Weathering Intensity, Paleoclimatic, and Progressive Expansion of Bottom-Water Anoxia in the Middle Jurassic Khatatba Formation, Southern Tethys: Geochemical Perspectives
Abstract
:1. Introduction
2. Geologic Settings
3. Materials and Methods
4. Results
4.1. Redox Proxies
4.2. Carbonate Content
4.3. Weathering Proxies
4.4. Detrital Proxies
5. Discussion
5.1. Paleoredox Assessment
5.2. Weathering Assessment
5.3. Assessing the Role of Sediment Flux
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkyns, H.C.; Schouten–Huibers, L.; Schouten, S.; Sinninghe Damsté, J.S. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim. Past 2012, 8, 215–226. [Google Scholar] [CrossRef]
- Foster, G.L.; Royer, D.L.; Lunt, D.J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 2017, 8, 14845. [Google Scholar] [CrossRef]
- Sellwood, B.W.; Valdes, P.J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 2006, 190, 269–287. [Google Scholar] [CrossRef]
- Dera, G.; Brigaud, B.; Monna, F.; Laffont, R.; Pucéat, E.; Deconinck, J.-F.; Pellenard, P.; Joachimski, M.M.; Durlet, C. Climatic ups and downs in a disturbed Jurassic world. Geology 2011, 39, 215–218. [Google Scholar] [CrossRef]
- Haq, B.U. Jurassic Sea-Level Variations: A Reappraisal. Geol. Soc. Am. Today 2018, 28, 4–10. [Google Scholar] [CrossRef]
- Egyptian General Petroleum Corporation (EGPC). Western Desert, oil and Gas fields, a comprehensive overview. In Proceedings of the EGPC 11th Petroleum Exploration and Production Conference, Cairo, Egypt, 7–10 November 1992; p. 431. [Google Scholar]
- Mansour, A.; Gentzis, T.; Ied, I.M.; Ahmed, M.S.; Wagreich, M. Paleoenvironmental Conditions and Factors Controlling Organic Carbon Accumulation during the Jurassic–Early Cretaceous, Egypt: Organic and Inorganic Geochemical Approach. Minerals 2022, 12, 1213. [Google Scholar] [CrossRef]
- Mansour, A.; Tahoun, S.S.; Raafat, A.; Ahmed, M.S.; Gentzis, T. Recurring patterns of sea level changes within a palynological-based sequence stratigraphy framework of the Middle Jurassic organic matter-rich Khatatba Formation, Egypt. Minerals 2023, 13, 827. [Google Scholar] [CrossRef]
- Mansour, A.; Geršlova, E.; Sykorova, I.; Vöröš, D. Hydrocarbon potential and depositional paleoenvironment of a Middle Jurassic succession in the Falak-21 well, Shushan Basin, Egypt: Integrated palynological, geochemical and organic petrographic approach. Int. J. Coal Geol. 2020, 219, 103374. [Google Scholar] [CrossRef]
- Gentzis, T.; Carvajal–Ortiz, H.; Deaf, A.S.; Tahoun, S.S. Multi-proxy approach to screen the hydrocarbon potential of the Jurassic succession in the Matruh Basin, North Western Desert, Egypt. Int. J. Coal Geol. 2018, 190, 29–41. [Google Scholar] [CrossRef]
- Abrams, M.A.; Greb, M.D.; Collister, J.W.; Thompson, M. Egypt far Western Desert basins petroleum charge system as defined by oil chemistry and unmixing analysis. Mar. Pet. Geol. 2016, 77, 54–74. [Google Scholar] [CrossRef]
