar] [CrossRef]
- Spiridonov, E.M.; Korotayeva, N.N.; Krivitskaya, N.N.; Ladygin, V.M.; Ovsyannikov, G.N.; Putintseva, E.V.; Semikolennykh, E.S.; Frolova, Y.V. Island-arc augite-bytownite-labradorite dacites of the Kara-Dag massif, Crimea. Moscow Univer. Geol. Bull. 2019, 74, 582–591. [Google Scholar] [CrossRef]
- Evans, B.W.; Scaillet, B. The redox state of Pinatubo dacite and the ilmenite-hematite solvus. Am. Mineral. 1997, 82, 625–629. [Google Scholar] [CrossRef]
- Hartman, M. Characterization and Petrogenesis of Adakitic Pyroclastic Rocks Erupted during the Holocene from Sheveluch Volcano, Kamchatka, Russia. Master’s Thesis, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2002. [Google Scholar]
- Gorbach, N.V.; Portnyagin, M.V. Geology and petrology of the lava complex of Young Shiveluch Volcano, Kamchatka. Petrology 2011, 19, 134–166. [Google Scholar] [CrossRef]
- Kimata, M.; Nishida, N.; Shimizu, M.; Saito, S.; Matsui, T.; Arakawa, Y. Anorthite megacrysts from island arc basalts. Mineral. Mag. 1995, 59, 1–14. [Google Scholar] [CrossRef]
- Amma-Miyasaka, M.; Nakagawa, M. Origin of anorthite and olivine megacrysts in island-arc tholeiites: Petrological study of 1940 and 1962 ejecta from Myake-jima volcano, Izu-Mariana arc. J. Volcanol. Geotherm. Res. 2002, 117, 263–283. [Google Scholar] [CrossRef]
- Bindeman, I.N.; Bailey, J.C. Trace elements in anorthite megacrysts from the Kurile Island Arc: A window to across-arc geochemical variations in magma compositions. Earth Planet. Sci. Lett. 1999, 169, 209–226. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. Internally consistent solution models for Fe-Mg-Mn-Ti oxides. Am. Mineral. 1988, 73, 714–726. [Google Scholar]
- Arató, R.; Audétat, A. FeTiMM—A new oxybarometer for mafic to felsic magmas. Geochem. Persp. Let. 2017, 5, 19–23. [Google Scholar] [CrossRef]
- Nazarova, D.P.; Portnyagin, M.V.; Krasheninnikov, S.P.; Mironov, N.L.; Sobolev, A.V. Initial H2O content and conditions of parent magma origin for Gorely volcano (Southern Kamchatka) estimated by trace element thermobarometry. Dokl. Earth Sci. 2017, 472, 100–103. [Google Scholar] [CrossRef]
- Tobelko, D.P.; Portnyagin, M.V.; Krahseninnikov, S.P.; Grib, E.N.; Plechov, P.Y. Compositions and formation conditions of primitive magmas of the Karymsky Volcanic Center, Kamchatka: Evidence from melt inclusions and trace-element thermobarometry. Petrology 2019, 27, 243–264. [Google Scholar] [CrossRef]
- Goltz, A.E.; Krawczynski, M.J.; McCanta, M.C.; Darby Dyar, M. Experimental calibration of an Fe3+/Fe2+-in-amphibole oxybarometer and its application to shallow magmatic processes at Shiveluch Volcano, Kamchatka. Am. Mineral. 2022, 107, 2084–2100. [Google Scholar] [CrossRef]
- Kelley, K.A.; Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 2009, 325, 605–607. [Google Scholar] [CrossRef]
- Muth, M.J.; Wallace, P.J. Sulfur recycling in subduction zones and the oxygen fugacity of mafic arc magmas. Earth Planet. Sci. Lett. 2022, 599, 117836. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Kepezhinskas, N.; Konovalova, N.; Krutikova, V.; Astapov, I. Nature of Paleozoic basement of the Catalan Coastal Ranges (Spain) and tectonic setting of the Priorat DOQ wine terroir: Evidence from volcanic and sedimentary rocks. Geosciences 2023, 13, 31. [Google Scholar] [CrossRef]
- Hanor, J.S. Barite-celestine geochemistry and environments of formation. Rev. Mineral. Geochem. 2000, 40, 193–275. [Google Scholar] [CrossRef]
