Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geological Setting
2.2. Geological Setting of the Wunugetu Deposit
3. Ore Body Characteristics
4. Sampling and Methodology
4.1. Sampling and Lithofacies Characteristics of Samples
4.2. Zircon U-Pb Dating
4.3. In-Situ Lu-Hf Isotopes of Zircon
4.4. Whole-Rock Major- and Trace-Element Analyses
5. Results
5.1. Petrography
5.2. Zircon U-Pb Ages
5.3. In-Situ Lu-Hf Isotopes of Zircon
5.4. Whole-Rock Major and Trace Element Analyses
5.5. Rare Earth and Trace Elements
6. Discussion
6.1. Diagenetic and Metallogenic Epochs
6.2. Origins of Rocks and Source Characteristics
6.3. Diagenetic and Metallogenic Tectonic Settings
7. Conclusions
- (1)
- The formation age of the monzogranites in the Wunugetu deposit is established at 209.02 ± 1.0 Ma, while the rhyolitic porphyries are dated at 170.49 ± 0.81 Ma. This indicates that the deposit’s magmatic activity primarily spanned from the Late Triassic to the Middle Jurassic, with the major ore-bearing intrusions dating from the Late Triassic to the Early Jurassic.
- (2)
- The Triassic monzogranites from the Wunugetu deposit exhibit the geochemical characteristics of I-type granites, including high silica and alkali content, enrichment in Rb and Th, and depletion in Ba, P, and Ti. The rhyolitic porphyries are characterized by high silica and potassium content, with trace elements exhibiting enrichment in LREEs and depletion in HREEs, aligning with the geochemical traits of S-type granites. Both the monzogranites and rhyolitic porphyries within the deposit exhibit positive zircon εHf(t) values, indicating their source regions underwent the partial melting of juvenile crustal materials.
- (3)
- The Wunugetu porphyry copper–molybdenum deposit was formed within an active continental margin context, influenced by the southeastward subduction of the Mongol-Okhotsk Ocean from the Late Triassic to the Early Jurassic. Following the Mongol-Okhotsk Ocean’s closure during the Middle Jurassic, the Wunugetu region transitioned to a syn-collisional tectonic setting.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication forcontinental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earthand Environ. Sci. Trans. R. Soc. Edinb. 2000, 91, 181–193. [Google Scholar]
- Badarch, G.; Cunningham, W.D.; Windley, B.F. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of central Aisa. J. Asian Earth Sci. 2002, 21, 87–110. [Google Scholar] [CrossRef]
- Buslov, M.M.; Saphonova, I.Y.; Watanabe, T.; Obut, O.T.; Fujiwara, Y.; Iwata, K.; Sugai, Y.; Smirnova, L.V.; Kazansky, A.Y. Evolution of the Paleo-Asian Ocean (Altai–Sayan region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J. 2001, 5, 203–224. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Cai, K.D.; Sun, M.; Yuan, C.; Zhao, G.C.; Xiao, W.J.; Long, X.P.; Wu, F.Y. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic Belt. Gondwana Res. 2012, 22, 681–698. [Google Scholar] [CrossRef]
- Tu, G.Z. Preliminary discussion on the Central Asian metallogenic domain. Geol. Sci. 1999, 34, 397–404, (In Chinese with English abstract). [Google Scholar]
- Xiao, W.; Song, D.; Windley, B.F.; Li, J.; Han, C.; Wan, B.; Zhang, J.; Ao, S.; Zhang, Z. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt. Sci. China Earth Sci. 2019, 11, 14–19, (In Chinese with English abstract). [Google Scholar]