- Mansour, A.; Tahoun, S.S.; Raafat, A.; Ahmed, M.S.; Oboh–Ikuenobe, F.; Gentzis, T.; Fu, X. Organic matter assessment and paleoenvironmental changes of the Middle Jurassic main source rocks (Khatatba Formation) in the North Western Desert, Egypt: Palynofacies and palynomorph perspectives. Minerals 2023, 13, 548. [Google Scholar] [CrossRef]
- Scotese, C.R. Atlas of Late Cretaceous Maps, PALEOMAP Atlas for ArcGIS 2, the Cretaceous, Maps 16–22; Mollweide Projection; PALEOMAP Project: Evanston, IL, USA, 2014. [Google Scholar]
- Said, R. The Geology of Egypt; Elsevier: Amsterdam, The Netherlands, 1962; 377p. [Google Scholar]
- Guiraud, R.; Bellion, Y. Late Carboniferous to Recent geodynamic evolution of the west Gondwanian cratonic Tethyan margins. In The Ocean Basins and Margins, the Tethys Ocean; Narin, A.E.M., Ed.; Springer: Boston, MA, USA, 1995; Volume 8, pp. 101–124. [Google Scholar]
- Keeley, M.L. Phanerozoic evolution of the basins of Northern Egypt and adjacent areas. Geol. Rundcshau 1994, 83, 728–742. [Google Scholar] [CrossRef]
- Guiraud, R. Mesozoic rifting and basin inversion along the northern African Tethyan margin: An overview. In Petroleum Geology of North Africa; Macgregor, D.S., Moody, R.T., Clark–Lowes, D.D., Eds.; Geological Society: London, UK, 1998; pp. 217–229. [Google Scholar]
- Stampfli, G.M.; Mosar, J.; Favre, P.; Pillevuit, A.; Vannay, J.C. Permo–Mesozoic evolution of the western Tethys realm: The Neo-Tethys east Mediterranean basin connection. In Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins; Ziegler, P.A., Cavazza, W., Robertson, A.H.F., Crasquin–Soleau, S., Eds.; Mémoires du Muséum National D’Histoire Naturelle de Paris; Muséum National D’Histoire Naturelle: Paris, France, 2001; Volume 186, pp. 51–108. [Google Scholar]
- Bevan, T.G.; Moustafa, A.R. Inverted rift-basins of northern Egypt: Phanerozoic rift systems and sedimentary basins. In Regional Geology and Tectonics, Section 4; Roberts, D., Bally, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2, pp. 483–506. [Google Scholar]
- Said, R. (Ed.) Cretaceous paleogeographic maps. In The Geology of Egypt; Balkema: Rotterdam, The Netherlands, 1990; pp. 439–449. [Google Scholar]
- Meshref, W.M. Tectonic framework. In The Geology of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; pp. 113–156. [Google Scholar]
- Wedepohl, K.H. The composition of the upper Earth’s crust and the natural cycles of selected metals. In Metals and Their Compounds in the Environment; Merian, E., Ed.; VCH–Verlagsgesellschaft: Weinheim, Germany, 1991; pp. 3–17. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Awan, R.S.; Liu, C.L.; Gong, H.W.; Dun, C.; Tong, C.; Chamssidini, L.G. Paleosedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Mar. Petrol. Geol. 2020, 112, 104057. [Google Scholar] [CrossRef]