- Chen, H.; Clark, A.H.; Kyser, T.K.; Ullrich, T.D.; Baxter, R.; Chen, Y.; Moody, T.C. Evolution of the giant Marcona-Mina Justa iron oxide-copper-gold district, South-Central Peru. Econ. Geol. 2010, 105, 155–185. [Google Scholar] [CrossRef]
- Mateo, L.; Tornos, F.; Hanchar, J.M.; Villa, I.M.; Stein, H.J.; Delgado, A. The Montecristo mining district, northern Chile: The relationships between vein-like magnetite-(apatite) and iron ooxide-copper-gold deposits. Miner. Depos. 2023, 58, 1023–1049. [Google Scholar] [CrossRef]
- Palma, G.; Barra, F.; Reich, M.; Valencia, V.; Simon, A.C.; Vervoort, J.; Leisen, M.; Romero, R. Halogens, trace element cocnetrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization. Geochim. Cosmochim. Acta 2019, 246, 515–540. [Google Scholar] [CrossRef]
- Veloso, A.S.R.; Soares Monteiro, L.V.; Juliani, C. The link between hydrothermal nickel mineralization and an iron oxide-copper-gold (IOCG) system: Constraints based on mineral chemistry in the Jatobá deposit, Carajás Province. Ore Geol. Rev. 2020, 121, 103555. [Google Scholar] [CrossRef]
- Sepidbar, F.; Ghorbani, G.; Simon, A.C.; Ma, J.; Palin, R.M.; Homam, S.M. Formation of the Chah-Gaz iron oxide-apatite ore (IOA) deposit, Bafq District, Iran: Constraints from halogens, trace element concentrations, and Sr-Nd isotopes of fluorapatite. Ore Geol. Rev. 2022, 140, 104599. [Google Scholar] [CrossRef]
- Holycross, M.; Cottrell, E. Partitioning of V and 19 other trace elements between rutile and silicate melt as a function of oxygen fugacity and melt composition: Implications for subduction zones. Am. Mineral. 2020, 105, 244–254. [Google Scholar] [CrossRef]
- Shervais, J.W. The petrogenesis of modern and ophiolitic lavas reconsidered: Ti-V and Nb-Th. Geosci. Front. 2022, 13, 101319. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Koetsier, G.W.; Bronto, S.; Sriwana, T.; van Bergen, M.J. Sulfur and chlorine degassing from primitive arc magmas: 1982-1983 eruptions of Galunggung (West Java, Indonesia). J. Volcanol. Geotherm. Res. 2001, 108, 55–83. [Google Scholar] [CrossRef]
- Dalou, C.; Koga, K.T.; Le Voyer, M.; Shimizu, N. Contrasting partition behavior of F and Cl during hydrous mantle melting: Implications for Cl/F signature in arc magmas. Prog. Earth Planet. Sci. 2014, 1, 26. [Google Scholar] [CrossRef]
- Zellmer, G.F.; Edmonds, M.; Straub, S.M. Volatiles in subduction zone magmas. Geol. Soc. Lond. Spec. Publ. 2014, 410, 1–17. [Google Scholar] [CrossRef]
- Sharpe, M.S.; Barker, S.J.; Rooyakkers, S.M.; Wilson, C.J.N.; Chambefort, I.; Rowe, M.C.; Schipper, I.; Charlier, B.L.A. A sulfur and halogen budget for the large magmatic system beneath Taupo volcano. Contrib. Mineral. Petrol. 2022, 177, 95. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Berdnikov, N.; Konovalova, N.; Kepezhinskas, N.; Krutikova, V.; Kirichenko, E. Native metals and alloys in trachytes and shoshonite from the Continental United States and high-K dacite from the Bolivian Andes: Magmatic origins of ore metals in convergent and within-plate tectonic settings. Russ. J. Pacific Geol. 2022, 16, 405–426. [Google Scholar] [CrossRef]
- Tattitch, B.; Chelle-Michou, C.; Blundy, J.; Loucks, R.R. Chemical feedbacks during magma degassing control chlorine partitioning and metal extraction in volcanic arcs. Nat. Commun. 2021, 12, 1774. [Google Scholar] [CrossRef] [PubMed]
