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Abstract: Achieving accurate estimations of recoverable tonnage relies on a robust geological mod-
elling process. To ensure this accuracy, it is crucial to incorporate information from exploration, grade
control, and sampling, considering well-identified mineralization controls. However, modelling
the geology of complex orebodies, especially veins, poses challenges due to their intricate mineral
accumulation processes and variable structural complexities. Fairview Mine’s Main Reef Complex
(MRC) reef is highly discontinuous, with most of the valuable mineralized zone concentrated within
localized ore shoots that intersect various lithologies, exemplifying these challenges. This study
aimed to improve the modelling of veins at the mine, striving for a more accurate representation
of the mineralization zones. To achieve this, a hybrid approach was employed, combining a de-
terministic method based on minimum curvature interpolation with a probabilistic method using
anisotropic inverse distance weighting for categorical/discrete variables. The subsequent tonnage
estimates showed a robust correlation with actual production output. The initial deterministic model
established the large-scale geological trend, providing a foundation for estimating a probabilistic
model. The iterative nature of probabilistic modelling allowed for the analysis of various probable
options, facilitating the selection of the model that best captured the underlying geology. This ap-
proach enabled robust mathematical modelling while incorporating valuable input from geological
knowledge and expectations.

Keywords: vein modelling; anisotropic inverse distance weighting; probabilistic modelling;
minimum curvature interpolation; Barberton; geological modelling; complex geology

1. Introduction

Accurate estimations of recoverable tonnage depend on robust geological modelling.
This accuracy can be achieved through resource modelling that thoroughly considers the
constraints imposed by well-identified mineralization controls [1–6] through the use of
information from exploration, grade control, and sampling. However, the geology of com-
plex orebodies, particularly veins, is generally difficult to model due to their complicated
mineral accumulation processes and associated variable structural complexities [7,8] A
vein is a mineral-filled fissure or fracture in the host lithologies which was filled by mineral
assemblages controlled by the fluid composition either leached from the country rocks
or transported from elsewhere. These veins typically occur as tabular units and dip at a
particular angle from the horizontal [9] relative to the lithological layering. Typical geomet-
rical variations in dip, strike, and width of veins necessitate a meticulous definition of the
overall vein structure during modelling. Additionally, veins often exhibit complexities such
as intersections, branching, splitting, or braiding, requiring a thorough understanding of
mineral enrichment along these variations for a reliable estimation of recoverable tonnage
and in situ grades. Furthermore, ore formation within veins can be confined within the
vein itself or extend into wall-rock alteration zones, or both, thereby complicating the delin-
eation of the orebody. The complexity of veins is further compounded by features such as
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post-mineralization faulting, folding, igneous intrusions, metamorphism, and weathering.
All these factors need to be considered during the geological modelling process, making
it inherently challenging and not straightforward. Grade continuity within veins is also
generally limited due to the localization of high grades in ore shoots which are surrounded
by barren rocks or low-grade areas. Complex, localized, erratic high grades (“nuggets”)
are common and affect the overall confidence in the classification of a Mineral Resource.
The multi-phase style of mineral accumulation associated with veins further contributes to
complex grade distributions [9–11].

Understanding vein geology and estimating grades in these formations involves
using different approaches. Best practices for sampling methods specific to these deposits
are discussed by [2,9–17]. Several articles such as [18–25] provide insights into handling
samples from different support, which is a phenomenon commonly associated with the
sampling of lode-type deposits. Effectively managing grade control and mapping is
crucial when dealing with vein geology, some suggested approaches are detailed in [26–28].
The following publications highlight solutions to challenges posed by the high nuggety
nature of these types of deposits [2,14,29–31]. The complexity of veins makes it difficult
to accurately predict their geometry and grade continuity. As a result, it is crucial to
quantify the uncertainties associated with these predictions to prevent discrepancies in
tonnages and grades. This uncertainty quantification plays a crucial role in gaining a
deeper understanding of the financial uncertainties involved in mining operations. Many
research papers have highlighted the importance of quantifying geological and grade
uncertainty and suggested different methods to address this challenge, some notable
references include [31–37].