- Müller, G.; Gastner, M. The “Karbonat-Bombe”, a simple device for the determination of the carbonate content in sediments, soils, and other materials. Neues Jahrb. Mineral. Mon. 1971, 10, 466–469. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. Geol. Soc. Am. Spec. Pap. 1993, 284, 21–40. [Google Scholar]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochem. Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochem. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Ripley, E.M.; Shaffer, N.R.; Gilstrap, M.S. Distribution and geochemical characteristics of metal enrichment in the new Albany shale (Devonian–Mississippian), Indiana. Econ. Geol. 1990, 85, 1790–2807. [Google Scholar] [CrossRef]
- Lewan, M.D.; Maynard, J.B. Factors controlling the enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochem. Cosmochim. Acta 1982, 46, 2547–2560. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Vine, J.D.; Tourtelot, E.B. Geochemistry of black shale deposits: A summary report. Econ. Geol. 1970, 65, 253–272. [Google Scholar] [CrossRef]
- Scott, C.; Lyons, T.W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chem. Geol. 2012, 324–325, 19–27. [Google Scholar] [CrossRef]
- Keeley, M.L.; Dungworth, G.; Floyd, C.S.; Forbes, G.A.; King, C.; McGarva, R.M.; Shaw, D. The Jurassic System in northern Egypt: I. Regional stratigraphy and implications for hydrocarbon prospectively. J. Pet. Geol. 1990, 13, 397–420. [Google Scholar] [CrossRef]
- El Beialy, S.Y.; Zalat, A.; Ali, A.S. The palynology of the Bathonian-early Oxfordian succession in the East Faghur-1 well, Western Desert, Egypt. Egypt. J. Paleontol. 2002, 2, 399–414. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Dinis, P.A.; Garzanti, E.; Hahn, A.; Vermeesch, P.; Cabral–Pinto, M. Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth Sci. Rev. 2020, 201, 103039. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochem. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Guo, Y.L.; Yang, S.Y.; Su, N.; Li, C.; Yin, P.; Wang, Z.B. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochem. Cosmochim. Acta 2018, 227, 48–63. [Google Scholar] [CrossRef]
- Wang, P.; Du, Y.S.; Yu, W.C.; Algeo, T.J.; Zhou, Q.; Xu, Y.; Qi, L.; Yuan, L.J.; Pan, W. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth Sci. Rev. 2020, 201, 103032. [Google Scholar] [CrossRef]
- Goldberg, K.; Humayun, M. The applicability of the chemical index of alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 293, 175–183. [Google Scholar] [CrossRef]
- von Eynatten, H.; Barcelo–Vidal, C.; Pawlowsky–Glahn, V. Modelling compositional change: The example of chemical weathering of granitoid rocks. Math. Geol. 2003, 35, 231–251. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Malden, MA, USA, 1985. [Google Scholar]
- Chamley, H. Clay Sedimentology; Springer: Berlin/Heidelberg, Germany, 1989; 623p. [Google Scholar]