- Wang, Q.S.; Wei, Y.L.; Gao, J.; Xiong, X.L.; Wang, J.B.; Guo, Z.J.; Li, J.T.; Sun, M. Zircon U-Pb ages and geochemistry of granitoid in the Yuejinshan copper-gold deposit, NE China: Constraints on the petrogenesis and metallogenesis. Minerals 2021, 11, 1206. [Google Scholar] [CrossRef]
- Wang, Z.T.; Qin, K.Z. Geological and geochemical feature and the source of metallogenetie matter of lower crust porphyry Cu–Mu deposit in Wunugetu Mountain. Min. Depos. 1988, 7, 3–15, (In Chinese with English abstract). [Google Scholar]
- Tan, G. Research on the Ore-Forming Process of the Wunugetu Porphyry Copper Molybdenum Deposit in Inner Mongolia; Chinese Academy of Geological Sciences: Beijing, China, 2011; (In Chinese with English abstract). [Google Scholar]
- Li, N. The Characteristics and Mineralization Age of Intrusive Rocks in the Wunugetu Copper Molybdenum Deposit, Inner Mongolia; China University of Geosciences: Beijing, China, 2013; (In Chinese with English abstract). [Google Scholar]
- Qin, K.Z.; Li, H.M.; Li, W.S.; Ishihara, S. Diagenesis and Metallogenic Era of Wunugetu Porphyry Copper Molybdenum Deposit in Inner Mongolia. Geol. Rev. 1999, 2, 180–185, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.G.; Zhang, L.C.; Wan, B.; Zhang, Y.T.; Wu, H.Y. Geochemical characteristics and geological significance of low Sr Yb type ore-forming porphyry in the Wunugetu porphyry copper molybdenum deposit, Inner Mongolia. Acta Petrol. Sin. 2008, 24, 115–128, (In Chinese with English abstract). [Google Scholar]
- Tan, G.; Chang, G.X.; She, H.Q.; Li, J.W.; Zhang, D.Q.; Yang, X.C.; Zhang, B.; Xiang, A.P.; Dong, Y.J. Rhenium osmium isotope dating of molybdenite in Wunugetu porphyry copper molybdenum deposit, Inner Mongolia and its geological significance. Miner. Depos. 2010, 29, 506–508, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.G.; Zhang, L.C.; Wan, B.; Wu, H.Y.; Cleven, N. Geochronology and geochemistry of the Wunugetu porphyry Cu–Mo deposit in NE China, and their geological significance. Ore Geol. Rev. 2011, 43, 92–105. [Google Scholar] [CrossRef]
- Sengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambrige University Press: Cambridge, UK, 1996; pp. 486–641. [Google Scholar]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian ocean and subduction of the Paleo-Pacific plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.L.; Wang, F.; Zhao, S.; Wang, W. Early Mesozoic southward subduction history of the Mongol–Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res. 2016, 31, 218–240. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.L.; Wang, F.; Wang, W.; Xu, M.J.; Zhang, Y.H. Geochronology and geochemistry of Early–Middle Triassic magmatism in the Erguna Massif, NE China: Constraints on the tectonic evolution of the Mongol–Okhotsk Ocean. Lithos 2014, 184–187, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.L.; Wang, F.; Tang, J.; Zhao, S.; Guo, P. Geochronology and geochemistry of late Paleozoic–early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol–Okhotsk tectonic regime. J. Asian Earth Sci. 2017, 144, 205–224. [Google Scholar] [CrossRef]
- Hou, Z.S. The Genesis and Tectonic Background of the Badaguan Copper Molybdenum Deposit in the Erguna Area of Inner Mongolia; Jilin University: Changchun, China, 2014; (In Chinese with English abstract). [Google Scholar]