Vein system modelling can be approached either deterministically or probabilistically,
employing explicit and/or implicit modelling techniques. In deterministic models, geo-
logical predictions are made at specific locations, whereas probabilistic models provide
the likelihood of a geological variable at every position. When dealing with complex de-
posits, ref [4] suggests employing hybrid geological models that combine both deterministic
and probabilistic approaches. Deterministic models handle large-scale geological controls
and constrain the model’s extent, while probabilistic models assess the uncertainty of geo-
logical attributes at each location. Explicit modelling, commonly referred to as wireframing,
involves creating 2D sections which are later linked to create a 3D geological model. Im-
plicit models, on the other hand, rely on mathematical functions to automatically produce
geological models. Numerous case studies on vein geology modelling have been published,
encompassing various techniques such as polygon method [7], wireframing [3,19], inverse
distance weighting (IDW) [5], indicator kriging (IK) [5,7], multiple indicator kriging [4],
2D vertical longitudinal projection [38] radial basis function [39], sequential indicator
simulation [40], direct sequential simulation [23], conditional probability [31] distance
function [41], minimum curvature interpolation (MCI) [42], co-kriging [43] and total least
squares [44]. For ore grade interpolation within veins, ordinary kriging (OK) [22,38,42,45]
and IDW [19,46,47] are the most applied methods. However, certain case studies showcase
the use of alternative methods such as nearest neighbour, lognormal kriging [48], indicator
kriging [19,48], disjunctive kriging [25], sequential, Gaussian simulation [40], probability
field simulation [24], artificial neural networks [49], and support vector machines [50]. Key
considerations in predicting grades in veins include deciding whether to estimate them
directly or through accumulation and addressing issues related to extreme values [9].

The existing orebody at Fairview Mine presents common challenges associated with
vein modelling, notably the intricate geology marked by a highly discontinuous orebody.
Much of the valuable mineralized zone is concentrated within localized ore shoots that
intersect various lithologies. Additional challenges involve the imperative to standardize
the geological database and enhance the current grade estimation methodology to ensure
accurate and reproducible tonnage estimations. Despite these challenges, the wealth of
information from approximately 130 years of historical mining activities and the associ-
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ated comprehensive geological mapping offers ample geological knowledge for seamless
integration into geological models.

The objective of this study was to enhance the modelling of veins at the mine, striving
for a more accurate representation of the mineralization zones of interest. To attain this
objective, a hybrid approach that combined both deterministic and probabilistic methods,
guided by the integration of geological understanding within the modelling process, was
implemented. Following the delineation of mineralized zones, grade interpolation within
them was conducted. Additionally, the research sought to contribute to the existing gap in
knowledge regarding the modelling of veins in the Barberton Greenstone Belt (BGB), South
Africa.

2. Geological Setting

The Fairview Mine, which forms part of Barberton Mines Limited, a subsidiary of
Pan African Resources, is located about 45 km south of Mbombela within the BGB in
South Africa. The BGB is part of the oldest nucleus of the Kaapvaal Craton, consisting of
3.55–3.2 Ga volcano-sedimentary sequence, surrounded by various generations of granodi-
orite gneisses and potassic granites ranging from 3.5–3.1 Ga. The greenstone belt sequence
consists of the Onverwacht, Fig Tree, and Modies Groups. The Onverwacht Group is
dominated by ultramafic and mafic volcanic rocks; the Fig Tree Group is composed of
greywackes, shales, and cherts whilst the overlying Moodies Group is characterized by
coarse-grained clastic sedimentary rocks, mainly including sandstones and conglomerates
as shown in Figure 1 [51].
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Figure 1. Regional geological map of the BGB, showing surrounding gold mines. B shows the locality
of the Fairview mine in relation to other mines in the vicinity [52].