- Grondahl, C.; Zajacz, Z. Sulfur and chlorine budgets control the ore fertility of arc magmas. Nat. Commun. 2022, 13, 4218. [Google Scholar] [CrossRef] [PubMed]
- Castillo, P.R. Arc magmatism and porphyry-type ore deposition are primarily controlled by chlorine from seawater. Chem. Geol. 2022, 589, 120683. [Google Scholar] [CrossRef]
- Churikova, T.; Wörner, G.; Mironov, N.; Kronz, A. Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: Implications for variable fluid sources across the Kamchatka arc. Contrib. Mineral. Petrol. 2007, 154, 217–239. [Google Scholar] [CrossRef]
- Taran, Y.; Ryabinin, G.; Pokrovsky, B.; Malik, N.; Cienfuegos, E. Methane-rich thermal and mineral waters of the Avachinsky Depression, Kamchatka. Appl. Geochem. 2022, 145, 105414. [Google Scholar] [CrossRef]
- Taran, Y.A. Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka-Kuril subduction zone. Geochem. Cosmochim. Acta 2009, 73, 1067–1094. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Koulakov, I.Y.; Litasov, Y.D. Migration paths of magma and fluids and lava compositions in Kamchatka. Russ. Geol. Geophys. 2012, 53, 1253–1275. [Google Scholar] [CrossRef]
- Shu, Y.; Nielsen, S.G.; Le Roux, V.; Wörner, G.; Blusztajn, J.; Auro, M. Sources of dehydration fluids underneath the Kamchatka arc. Nat. Commun. 2022, 13, 4467. [Google Scholar] [CrossRef] [PubMed]
- Moroz, Y.F.; Gontovaya, L.I. Deep structure of the Avacha-Koryakskii volcanic cluster area in Kamchatka. J. Volcanol. Seismol. 2003, 4, 3–10. [Google Scholar]
- Bushenkova, N.; Koulakov, I.; Senyukov, S.; Gordeev, E.I.; Huang, H.-H.; El Khrepy, S.; Al Arifi, N. Tomographic images of magma chambers beneath the Avacha and Koryaksky volcanoes in Kamchatka. J. Geophys. Res. Solid Earth 2019, 124, 9694–9713. [Google Scholar] [CrossRef]
- Steinberg, G.S.; Zubin, M.I. The depth of the magmatic focus under the Avachinsky volcano. Dokl. Earth Sci. 1963, 152, 968–971. [Google Scholar]
- Khubunaya, S.A.; Gontovaya, L.I.; Sobolev, A.V.; Nizkous, I.V. Magma chambers beneath the Klyuchevskoy Volcanic Group (Kamchatka). J. Volcanol. Seismol. 2007, 1, 98–118. [Google Scholar] [CrossRef]
- Ostorero, L.; Balcone-Boissard, H.; Boudon, G.; Shapiro, N.M.; Belousov, A.; Belousova, M.; Auer, A.; Senyukov, S.L.; Droznina, S.Y. Correlated petrology and seismicity indicate indicate rapid magma accumulation prior to eruption of Kizimen volcano, Kamchatka. Commun. Earth Environ. 2022, 3, 290. [Google Scholar] [CrossRef]
- Kepezhinskas, P. Cold Moho boundary beneath island arc systems: An example from the North Kamchatka Arc. Geophys. Res. Lett. 1993, 20, 2471–2474. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Taylor, R.; Tanaka, H. Geochemistry of plutonic spinels from the North Kamchatka Arc: Comparisons with spinels from other tectonic settings. Mineral. Mag. 1993, 57, 575–589. [Google Scholar] [CrossRef]
- Kepezhinskas, P.K.; Reuber, I.; Tanaka, H.; Miayashita, S. Zoned calc-alkaline plutons in Northeastern Kamchatka, Russia: Implications for the crustal growth in magmatic arcs. Mineral. Petrol. 1993, 49, 147–174. [Google Scholar] [CrossRef]
- Watson, E.B. Apatite saturation in basic to intermediate magmas. Geophys. Res. Lett. 1979, 6, 937–940. [Google Scholar] [CrossRef]
- Green, T.H.; Watson, E.B. Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to “Orogenic” rock series. Contrib. Mineral. Petrol. 1982, 79, 96–105. [Google Scholar] [CrossRef]