- Niu, S.D. Magmatic Intrusion Sequence and Mineralization of the Jiawula Lead-Zinc Silver Deposit in the Daxing’anling Mountains; China University of Geosciences: Beijing, China, 2017; (In Chinese with English abstract). [Google Scholar]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Slama, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Andersen, T. Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.F.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English abstract). [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, R.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Miner. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Zhang, Z.H.; Li, X.F.; Wang, Y.T.; Zhang, C.Q.; Li, Y.F. Mesozoic large-scale metallogenic pulses in North China and corresponding geodnamic settings. Acta Prtrologica Sin. 2005, 21, 169–188. [Google Scholar]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, E.; Tiang, J.; Xu, M.J.; Wang, W. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353. [Google Scholar]
- Sun, J.G.; Zhang, Y.; Xing, S.W.; Zhao, K.Q.; Zhang, Z.J.; Bai, L.A.; Ma, Y.B.; Liu, Y.S. Genetic types ore-forming age and geodynamic setting of endogenic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Prtrologica Sin. 2012, 28, 1317–1332. [Google Scholar]
- Tang, J. Chronology and Geochemistry of Mesozoic Igneous Rocks in the Erguna Block: Constraints on the Tectonic Evolution of the Mongolian Okhotsk Suture Zone; Jilin University: Changchun, China, 2016; (In Chinese with English abstract). [Google Scholar]
- Zhang, J.; Shao, J.; Zhou, Y.H.; Bao, Q.Z.; Wang, H.B. Geochemical characteristics and U-Pb, Re Os ages of the Badaguan copper molybdenum deposit in Chenbalhu Banner, Inner Mongolia. Geol. Bull. China 2016, 35, 1388–1399, (In Chinese with English abstract). [Google Scholar]
- Wang, X.; Duan, M.X.; Ren, Y.S.; Hou, Z.S.; Sun, D.Y.; Hao, Y.J. Fluid Inclusion Characteristics and Metallogenic Era of the Badaguan Copper Molybdenum Deposit in the Erguna Area of Inner Mongolia. J. Jilin Univ. (Earth Sci. Ed.) 2016, 46, 1354–1367, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.G.; Zhang, L.C.; Lu, B.Z.; Li, Z.L.; Wu, H.Y.; Xiang, P.; Huang, S.W. Geochronology and Geochemistry of the Taipingchuan Copper-Molybdenite Deposit in Inner Mongolia, and Its Geological Significances. Acta Petrol. Sinca 2010, 26, 1437–1449, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.H.; Zhao, C.B.; Zhang, F.F.; Liu, J.J.; Wang, J.P.; Peng, R.M.; Liu, B. SIMS zircon U–Pb and molybdenite Re–Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetu porphyry Cu–Mo deposit and granitoids in NE China and their geological significance. Gondwana Res. 2015, 28, 1228–1245. [Google Scholar] [CrossRef]
- Yang, Z.F.; Luo, Z.H.; Lu, X.X.; Cheng, L.L.; Huang, F. Discussion on the Tracer Sources of Re Content in Molybdenum Ores. Miner. Depos. 2011, 30, 654–674, (In Chinese with English abstract). [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Pitcher, W.S. The Nature and Origin of Granite, 2nd ed.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Chen, J.L.; Guo, Y.S.; Fu, S.M. Progress in Granite Research—Overview of ISMA Granite Classification. Gansu Geol. 2004, 13, 67–73, (In Chinese with English abstract). [Google Scholar]