The rocks underlying the Fairview Mine area straddle the contact between the arenites
of the Moodies Group to the north (Eureka Syncline) and the Fig Tree Group’s greywacke
and shale to the south (Ulundi Syncline). The contact is marked by the presence of the
regionally identifiable Sheba Fault as shown in Figure 2. The immense force experienced
during deformation has led to the refolding of the two synclines, forming steeply dipping
back-to-back isoclines to the south. Within the greywacke of the Fig Tree Group, there are
tight isoclinal anticlines related to thrust faults, consisting of Onverwacht Group schist
(Zwartkoppie Formation) [53].
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Figure 2. Local geology at the Fairview Mine, showing the MRC and the synclines associated with
the Sheba fault.

The orebody at the Fairview Mine is characterized as an epigenetic hydrothermal lode
gold deposit. The primary source of mineralization, where much of the ore is extracted, is
the laterally extensive Main Reef Complex (MRC), as depicted in Figure 2. The MRC reef
consists of refractory sulphidic ore, with its mineralization linked to an anastomosing shear
system that often aligns with the stratigraphy and lithological contacts. Auriferous pyrite
and arsenopyrite mineralization occur in ribbon-like shoots within the shear system and
as disseminations in the surrounding wall rock. These shears are frequently defined by
quartz-carbonate veining, and the host rock can undergo sericitization and carbonatization
on either side of the shear [54]. High-grade gold-sulfide ore is confined to several steeply
plunging linear ore shoot layers. These layers are locally thinned and thickened in both
the easterly and northerly directions. Mineralization controls are not always physically
visible where the deposition has occurred, and they cut across different stratigraphy from
the hangingwall graywacke to the footwall greenschist. Sulfides are common throughout
the gold mineralization, with pyrite and pyrrhotite. Arsenopyrite is commonly associated
with quartz veining in areas of highest-grade gold mineralization [52]

3. Methodology

The geological modelling of significant mineralized zones, or ore shoots, and the
subsequent estimation of grades primarily relied on data from in-stope chip samples and
underground exploration drill holes. The vein modelling process involved two main steps:

1. The initial step employed a deterministic implicit approach based on the MCI to
model the overall, large-scale trend of mineralization. This approach generated a
simplified solid representation outlining the general shape and boundaries of the ore
body, referred to as the ore envelope.
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2. Following this, a probabilistic approach was applied to model ore shoots within
the ore envelope. This involved using an anisotropic inverse distance weighting
technique (AIDW), resulting in the delineation of multiple mineralized zones within
the deterministic solid.

Within the identified mineralized zones, the process of grade interpolation was ex-
ecuted using OK. Before interpolation, a series of standard procedures were adhered to,
encompassing sample analysis, top cutting, variography, and kriging neighbourhood anal-
ysis (KNA). Following the interpolation, the resulting grade model underwent validation.
Additionally, preliminary analyses were conducted on Selective Mining Units (SMU), and
an assessment of reasonable prospects for eventual economic extraction (RPEEE) was car-
ried out. All these processes were implemented using Datamine Studio RM version 1.10
software [54].

3.1. Sampling and Interpolation Data

Due to the historical nature of mining and exploration, most data stems from in-
stope chip samples. The dataset comprises 68,854 chip samples, taken at a grid spacing
of 2 m (m) × 2 m, along with data from 9 underground exploration boreholes. The chip
samples and drill holes were composited to the same composite length in order to ensure
the same support. Their respective mean and variance values were then calculated and
compared to determine if they could be combined and used together for further analysis.
Although they were found to be slightly different, the difference was within an acceptable
range of 5%.