- Nathwani, C.; Loader, M.A.; Wilkinson, J.J.; Buret, Y.; Sievwright, R.H.; Hollings, P. Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology 2020, 48, 323–327. [Google Scholar] [CrossRef]
- Devine, J.D.; Rutherford, M.J.; Norton, G.E.; Young, S.R. Magma storage region processes inferred from geochemistry of Fe-Ti oxides in andesitic magma, Soufrière Hills Volcano, Montserrat, WI. J. Petrol. 2003, 44, 1375–1400. [Google Scholar] [CrossRef]
- Alonzo-Perez, R.; Müntener, O.; Ulmer, P. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contrib. Mineral. Petrol. 2009, 157, 541–558. [Google Scholar] [CrossRef]
- Escuder-Viruete, J.; Castillo-Carrión, M.; Pérez Valera, F.; Valverde-Vaquero, P.; Rubio Ordónez, A.; Fernández, F.J. Reconstructing the crustal section of the intra-oceanic Caribbean island arc: Constraints from the cumulate layered gabbronorites and pyroxenites of the Rio Boba plutonic sequence, Northern Dominican Republic. Geochem. Geophys. Geosyst. 2022, 23, e2021GC010101. [Google Scholar] [CrossRef]
- Parat, F.; Holtz, F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib. Mineral. Petrol. 2004, 147, 201–212. [Google Scholar] [CrossRef]
- Kichanova., V.V.; Kichanov, V.D. Gelogical and economic conditions of the Gar iron ore deposit development (Amur region, Russia). In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 135–136. [Google Scholar]
- Kostin, A. Iron oxide Cu-Au (IOCG) mineralizing systems: The Eastern Yakutia perspective. IOP Conf. Ser. Earth Environ. Sci. 2020, 609, 012005. [Google Scholar] [CrossRef]
- Hu, L.; Du, Y.-S.; Wang, A.-J.; Yue, Z.-L. Adakitic rocks explained by the deep accumulation of amphibole and apatite near the crust-mantle boundary: A case study from the Tongling region, Lower Yangtze River belt, eastern China. Geochem. J. 2017, 51, 551–569. [Google Scholar] [CrossRef]
- Helvaci, C. Rare earth elements in apatite-rich iron deposits and associated rocks of the Avnik (Bingöl) region, Turkey. Schweiz. Mineral. Petrogr. Mitt. 1987, 67, 307–319. [Google Scholar]
- Hildebrand, R.S. Kiruna-type deposits: Their relationships to intermediate subvolcanic plutons in the Great Bear magmatic zone, northwest Canada. Econ. Geol. 1986, 81, 640–659. [Google Scholar] [CrossRef]
- Esmailiy, D.; Zakizadeh, S.; Sepidbar, F.; Kanaanian, A.; Niroomand, S. The Shaytor apatite-magnetite deposit in the Kashmar-Kerman tectonic zone (Central Iran): A Kiruna-type iron deposit. Open J. Geol. 2016, 6, 895–910. [Google Scholar] [CrossRef]
- Berdnikov, N.; Nevstruev, V.; Kepezhinskas, P.; Astapov, I.; Konovalova, N. Gold in mineralized volcanic systems from the Lesser Khingan Range (Russian Far East): Textural types, composition and possible origins. Geosciences 2021, 11, 103. [Google Scholar] [CrossRef]
- Berdnikov, N.; Kepezhinskas, P.; Nevstruev, V.; Krutikova, V.; Konovalova, N.; Savatenkov, V. Magmatic-hydrothermal origin of Fe-Mn deposits in the Lesser Khingan Range (Russian Far East): Petrographic, mineralogical and geochemical evidence. Minerals 2023, 13, 1366. [Google Scholar] [CrossRef]
- Richards, J.P.; Mumin, A.H. Lithospheric fertilization and mineralization by arc magmas: Genetic links and secular differences between porphyry copper ± molybdenum ± gold and magmatic-hydrothermal iron oxide copper-gold deposits. Spec. Publ. Soc. Econ. Geol. 2013, 17, 277–300. [Google Scholar]