- Freund, S.; Haase, K.M.; Keith, M.; Beier, C.; Garbe-Schionberg, D. Constraints on the formation of geochemically variable plagiogranite intrusions in the Troodos Ophiolite, Cyprus. Contrib. Mineral. Petrol. 2014, 167, 978. [Google Scholar] [CrossRef]
- Wu, F.Y.; Jahn, B.M.; Wilde, S.A.; Lo, C.H.; Yui, T.F.; Lin, Q.; Ge, W.C.; Sun, D.Y. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos 2003, 66, 241–273. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous granitic magmas from common basaltic sources. Contrib. Mineral. Petrol. 2005, 148, 635–661. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-type granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Watson, E.B.; Capobianco, C.J. Phosphorus and the rare earth elements in felsic magmas: An assessment of the role of apatite. Geochim. Cosmochim. Acta 1981, 45, 2349–2358. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Shao, J.A.; Wilde, S.A.; Xie, L.W.; Liu, X.M. Constraints on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth Planet. Sci. Lett. 2006, 246, 336–352. [Google Scholar] [CrossRef]
- Xu, W.L.; Sun, C.Y.; Tang, J.; Luan, J.P.; Wang, F. Basement nature and tectonic evolution of the Xing’an-Mongolian orogenic belt. Earth Sci. 2019, 44, 1620–1646, (In Chinese with English abstract). [Google Scholar]
- Xu, W.L.; Pei, F.P.; Wang, F.; Meng, E.; Ji, W.Q.; Yang, D.B.; Wang, W. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonicoverprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Zhu, D.C.; Mo, X.X.; Wang, L.Q.; Zhao, Z.D.; Niu, Y.L.; Zhou, C.Y.; Yang, Y.H. Genesis of the Chayu highly differentiated I-type granite in eastern Gangdise, Xizang: Zircon U-Pb geochronology, geochemistry and Sr Nd Hf isotope constraints. Sci. Sin. (Terrae) 2009, 39, 833–848, (In Chinese with English abstract). [Google Scholar]
- Wu, F.Y.; Liu, X.C.; Ji, W.Q.; Wang, J.M.; Yang, L. Highly fractionated granites: Recognition and research. Sci. China (Earth Sci.) 2017, 60, 1201–1219. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element, discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.L.; Xu, W.L.; Wang, F.; Tang, J.; Zhao, S.; Wang, Z.J. Chronology and geochemistry of the Middle Jurassic muscovite granite in the Sunwu area: Constraints on the closure time of the Mongol-Okhotsk Ocean. Acta Petrol. Sin. 2015, 31, 56–66. [Google Scholar]
- Han, R.; Qin, K.Z.; Su, S.Q.; Groves, D.I.; Zhao, C.; Hui, K.X.; Meng, Z.J. An Early Cretaceous Ag-Pb-Zn mineralization at Halasheng in the South Erguna Block, NE China: Constraints from U-Pb and Rb-Sr geochronology, geochemistry and Sr-Nd-Hf isotopes. Ore Geol. Rev. 2020, 122, 103526. [Google Scholar] [CrossRef]
Test Point Number | Th | U | Th/U | Isotope Atomic Ratio | Isotopic Age (Ma) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(×10−6) | (×10−6) | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 208Pb/232Th | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 208Pb/232Th | 1σ | ||
Sample WNG06 | |||||||||||||||||||
WNG06-08 | 801 | 724 | 1.11 | 0.05012 | 0.00097 | 0.18207 | 0.00359 | 0.02636 | 0.00023 | 0.00812 | 0.00013 | 200 | 45 | 170 | 3 | 168 | 1 | 163 | 3 |
WNG06-26 | 1007 | 932 | 1.08 | 0.04959 | 0.00107 | 0.18035 | 0.00413 | 0.02638 | 0.00029 | 0.00808 | 0.00022 | 176 | 51 | 168 | 4 | 168 | 2 | 163 | 4 |
WNG06-21 | 516 | 618 | 0.83 | 0.05038 | 0.00126 | 0.18452 | 0.00511 | 0.02653 | 0.00036 | 0.00852 | 0.00038 | 213 | 58 | 172 | 4 | 169 | 2 | 171 | 8 |