- Ruffell, A.; McKinley, J.M.; Worden, R.H. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philos. Trans. R. Soc. A 2002, 360, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-F.; Yeh, P.-Y.; Song, S.-R.; Hsu, S.-C.; Yang, T.-N.; Wang, Y.; Chi, Z.; Lee, T.-Q.; Chen, M.-T.; Cheng, C.-L.; et al. The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia. J. Asian Earth Sci. 2013, 73, 31–38. [Google Scholar] [CrossRef]
- Ratcliffe, K.T.; Wright, A.M.; Hallsworth, C.; Morton, A.; Zaitlin, B.A.; Potocki, D.; Wray, D. An example of alternative correlation techniques in a low-accommodation setting, nonmarine hydrocarbon system: The (Lower Cretaceous) Mannville Basal Quartz succession of southern Alberta. Am. Assoc. Pet. Geol. Bull. 2004, 88, 1419–1432. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. In Proxies in Late Cenozoic Paleoceanography, Developments in Marine Geology; Hillaire, C., de Vernal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 568–637. [Google Scholar]
- LaGrange, M.T.; Konhauser, K.O.; Catuneanu, O.; Harris, B.S.; Playter, T.L.; Gingras, M.K. Sequence stratigraphy in organic-rich marine mudstone successions using chemostratigraphic datasets. Earth-Sci. Rev. 2020, 203, 103137. [Google Scholar] [CrossRef]
- Ratcliffe, K.T.; Wright, A.M.; Spain, D.R. Unconventional methods for unconventional plays: Using elemental data to understand shale resource plays. Pet. Explor. Soc. Aust. News Res. 2012, 117, 50–54. [Google Scholar]
- Schlanger, S.O. Strontium storage and release during deposition and diagenesis of marine carbonates release to sea-level variations. In Physical and Chemical Weathering in Geochemical Cycles; Lerman, A., Meybeck, M., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1988; pp. 323–339. [Google Scholar]
- Fralick, P.W.; Kronberg, B.I. Geochemical discrimination of clastic sedimentary rock sources. Sediment. Geol. 1997, 113, 111–124. [Google Scholar] [CrossRef]
- Niebuhr, B. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl-limestone rhythmites (Lehrte West Syncline, northern Germany). Geol. Mag. 2005, 142, 31–55. [Google Scholar] [CrossRef]
- Fourcade, E.; Azéma, J.; Bassoullet, J.-P.; Cecca, F.; Dercourt, J.; Enay, R.; Guiraud, R. Paleogeography and Paleoenvironment of the Tethyan Realm During the Jurassic Breakup of Pangea. In The Tethys Ocean; Nairn, A.E.M., Ricou, L.E., Vrielynck, B., Dercourt, J., Eds.; Springer: Boston, MA, USA, 1995. [Google Scholar] [CrossRef]
- van de Kamp, P.C.; Leake, B.E.; Senior, A. The petrography and geochemistry of some Californian arkoses with application to identifying gneisses of metasedimentary origin. J. Geol. 1976, 84, 195–212. [Google Scholar] [CrossRef]
- Weaver, C.E. Clays, Muds, and Shales, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 44, 818p. [Google Scholar]
Rock Unit | Sample (m) | CaCO3 | SiO2 | Al2O3 | FeO | K2O | CaO | MgO | TiO2 | MnO | Na2O | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Masajid Fm. | 3353 | 40.1 | 3.7 | 0.8 | 3.6 | 0.7 | 23.8 | 17.4 | 0.09 | 0.32 | 2.4 | |