- Dupuis, S.; Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral. Deposita 2011, 46, 319–335. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.; Beaudoin, G.; Meric, J.; Boutroy, E.; Potvin-Doucet, C. Trace elements in magnetite as petrogenetic indicators. Miner. Deposita 2014, 49, 785–796. [Google Scholar] [CrossRef]
- Knipping, J.L.; Bilenker, L.D.; Simon, A.C.; Reich, M.; Barra, F.; Deditius, A.P.; Wälle, M.; Heinrich, C.A.; Holtz, F.; Munizaga, R. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic hydrothermal processes. Geochim. Cosmochim. Acta 2015, 171, 15–38. [Google Scholar] [CrossRef]
- Reich, M.; Simon, A.C.; Deditius, A.; Barra, F.; Chryssoulis, S.; Lagas, G.; Tardani, D.; Knipping, J.; Bilenker, L.; Sánchez-Alfaro, P. Trace element signature of pyrite from the Los Colorados iron oxide-apatite (IOA) deposit, Chile: A missing link between Andean IOA and iron oxide copper-gold systems? Econ. Geol. 2016, 111, 743–761. [Google Scholar] [CrossRef]
- Salazar, E.; Barra, F.; Reich, M.; Simon, A.; Leisen, M.; Palma, G.; Romero, R.; Rojo, M. Trace element geochemistry of magnetite from the Cerro Negro Norte iron oxide-apatite deposit, northern Chile. Miner. Depos. 2020, 55, 409–428. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mineral | Amp | Amp | Amp | Amp | Amp | Amp | Pl | Pl | Mag | Mag | Ilm | Ilm |
SiO2 | 45.52 | 44.29 | 44.04 | 46.61 | 42.98 | 43.24 | 49.74 | 54.41 | NA | NA | NA | NA |
TiO2 | 2.01 | 2.03 | 2.08 | 1.11 | 2.66 | 2.30 | 0.00 | 0.01 | 5.63 | 12.71 | 44.15 | 40.34 |
Al2O3 | 10.87 | 11.42 | 11.29 | 10.46 | 12.95 | 12.38 | 31.39 | 28.30 | 3.30 | 3.01 | 0.14 | 0.13 |
Cr2O3 | 0.08 | 0.04 | 0.03 | 0.01 | 0.20 | 0.01 | NA | NA | 1.46 | 0.02 | 0.07 | 0.01 |
V2O5 | NA | NA | NA | NA | NA | NA | NA | NA | 0.49 | 1.11 | 2.67 | 2.11 |
FeO | 10.47 | 11.40 | 11.70 | 13.34 | 10.86 | 11.35 | 0.17 | 0.29 | 79.55 | 77.06 | 46.81 | 50.05 |
MnO | 0.15 | 0.15 | 0.21 | 0.37 | 0.16 | 0.19 | 0.00 | 0.01 | 0.09 | 0.14 | 0.34 | 0.71 |
MgO | 14.39 | 14.09 | 14.23 | 12.33 | 13.68 | 14.03 | 0.01 | 0.05 | 3.49 | 2.90 | 3.47 | 1.80 |
CaO | 11.78 | 11.40 | 11.11 | 11.81 | 10.98 | 12.09 | 14.83 | 10.97 | NA | NA | NA | NA |
Na2O | 2.01 | 2.26 | 2.10 | 1.87 | 2.57 | 2.32 | 2.86 | 4.84 | NA | NA | NA | NA |
K2O | 0.28 | 0.25 | 0.29 | 0.22 | 0.24 | 0.27 | 0.05 | 0.13 | NA | NA | NA | NA |
Total | 97.56 | 97.33 | 97.07 | 98.14 | 97.27 | 100.34 | 99.05 | 99.01 | 94.02 | 96.95 | 97.65 | 95.15 |
Mg# | 71.3 | 69.8 | 69.5 | 62.2 | 69.2 | 68.8 | - | - | - | - | - | - |
An | - | - | - | - | - | - | 73.9 | 55.2 | - | - | - | - |
P (kb) * | 4.8 | 5.1 | 5.0 | 4.8 | 5.8 | 5.5 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kepezhinskas, P.; Berdnikov, N.; Krutikova, V.; Kozhemyako, N. Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits. Minerals 2024, 14, 188. https://doi.org/10.3390/min14020188
Kepezhinskas P, Berdnikov N, Krutikova V, Kozhemyako N. Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits. Minerals. 2024; 14(2):188. https://doi.org/10.3390/min14020188
Chicago/Turabian StyleKepezhinskas, Pavel, Nikolai Berdnikov, Valeria Krutikova, and Nadezhda Kozhemyako. 2024. "Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits" Minerals 14, no. 2: 188. https://doi.org/10.3390/min14020188
APA StyleKepezhinskas, P., Berdnikov, N., Krutikova, V., & Kozhemyako, N. (2024). Iron–Titanium Oxide–Apatite–Sulfide–Sulfate Microinclusions in Gabbro and Adakite from the Russian Far East Indicate Possible Magmatic Links to Iron Oxide–Apatite and Iron Oxide–Copper–Gold Deposits. Minerals, 14(2), 188. https://doi.org/10.3390/min14020188