The chip sample dataset was provided in a point format and included spatial coordi-
nates, the channel width (CW), accumulation (CMGT), stoping width (SW), gold grades
(Au), and the sample length. The channel width represents the length of the mapped
orebody as shown in Figure 3. An artificial 3 m waste zone (WZ) with a grade of less
than 0.05 g/t (i.e., grade less than the detection limit) was introduced above and below the
CW, resulting in the reef zone (RZ) between WZs. This re-coding of data was performed
to confine the estimation within the RZs (representing mineralized zones) and transform
the chip sample point data into a format resembling drill-hole data, as shown in Figure 3.
Consequently, the CW became synonymous with the mineralized zones represented by
the RZ.
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RZ exhibits variability from sample to sample. To establish uniform sample support,
the reconfigured sample data was composited to regular lengths of 0.5 m. The compositing
process ensured that all samples were included in one of the composites, with adjustments
made to the composite length as needed. The determination of composite length was
influenced by factors such as variance, deposit characteristics, parent cell size, and mining
method. Figure 4a–c displays the histograms of sample lengths of RZ samples only, lengths
of RZ and WZ samples, and the resultant 0.5 m composites of the lengths of RZ and WZ
samples.
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3.2. Deterministic Modeling

The choice of using the MCI method in Datamine Studio RM was driven by its capacity
to maintain a practical level of continuity between points and generate realistic geological
structures, even when dealing with intricate data inputs. This method is well-suited for a
broad spectrum of input configurations, encompassing irregular hangingwall (HW) and
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footwall (FW) layouts, as well as scenarios where neighbouring sample elevations exhibit
significant variation [55]. This flexibility permits the consideration of a broader range
of data inputs, especially in cases where the structure’s trend is not inherently planar.
The algorithm and underlying mathematics that form the basis of the MCI method are
thoroughly documented in the literature [56–58], and will therefore not be repeated in this
manuscript.

3.3. Domaining

Prior domaining had been carried out in earlier mine studies, separating the orebody
into two stationary domains, i.e., domain 1 (representing the lower grade zone with an
average sample grade of 3.98 g/t) and domain 2 (being the higher-grade zone with an
average grade of 33.44 g/t). This domaining was established based on historical production
data, identification of inflection points on cumulative probability plots, and informed
geological understanding. This paper adopted the domains as delineated in previous mine
studies.

3.4. Probabilistic Modelling

The AIDW technique for categorical or discrete variables was chosen to probabilisti-
cally model ore shoots for each domain within the deterministic model for several reasons.
Primarily, it overcomes the issues of string and screening effects associated with kriging.
Secondly, because of its simplicity in implementation, it does not necessitate a prior vari-
ogram model or solving kriging weights equations. Crucially, the most probable categorical
variable at each location can be easily extracted from the interpolation results. Consider-
ation of anisotropy allows for the incorporation of spatial continuity/discontinuity and
accounts for geological variations in different directions [5,59]

The application of IDW for modelling geological contacts with categorical or discrete
variables was initially proposed by [59] Subsequent refinement was introduced by [5] who
integrated a search ellipsoid into the method, allowing consideration of spatial continuity
and anisotropy. In this study, we adapted the anisotropic IDW method proposed by [5], this
approach enables the definition of the ellipsoid’s orientation for each block in the model,
accommodating the local variability of ore shoot geometry and orientation.

In our study, the composited output assay data is uniquely flagged with mineralized
codes (Code = 1 for mineralized zone above 0.05 g/t and Code = 2 for waste). The
mineralized zone is the area with samples comprising the gold grade above the detection
limit (i.e., Au ≥ 0.05 g/t), whilst all the material below 0.05 g/t is regarded as waste.
The inverse distance to the power of two (IDW2) for categorical or discrete variables was
employed as follows:

• The two categories (k), mineralized zone (k = 1) and waste (k = 2) were converted to a
matrix of indicators, whereby the presence of each category at each known location ui
is given an indicator of 1 and its absence is made 0. That is:

i(ui; k) = Prob {category k being present at location ui}

=

{
1, i f category k is present at ui
0, i f category k is present at ui

(1)

• IDW2 is then used to interpolate estimates of each category’s indicators at unsampled
locations based on several search and neighbourhood parameters. The distribution of
uncertainty for the categories at each unsampled location is thus directly estimated.
In other words, the probability distribution at any unknown location u in each do-
main will consist of estimated probabilities for each category (p∗k ), as described by
Equations (2) and (3):

p∗k = i∗(u; k) = ∑n
i=1wii(ui; k), k = 1, 2, (2)
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wi =

(
1
d2

i

)
∑n

i=1

(
1
d2

i

) , i = 1, . . . , n, (3)

where wi are IDW2 weights given to the input data and di are the Euclidean distances
between the target location and sample points.