Khatatba | Unit I | 3402 | 62.6 | 12.3 | 4.3 | 1.9 | 1.5 | 35.3 | 3.4 | 0.38 | 0.06 | 2.5 |
Khatatba | Unit I | 3408 | 64.1 | 8.5 | 3.4 | 1.3 | 1.3 | 35.2 | 3.6 | 0.15 | 0.05 | 4.0 |
Khatatba | Unit I | 3426 | 54.4 | 5.9 | 2.3 | 1.0 | 0.7 | 36.5 | 1.5 | 0.12 | 0.04 | 4.3 |
Khatatba | Unit I | 3447 | 14.3 | 36.1 | 11.9 | 5.8 | 2.9 | 8.9 | 4.6 | 0.88 | 0.08 | 1.8 |
Khatatba | Unit II | 3460 | 10.5 | 38.6 | 7.2 | 2.9 | 1.5 | 9.0 | 1.1 | 0.66 | 0.07 | 1.2 |
Khatatba | Unit II | 3505 | 9.6 | 43.8 | 6.6 | 2.0 | 1.3 | 8.2 | 1.8 | 0.56 | 0.03 | 3.3 |
Khatatba | Unit II | 3524 | 6.4 | 37.2 | 5.6 | 2.0 | 1.1 | 5.2 | 1.1 | 0.54 | 0.02 | 1.5 |
Khatatba | Unit II | 3536 | 8.8 | 39.8 | 10.4 | 2.1 | 1.8 | 6.7 | 2.5 | 0.77 | 0.03 | 4.1 |
Khatatba | Unit II | 3545 | 3.0 | 44.4 | 16.1 | 4.6 | 2.2 | 1.9 | 1.8 | 1.03 | 0.07 | 0.7 |
Khatatba | Unit II | 3551 | 2.8 | 49.7 | 16.5 | 5.4 | 2.4 | 1.6 | 1.2 | 1.50 | 0.12 | 1.1 |
Khatatba | Unit II | 3563 | 2.6 | 58.8 | 14.0 | 3.2 | 1.7 | 1.6 | 1.2 | 1.09 | 0.08 | 0.8 |
Khatatba | Unit II | 3569 | 3.7 | 37.6 | 6.1 | 2.8 | 1.3 | 7.1 | 1.2 | 0.40 | 0.05 | 1.3 |
Khatatba | Unit II | 2572 | 7.4 | 42.8 | 16.2 | 6.4 | 2.3 | 2.2 | 1.6 | 1.22 | 0.15 | 2.5 |
Khatatba | Unit II | 3591 | 4.0 | 48.2 | 13.6 | 5.5 | 1.9 | 2.2 | 3.5 | 1.01 | 0.09 | 6.0 |
Khatatba | Unit III | 3679 | 3.2 | 39.9 | 17.4 | 2.3 | 1.7 | 2.2 | 3.0 | 1.27 | 0.04 | 6.4 |
Khatatba | Unit III | 3703 | 5.8 | 34.3 | 13.6 | 6.3 | 2.2 | 6.3 | 1.5 | 1.15 | 0.13 | 0.6 |
Khatatba | Unit III | 3716 | 6.9 | 39.9 | 12.4 | 4.0 | 2.0 | 6.2 | 2.9 | 0.95 | 0.10 | 4.4 |
Khatatba | Unit III | 3749 | 5.4 | 27.0 | 11.7 | 3.3 | 1.6 | 5.1 | 1.2 | 1.37 | 0.05 | 1.2 |
Khatatba | Unit III | 3764 | 4.9 | 33.6 | 15.6 | 4.3 | 1.6 | 4.2 | 2.5 | 1.83 | 0.03 | 0.9 |
Khatatba | YRS | 3792 | 3.1 | 38.9 | 10.6 | 4.8 | 2.5 | 3.8 | 1.6 | 1.02 | 0.06 | 0.7 |
Khatatba | YRS | 3841 | 2.3 | 48.6 | 14.8 | 9.7 | 1.4 | 1.9 | 1.2 | 1.06 | 0.02 | 0.7 |
Khatatba | YRS | 3850 | 3.7 | 48.4 | 15.4 | 6.6 | 2.6 | 2.3 | 1.8 | 1.23 | 0.05 | 3.3 |
Ras Qattara Fm. | 3932 | 2.0 | 52.2 | 16.7 | 5.3 | 2.1 | 1.6 | 1.2 | 0.82 | 0.02 | 0.9 |
Rock Unit | Sample (m) | V | Zn | Cr | Ni | Cu | Co | Mo | Cd | U | Th | Zr | Ba | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Masajid Fm. | 3353 | 115 | 49 | 68 | 54 | 43 | 139 | 10 | 37 | 8 | 18 | 26 | 2500 | |
Khatatba | Unit I | 3402 | 110 | 38 | 98 | 35 | 41 | 119 | 13 | 47 | 15 | 26 | 62 | 1340 |
Khatatba | Unit I | 3408 | 130 | 42 | 97 | 37 | 18 | 95 | 27 | 75 | 6 | 22 | 50 | 2950 |
Khatatba | Unit I | 3426 | 130 | 42 | 128 | 26 | 68 | 80 | 27 | 45 | 15 | 22 | 24 | 3400 |
Khatatba | Unit I | 3447 | 310 | 107 | 93 | 113 | 40 | 159 | 17 | 35 | 9 | 17 | 285 | 2130 |
Khatatba | Unit II | 3460 | 260 | 68 | 77 | 84 | 22 | 133 | 17 | 32 | 6 | 16 | 210 | 2370 |
Khatatba | Unit II | 3505 | 155 | 38 | 75 | 48 | 32 | 119 | 9 | 32 | 10 | 17 | 197 | 3300 |