WNG06-23 | 614 | 689 | 0.89 | 0.04959 | 0.00120 | 0.18107 | 0.00453 | 0.02654 | 0.00032 | 0.00795 | 0.00031 | 176 | 57 | 169 | 4 | 169 | 2 | 160 | 6 |
WNG06-13 | 722 | 783 | 0.92 | 0.04972 | 0.00148 | 0.18326 | 0.00615 | 0.02663 | 0.00035 | 0.00826 | 0.00024 | 182 | 69 | 171 | 5 | 169 | 2 | 166 | 5 |
WNG06-20 | 997 | 821 | 1.22 | 0.05074 | 0.00137 | 0.18636 | 0.00469 | 0.02664 | 0.00030 | 0.00824 | 0.00038 | 229 | 62 | 174 | 4 | 169 | 2 | 166 | 8 |
WNG06-30 | 630 | 692 | 0.91 | 0.04925 | 0.00095 | 0.18037 | 0.00333 | 0.02665 | 0.00032 | 0.00867 | 0.00028 | 160 | 45 | 168 | 3 | 170 | 2 | 175 | 6 |
WNG06-01 | 607 | 624 | 0.97 | 0.05027 | 0.00117 | 0.18590 | 0.00398 | 0.02678 | 0.00026 | 0.00855 | 0.00018 | 208 | 54 | 173 | 3 | 170 | 2 | 172 | 4 |
WNG06-22 | 475 | 602 | 0.79 | 0.04981 | 0.00140 | 0.18458 | 0.00591 | 0.02679 | 0.00040 | 0.00874 | 0.00042 | 186 | 65 | 172 | 5 | 170 | 3 | 176 | 8 |
WNG06-25 | 715 | 727 | 0.98 | 0.04887 | 0.00110 | 0.18015 | 0.00403 | 0.02680 | 0.00032 | 0.00860 | 0.00031 | 142 | 53 | 168 | 3 | 170 | 2 | 173 | 6 |
WNG06-27 | 826 | 823 | 1.00 | 0.04911 | 0.00100 | 0.18165 | 0.00409 | 0.02682 | 0.00031 | 0.00813 | 0.00020 | 153 | 48 | 169 | 4 | 171 | 2 | 164 | 4 |
WNG06-16 | 561 | 598 | 0.94 | 0.05070 | 0.00120 | 0.18792 | 0.00463 | 0.02682 | 0.00026 | 0.00861 | 0.00026 | 227 | 55 | 175 | 4 | 171 | 2 | 173 | 5 |
WNG06-14 | 457 | 570 | 0.80 | 0.04917 | 0.00155 | 0.18074 | 0.00574 | 0.02682 | 0.00033 | 0.00859 | 0.00026 | 156 | 74 | 169 | 5 | 171 | 2 | 173 | 5 |
WNG06-15 | 502 | 570 | 0.88 | 0.05059 | 0.00132 | 0.18667 | 0.00475 | 0.02683 | 0.00033 | 0.00805 | 0.00025 | 222 | 61 | 174 | 4 | 171 | 2 | 162 | 5 |
WNG06-09 | 341 | 458 | 0.74 | 0.05001 | 0.00172 | 0.18565 | 0.00656 | 0.02686 | 0.00034 | 0.00831 | 0.00021 | 195 | 80 | 173 | 6 | 171 | 2 | 167 | 4 |
WNG06-29 | 664 | 701 | 0.95 | 0.04942 | 0.00124 | 0.18396 | 0.00511 | 0.02702 | 0.00045 | 0.00880 | 0.00026 | 168 | 59 | 171 | 4 | 172 | 3 | 177 | 5 |
WNG06-03 | 589 | 651 | 0.90 | 0.05033 | 0.00105 | 0.18768 | 0.00423 | 0.02706 | 0.00029 | 0.00889 | 0.00015 | 210 | 48 | 175 | 4 | 172 | 2 | 179 | 3 |
WNG06-05 | 865 | 748 | 1.16 | 0.05059 | 0.00094 | 0.18864 | 0.00365 | 0.02708 | 0.00029 | 0.00868 | 0.00013 | 222 | 43 | 175 | 3 | 172 | 2 | 175 | 3 |
WNG06-28 | 304 | 411 | 0.74 | 0.04884 | 0.00155 | 0.18165 | 0.00558 | 0.02709 | 0.00035 | 0.00857 | 0.00026 | 140 | 74 | 169 | 5 | 172 | 2 | 172 | 5 |
WNG06-10 | 789 | 765 | 1.03 | 0.05071 | 0.00114 | 0.18990 | 0.00419 | 0.02712 | 0.00025 | 0.00902 | 0.00027 | 228 | 52 | 177 | 4 | 172 | 2 | 181 | 5 |
WNG06-02 | 2099 | 1566 | 1.34 | 0.04953 | 0.00118 | 0.18585 | 0.00464 | 0.02717 | 0.00031 | 0.00864 | 0.00013 | 173 | 56 | 173 | 4 | 173 | 2 | 174 | 3 |
WNG06-12 | 804 | 740 | 1.09 | 0.04900 | 0.00158 | 0.18321 | 0.00601 | 0.02720 | 0.00040 | 0.00917 | 0.00033 | 148 | 76 | 171 | 5 | 173 | 3 | 184 | 7 |
Sample WNG15 | |||||||||||||||||||
WNG15-10 | 667 | 959 | 0.63 | 0.05252 | 0.00294 | 0.23892 | 0.01295 | 0.03299 | 0.00046 | 0.01035 | 0.00012 | 308 | 131 | 218 | 11 | 209 | 3 | 208 | 2 |
WNG15-27 | 1137 | 2309 | 0.47 | 0.05220 | 0.00287 | 0.23680 | 0.01276 | 0.03290 | 0.00035 | 0.01033 | 0.00010 | 294 | 128 | 216 | 10 | 209 | 2 | 208 | 2 |
WNG15-04 | 569 | 1121 | 0.48 | 0.05198 | 0.00200 | 0.23667 | 0.00878 | 0.03302 | 0.00033 | 0.01037 | 0.00009 | 285 | 90 | 216 | 7 | 209 | 2 | 209 | 2 |