• Through a process of iteration, multiple realizations at different probabilities of min-
eralized zones were visualized and iteratively compared to the existing geological
mapping, conceptual models, historic production information, and sample data. The
probability level that best fitted the geologic interpretations and database was selected
as optimal.

3.5. Grade Interpolation and Validation

The first step of grade interpolation was top capping, which was used to cut extremely
high grades to control their influence on the estimation while taking a carefully balanced
approach to retain the localized high-grade nature of the deposit. Figure 5a,b demonstrates
the normal probability plots used to select the capping thresholds for domains 1 and 2,
based on the visual analysis of inflection points (see intersection of red lines Figure 5a,b)
in the trend of the data. The selection of the capping values was also guided by historical
production data and geological expectations for each domain.
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The Au grade capping set for domain 1 is 30 g/t, while domain 2 has a higher cap of
200 g/t. It is important to note that the orebody has a notably high grade, with frequent
occurrences of “free gold” as evidenced by actual production data. In the case of domain 2,
the decision to implement a less restrictive capping level is informed by the presence of a
considerable number of very high-grade samples. Ignoring these samples could lead to
a significant underestimation of grades and associated tonnages in the high-grade zones.
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Instead, the potential impact of high-grade samples beyond their region of influence is
rather restricted by controlling search parameters.

Three-dimensional (3D) directional variogram calculations were then performed on
composite data for individual domains, with variance values normalized to a sill repre-
senting the population variance. The variograms were calculated in a rotated reference
plane to follow the orientation of the principal controlling structures as shown in Figure 6.
The variogram models aimed at accurately capturing the direction and extent of spatial
continuity of mineralization within each specific estimation domain. Variograms with
the longest range of spatial continuity were chosen for interpolation, as they indicate the
primary anisotropic orientations. To provide a better understanding of the underlying
spatial model, extreme values that were determined from the grade capping process were
cut to remove unnecessary noise/variance during variography. The orientation of search
ellipsoids was preferentially aligned with the principal controlling feature, as depicted in
Figure 6.
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OK was employed for estimating the MRC mineralized zones per domain. Kriging,
being an unbiased linear estimation technique, relies on the variance relationships of spatial
samples, as indicated by the variogram. The selection of OK is driven by its widespread
and proven effectiveness in grade estimation, particularly in scenarios like this study where
geological controls have been distinctly defined within well-established mineralized zones.
The ample availability of sample data further justifies the utilization of OK. For a more
in-depth understanding of the OK method, a detailed explanation is provided in [60,61].

The grade interpolation process began by determining the estimation unit size through
the KNA tool [54] in Datamine Studio RM. KNA is a process for optimizing estimation
parameters by evaluating them based on kriging efficiency (KE) and the slope of regression
(SLOR). Block parameters that gave the highest KE and SLOR close to 1 were selected.
Consequently, block sizes of 3 m × 3 m × 1 m were chosen; the choice was also guided
by the previously used SMUs, spatial distribution of the data (i.e., 2 m × 2 m), and the
geometry of the mineralized zones. Utilizing three-dimensional block models to represent
the volume of mineralized zones, sub-celling was applied to ensure the block model closely
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approximates the wireframe model’s volume. Similarly, the minimum and maximum
number of samples used were selected based on the results of KNA results which gave
the highest KE and SLOR close to 1. The directional ranges determined from the modelled
variograms were used to constrain the search distances and directions applied to the linear
estimates. The capping of extremely high-grade values was used to limit the zone of
influence that the ultra-high grades have on the estimation of the surrounding areas. Dry
bulk densities, informed by laboratory data, were assigned to the model, with average
density values of 2.83 t/m3 for ore and 2.73 t/m3 for waste.