Khatatba | Unit II | 3524 | 410 | 27 | 73 | 44 | 40 | 114 | 23 | 36 | 8 | 15 | 266 | 4310 |
Khatatba | Unit II | 3536 | 165 | 45 | 83 | 49 | 34 | 93 | 9 | 31 | 11 | 17 | 234 | 4870 |
Khatatba | Unit II | 3545 | 300 | 110 | 199 | 94 | 71 | 129 | 15 | 27 | 9 | 15 | 321 | 1270 |
Khatatba | Unit II | 3551 | 160 | 76 | 151 | 52 | 44 | 148 | 8 | 30 | 9 | 15 | 375 | 2750 |
Khatatba | Unit II | 3563 | 340 | 67 | 64 | 80 | 46 | 108 | 9 | 31 | 9 | 16 | 484 | 790 |
Khatatba | Unit II | 3569 | 160 | 41 | 136 | 61 | 66 | 78 | 6 | 30 | 7 | 15 | 262 | 8100 |
Khatatba | Unit II | 2572 | 260 | 117 | 70 | 61 | 60 | 169 | 13 | 33 | 9 | 16 | 308 | 1110 |
Khatatba | Unit II | 3591 | 170 | 63 | 270 | 95 | 45 | 158 | 35 | 33 | 11 | 17 | 331 | 2680 |
Khatatba | Unit III | 3679 | 170 | 132 | 67 | 65 | 62 | 98 | 10 | 43 | 10 | 17 | 247 | 2900 |
Khatatba | Unit III | 3703 | 120 | 108 | 159 | 72 | 35 | 147 | 27 | 30 | 9 | 14 | 306 | 1420 |
Khatatba | Unit III | 3716 | 170 | 86 | 87 | 83 | 60 | 128 | 9 | 35 | 10 | 17 | 310 | 2850 |
Khatatba | Unit III | 3749 | 170 | 58 | 92 | 46 | 31 | 133 | 7 | 54 | 8 | 14 | 280 | 4280 |
Khatatba | Unit III | 3764 | 170 | 60 | 104 | 70 | 45 | 118 | 13 | 32 | 9 | 15 | 384 | 3750 |
Khatatba | YRS | 3792 | 130 | 102 | 110 | 110 | 60 | 128 | 13 | 38 | 9 | 15 | 318 | 4720 |
Khatatba | YRS | 3841 | 120 | 60 | 392 | 97 | 18 | 186 | 50 | 98 | 7 | 14 | 566 | 2150 |
Khatatba | YRS | 3850 | 160 | 90 | 89 | 79 | 19 | 157 | 17 | 32 | 10 | 13 | 521 | 1680 |
Ras Qattara Fm. | 3932 | 270 | 49 | 135 | 68 | 18 | 138 | 35 | 30 | 10 | 29 | 288 | 2190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, A.; Martizzi, P.; Ahmed, M.S.; Chiyonobu, S.; Gentzis, T. Weathering Intensity, Paleoclimatic, and Progressive Expansion of Bottom-Water Anoxia in the Middle Jurassic Khatatba Formation, Southern Tethys: Geochemical Perspectives. Minerals 2024, 14, 281. https://doi.org/10.3390/min14030281
Mansour A, Martizzi P, Ahmed MS, Chiyonobu S, Gentzis T. Weathering Intensity, Paleoclimatic, and Progressive Expansion of Bottom-Water Anoxia in the Middle Jurassic Khatatba Formation, Southern Tethys: Geochemical Perspectives. Minerals. 2024; 14(3):281. https://doi.org/10.3390/min14030281
Chicago/Turabian StyleMansour, Ahmed, Paolo Martizzi, Mohamed S. Ahmed, Shun Chiyonobu, and Thomas Gentzis. 2024. "Weathering Intensity, Paleoclimatic, and Progressive Expansion of Bottom-Water Anoxia in the Middle Jurassic Khatatba Formation, Southern Tethys: Geochemical Perspectives" Minerals 14, no. 3: 281. https://doi.org/10.3390/min14030281
APA StyleMansour, A., Martizzi, P., Ahmed, M. S., Chiyonobu, S., & Gentzis, T. (2024). Weathering Intensity, Paleoclimatic, and Progressive Expansion of Bottom-Water Anoxia in the Middle Jurassic Khatatba Formation, Southern Tethys: Geochemical Perspectives. Minerals, 14(3), 281. https://doi.org/10.3390/min14030281