WNG15-11 | 91 | 236 | 0.36 | 0.05154 | 0.00135 | 0.23341 | 0.00653 | 0.03280 | 0.00043 | 0.01136 | 0.00035 | 265 | 40 | 213 | 5 | 208 | 3 | 228 | 7 |
WNG15-18 | 201 | 423 | 0.45 | 0.05138 | 0.00148 | 0.22978 | 0.00675 | 0.03239 | 0.00040 | 0.01002 | 0.00035 | 258 | 45 | 210 | 6 | 205 | 2 | 202 | 7 |
WNG15-19 | 313 | 586 | 0.49 | 0.05129 | 0.00157 | 0.23114 | 0.00799 | 0.03256 | 0.00052 | 0.00972 | 0.00041 | 254 | 50 | 211 | 7 | 207 | 3 | 196 | 8 |
WNG15-30 | 209 | 462 | 0.42 | 0.05112 | 0.00090 | 0.23118 | 0.00456 | 0.03284 | 0.00034 | 0.01027 | 0.00023 | 246 | 27 | 211 | 4 | 208 | 2 | 207 | 5 |
WNG15-29 | 565 | 1261 | 0.43 | 0.05090 | 0.00075 | 0.23156 | 0.00421 | 0.03290 | 0.00030 | 0.01024 | 0.00026 | 236 | 25 | 211 | 3 | 209 | 2 | 206 | 5 |
WNG15-08 | 1453 | 2266 | 0.60 | 0.05084 | 0.00073 | 0.23251 | 0.00365 | 0.03308 | 0.00041 | 0.01070 | 0.00029 | 233 | 17 | 212 | 3 | 210 | 3 | 215 | 6 |
WNG15-14 | 233 | 259 | 0.85 | 0.05074 | 0.00144 | 0.22922 | 0.00690 | 0.03277 | 0.00040 | 0.01044 | 0.00021 | 229 | 47 | 210 | 6 | 208 | 2 | 210 | 4 |
WNG15-17 | 274 | 544 | 0.46 | 0.05076 | 0.00113 | 0.23267 | 0.00560 | 0.03316 | 0.00039 | 0.01080 | 0.00038 | 230 | 34 | 212 | 5 | 210 | 2 | 217 | 8 |
WNG15-28 | 1611 | 2523 | 0.60 | 0.05057 | 0.00087 | 0.23200 | 0.00487 | 0.03311 | 0.00043 | 0.01046 | 0.00046 | 221 | 26 | 212 | 4 | 210 | 3 | 210 | 9 |
WNG15-05 | 250 | 641 | 0.37 | 0.05054 | 0.00092 | 0.23153 | 0.00511 | 0.03309 | 0.00032 | 0.01065 | 0.00041 | 220 | 33 | 211 | 4 | 210 | 2 | 214 | 8 |
WNG15-12 | 443 | 1048 | 0.39 | 0.05050 | 0.00137 | 0.23097 | 0.00583 | 0.03313 | 0.00038 | 0.01092 | 0.00037 | 218 | 37 | 211 | 5 | 210 | 2 | 220 | 7 |
WNG15-24 | 425 | 1234 | 0.32 | 0.05048 | 0.00114 | 0.23252 | 0.00509 | 0.03332 | 0.00039 | 0.01015 | 0.00047 | 217 | 30 | 212 | 4 | 211 | 2 | 204 | 9 |
WNG15-16 | 1041 | 1784 | 0.56 | 0.05028 | 0.00068 | 0.22845 | 0.00376 | 0.03288 | 0.00032 | 0.01002 | 0.00031 | 208 | 21 | 209 | 3 | 209 | 2 | 202 | 6 |
WNG15-09 | 2274 | 2216 | 0.97 | 0.04959 | 0.00399 | 0.22341 | 0.01758 | 0.03267 | 0.00055 | 0.01032 | 0.00015 | 176 | 183 | 205 | 15 | 207 | 3 | 208 | 3 |
WNG15-06 | 339 | 481 | 0.67 | 0.04950 | 0.00086 | 0.22857 | 0.00460 | 0.03340 | 0.00027 | 0.01013 | 0.00027 | 171 | 32 | 209 | 4 | 212 | 2 | 204 | 5 |
Sample | Age (Ma) | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf (0) | εHf (t) | TDM1 (Ma) | TDM2 (Ma) | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WNG06-002 | 173 | 0.092751 | 0.000975 | 0.002781 | 0.000029 | 0.282836 | 0.000023 | 2.3 | 5.7 | 620 | 850 | −0.92 |
WNG06-003 | 172 | 0.097305 | 0.001427 | 0.002702 | 0.000047 | 0.282847 | 0.000025 | 2.7 | 6.1 | 601 | 823 | −0.92 |
WNG06-005 | 172 | 0.084428 | 0.000322 | 0.002441 | 0.000032 | 0.282742 | 0.000026 | −1.1 | 2.4 | 751 | 1058 | −0.93 |
WNG06-008 | 168 | 0.087212 | 0.001147 | 0.002416 | 0.000046 | 0.282782 | 0.000021 | 0.4 | 3.8 | 691 | 970 | −0.93 |
WNG06-009 | 171 | 0.081093 | 0.001396 | 0.002398 | 0.000048 | 0.282865 | 0.000025 | 3.3 | 6.8 | 569 | 781 | −0.93 |
WNG06-010 | 172 | 0.073125 | 0.000371 | 0.002032 | 0.000028 | 0.282855 | 0.000020 | 3.0 | 6.5 | 578 | 800 | −0.94 |
WNG06-012 | 173 | 0.099545 | 0.000903 | 0.002832 | 0.000046 | 0.282858 | 0.000027 | 3.0 | 6.5 | 587 | 800 | −0.91 |
WNG06-013 | 169 | 0.093224 | 0.000430 | 0.002751 | 0.000027 | 0.282788 | 0.000027 | 0.6 | 4.0 | 690 | 959 | −0.92 |
WNG06-014 | 171 | 0.077629 | 0.000628 | 0.002241 | 0.000018 | 0.282889 | 0.000027 | 4.1 | 7.6 | 532 | 727 | −0.93 |
WNG06-015 | 171 | 0.083756 | 0.000953 | 0.002540 | 0.000047 | 0.282874 | 0.000028 | 3.6 | 7.1 | 558 | 762 | −0.92 |
WNG15-005 | 210 | 0.062887 | 0.001353 | 0.002038 | 0.000049 | 0.282684 | 0.000023 | −3.1 | 1.2 | 828 | 1166 | −0.94 |
WNG15-006 | 212 | 0.081818 | 0.002085 | 0.002546 | 0.000050 | 0.282658 | 0.000020 | −4.0 | 0.3 | 877 | 1227 | −0.92 |
WNG15-008 | 210 | 0.110316 | 0.000582 | 0.003513 | 0.000064 | 0.282673 | 0.000028 | −3.5 | 0.6 | 878 | 1202 | −0.89 |
WNG15-011 | 208 | 0.047510 | 0.003141 | 0.001509 | 0.000117 | 0.282732 | 0.000023 | −1.4 | 3.0 | 746 | 1053 | −0.95 |
WNG15-012 | 210 | 0.097143 | 0.001717 | 0.003026 | 0.000081 | 0.282774 | 0.000022 | 0.1 | 4.3 | 716 | 972 | −0.91 |
WNG15-014 | 208 | 0.092412 | 0.002386 | 0.002985 | 0.000046 | 0.282784 | 0.000020 | 0.4 | 4.6 | 700 | 949 | −0.91 |
WNG15-016 | 209 | 0.064028 | 0.001103 | 0.001971 | 0.000037 | 0.282751 | 0.000016 | −0.7 | 3.6 | 729 | 1015 | −0.94 |
WNG15-017 | 210 | 0.085413 | 0.000815 | 0.002533 | 0.000018 | 0.282736 | 0.000019 | −1.3 | 3.0 | 762 | 1052 | −0.92 |
WNG15-018 | 205 | 0.076844 | 0.000813 | 0.002362 | 0.000023 | 0.282747 | 0.000015 | −0.9 | 3.3 | 742 | 1028 | −0.93 |
WNG15-019 | 207 | 0.070343 | 0.000818 | 0.002212 | 0.000025 | 0.282740 | 0.000019 | −1.1 | 3.1 | 750 | 1043 | −0.93 |
No.3 | W06-1 | W06-2 | W06-3 | W01 | W02 | W03 | W15-1 | W15-2 | W15-3 | W18-1 | W18-2 | W18-3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Porphyry Rhyolite | Monzogranites | ||||||||||
Major element (wt.%) | ||||||||||||
SiO2 | 76.35 | 75.77 | 77.45 | 73.44 | 73.16 | 80.47 | 75.36 | 76.69 | 77.71 | 74.40 | 75.13 | 74.92 |
Al2O3 | 12.86 | 12.87 | 12.72 | 14.25 | 14.37 | 11.38 | 13.01 | 12.89 | 10.98 | 13.52 | 13.24 | 12.81 |
Na2O | 0.23 | 0.23 | 0.23 | 0.74 | 0.74 | 0.17 | 0.22 | 0.30 | 1.59 | 3.77 | 3.55 | 3.73 |
K2O | 5.91 | 5.33 | 5.00 | 9.36 | 8.24 | 3.25 | 5.05 | 7.15 | 5.09 | 3.94 | 4.14 | 2.95 |
CaO | 0.09 | 0.12 | 0.09 | 0.07 | 0.11 | 0.06 | 0.06 | 0.07 | 0.15 | 0.99 | 0.93 | 0.57 |
P2O5 | 0.04 | 0.04 | 0.04 | 0.09 | 0.08 | 0.05 | 0.05 | 0.06 | 0.05 | 0.09 | 0.08 | 0.07 |
TiO2 | 0.05 | 0.05 | 0.05 | 0.17 | 0.17 | 0.07 | 0.10 | 0.09 | 0.16 | 0.21 | 0.18 | 0.22 |
MgO | 0.17 | 0.18 | 0.17 | 0.17 | 0.26 | 0.34 | 0.34 | 0.14 | 0.37 | 0.27 | 0.25 | 0.23 |
MnO | 0.19 | 0.28 | 0.11 | 0.03 | 0.02 | 0.03 | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.03 |
TFe2O3 | 1.29 | 1.93 | 1.03 | 0.54 | 0.84 | 1.44 | 2.29 | 0.51 | 1.34 | 1.43 | 1.32 | 2.89 |
LOI | 2.34 | 2.82 | 2.49 | 0.77 | 1.38 | 2.11 | 2.89 | 1.46 | 1.91 | 0.73 | 0.74 | 1.39 |
TOTAL | 99.51 | 99.63 | 99.38 | 99.63 | 99.36 | 99.37 | 99.40 | 99.38 | 99.38 | 99.39 | 99.58 | 99.81 |
Trace element (ppm) | ||||||||||||
Rb | 62.98 | 121.78 | 113.08 | 117.95 | 113.48 | 77.48 | 146.83 | 138.72 | 171.18 | 158.50 | 166.50 | 122.31 |
Ba | 203.79 | 225.28 | 839.21 | 757.42 | 606.85 | 303.08 | 696.06 | 1041.38 | 1112.03 | 604.78 | 551.03 | 916.73 |
Th | 2.77 | 6.09 | 5.93 | 15.38 | 20.62 | 13.02 | 19.03 | 23.97 | 11.00 | 13.17 | 10.23 | 20.39 |
U | 0.25 | 0.80 | 0.58 | 2.49 | 2.38 | 14.72 | 4.12 | 7.38 | 1.62 | 2.70 | 2.84 | 3.21 |
Ta | 0.27 | 0.51 | 0.51 | 1.93 | 1.88 | 2.31 | 1.65 | 1.00 | 0.76 | 1.29 | 1.08 | 0.82 |
Nb | 4.05 | 8.34 | 7.92 | 19.01 | 17.78 | 13.71 | 14.18 | 13.20 | 12.22 | 18.78 | 14.98 | 12.12 |
Sr | 23.30 | 50.70 | 68.98 | 130.77 | 109.44 | 7.36 | 28.35 | 80.05 | 126.96 | 167.97 | 157.60 | 214.75 |
Zr | 24.93 | 56.69 | 53.11 | 109.40 | 92.35 | 81.56 | 95.83 | 148.81 | 162.38 | 89.83 | 114.23 | 201.24 |
Hf | 1.33 | 2.56 | 2.48 | 4.19 | 3.50 | 3.63 | 3.88 | 4.74 | 4.59 | 3.38 | 3.93 | 5.30 |
La | 7.21 | 15.25 | 16.25 | 23.06 | 32.07 | 29.87 | 36.42 | 46.27 | 37.12 | 10.74 | 10.88 | 54.28 |
Ce | 15.21 | 32.38 | 34.44 | 46.74 | 64.09 | 60.42 | 69.61 | 82.46 | 70.73 | 20.56 | 20.21 | 74.95 |
Pr | 1.77 | 4.10 | 4.44 | 5.47 | 7.29 | 6.92 | 8.00 | 9.15 | 8.63 | 2.93 | 3.28 | 7.93 |
Nd | 5.76 | 13.86 | 15.31 | 17.99 | 23.33 | 22.66 | 26.14 | 32.66 | 32.29 | 10.51 | 11.63 | 23.94 |
Sm | 0.99 | 2.39 | 2.63 | 3.47 | 4.18 | 3.91 | 4.13 | 5.19 | 5.83 | 2.65 | 2.87 | 3.26 |
Eu | 0.18 | 0.41 | 0.56 | 0.65 | 0.67 | 0.74 | 0.74 | 0.94 | 1.12 | 0.57 | 0.57 | 0.78 |
Gd | 0.78 | 1.95 | 1.99 | 3.56 | 4.66 | 4.10 | 4.04 | 5.07 | 5.53 | 2.98 | 2.81 | 3.09 |
Tb | 0.10 | 0.24 | 0.21 | 0.59 | 0.79 | 0.70 | 0.56 | 0.66 | 0.83 | 0.53 | 0.48 | 0.35 |
Dy | 0.46 | 1.16 | 0.92 | 3.68 | 5.03 | 4.54 | 3.01 | 3.62 | 4.79 | 3.52 | 2.95 | 1.74 |
Ho | 0.09 | 0.23 | 0.19 | 0.80 | 1.15 | 1.03 | 0.65 | 0.77 | 0.97 | 0.80 | 0.64 | 0.39 |
Er | 0.28 | 0.69 | 0.58 | 2.54 | 3.59 | 3.30 | 1.99 | 2.46 | 2.98 | 2.52 | 2.02 | 1.30 |
Tm | 0.04 | 0.10 | 0.08 | 0.43 | 0.60 | 0.59 | 0.35 | 0.41 | 0.50 | 0.45 | 0.36 | 0.22 |
Yb | 0.17 | 0.51 | 0.40 | 2.77 | 4.30 | 4.33 | 2.41 | 2.75 | 3.30 | 2.89 | 2.46 | 1.56 |
Lu | 0.04 | 0.10 | 0.09 | 0.49 | 0.63 | 0.67 | 0.42 | 0.49 | 0.53 | 0.49 | 0.41 | 0.28 |
Y | 2.50 | 6.25 | 5.12 | 21.35 | 30.48 | 29.67 | 18.14 | 21.48 | 26.15 | 22.18 | 17.81 | 10.26 |
ΣREE | 33.08 | 73.38 | 78.07 | 112.24 | 152.37 | 143.79 | 158.48 | 192.91 | 175.14 | 62.13 | 61.57 | 174.06 |
LREE | 31.13 | 68.39 | 73.63 | 97.39 | 131.62 | 124.53 | 145.03 | 176.67 | 155.71 | 47.96 | 49.44 | 165.14 |
HREE | 1.95 | 4.99 | 4.44 | 14.85 | 20.76 | 19.27 | 13.45 | 16.24 | 19.43 | 14.16 | 12.13 | 8.92 |
LREE/HREE | 15.96 | 13.70 | 16.59 | 6.56 | 6.34 | 6.46 | 10.78 | 10.88 | 8.01 | 3.39 | 4.08 | 18.51 |
LaN/YbN | 31.23 | 21.48 | 29.37 | 5.97 | 5.35 | 4.95 | 10.82 | 12.07 | 8.07 | 2.67 | 3.17 | 25.01 |
δEu | 0.64 | 0.58 | 0.75 | 0.57 | 0.46 | 0.57 | 0.55 | 0.56 | 0.60 | 0.62 | 0.62 | 0.75 |
δCe | 1.05 | 1.00 | 0.99 | 1.02 | 1.03 | 1.03 | 1.00 | 0.98 | 0.97 | 0.90 | 0.83 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Yang, Y.; Fu, Q.; Zhang, Z.; Guo, X.; Wu, T.; Chai, L.; Zhou, Y.; An, Y. Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry. Minerals 2024, 14, 310. https://doi.org/10.3390/min14030310
Wang Q, Yang Y, Fu Q, Zhang Z, Guo X, Wu T, Chai L, Zhou Y, An Y. Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry. Minerals. 2024; 14(3):310. https://doi.org/10.3390/min14030310
Chicago/Turabian StyleWang, Qingshuang, Yanchen Yang, Qiulin Fu, Zhongyue Zhang, Xiaodan Guo, Taotao Wu, Lu Chai, Yongheng Zhou, and Yonghai An. 2024. "Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry" Minerals 14, no. 3: 310. https://doi.org/10.3390/min14030310
APA StyleWang, Q., Yang, Y., Fu, Q., Zhang, Z., Guo, X., Wu, T., Chai, L., Zhou, Y., & An, Y. (2024). Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry. Minerals, 14(3), 310. https://doi.org/10.3390/min14030310