Validation of the OK grade model primarily involved visual inspection, swath plots [62]
and comparison with actual production data. This entailed reviewing sections and plans
to ensure proper coding of borehole intervals and block model cells. Visual checks were
conducted to assess the consistency between interpolated grades and borehole composite
values. Reconciliation of actual versus modelled tonnages and average grades were later
compared.

For the prediction of SMU sizes, the mineable shape optimizer (MSO) tool within
the Datamine Studio RM version 1.10 was employed. MSO computes the optimal size,
shape, and location of stopes for an underground mine using an input block model that
contains grades or values. The MSO algorithms rely on sub-celling within the block model
to define the spatial location of mineralization and search for the optimal mineable shapes
that fit the orebody geometry [54]. The various stope sizes were evaluated and compared
to determine the most optimal SMU. Grade tonnage curves (GTCs) [63] were constructed
at different cut-off grades using stopes with a minimum width of 3 m acquired from the
SMU optimization process. The GTCs for in situ Mineral Resources and the more realistic
extractable Resource from MSO were compared and then used to establish the RPEEE.

4. Results
4.1. Geological Modelling
4.1.1. Deterministic Model

The resultant deterministic MCI-based model is shown in Figure 7. Notably, the
model’s volume surpasses that of subsequent probabilistic models because it encapsulates
a more large-scale regional mineralization trend, potentially encompassing un-mineable
areas or mineralization of lesser economic value. While lacking in the representation of local
vein geology variability, the deterministic model serves a crucial role in determining the
orientation of the principal controlling feature. It is within this model that the probabilities
of mineralized zones were estimated.
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4.1.2. Probabilistic Model

By using the IDW2 technique, the mineralized zones (Code = 1) probability was
estimated such that the model output had values ranging between 0 and 1. Multiple
models at different probabilities of mineralized zones were visualized and iteratively
compared to the existing geological mapping and conceptual models. The output blocks
with probabilities above 0.2 were regarded as the probable mineralized zone, as they
were fitting to the geological understanding and interpretations from the known areas
(i.e., sample data and historic mining This probability reflects the best fit for sample data
intersections and the ratio of mineralized to non-mineralized sample volumes. Additional
tools used to select the blocks are the number of samples (NS) and the block to minimum
distance to the nearest (MDIS).

The final selection represented sub-domains of the geological model describing the
various mineralized zones, defined by ore shoots. This probabilistic model was then
employed for block modelling and subsequent grade interpolation. Figure 8 compares
the full probability model and the model selected based on probability, MDIS, NS, and
geological expectation.
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4.2. Resource Modelling
4.2.1. Top Capping

Table 1 summarizes the grades of capped and uncapped samples in both domains 1
and 2. Although the capping has a limited effect on the sample, the main objective is to
limit the effect of these extremely high grades in variography and block estimates.

Table 1. Statistics of uncapped and capped samples in domains 1 and 2.

Domain Uncapped/
Capped

Minimum
(g/t)

Maximum
(g/t) Mean (g/t) Standard

Deviation (g/t)

Domain 1 Uncapped 0 701.8 3.98 5.83

Domain 1 Capped/t 0 30.00 3.92 5.91

Domain 2 Uncapped 0 9014 33.44 53.90

Domain 2 Capped 0 200 32.88 27.40

4.2.2. Variography

The resultant 3D variogram models are depicted in Figures 9 and 10. The variograms
modelled are spherical models with two nested structures with associated nugget per-
centages that are typical for this type of gold mineralization. These nugget effects were
modelled at 46% for domain 1 and 49% for domain 2. The directional ranges determined
from the variography analysis were used to guide the search distances applied during
estimation.
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Figure 9. Variogram model for Domain 1.

4.2.3. Grade Interpolation

Table 2 summarizes the OK interpolation parameters used for each domain. Figure 11
illustrates the histogram of the total modelled grades showing an average grade of 9.21 g/t
at a standard deviation of 14.76 g/t.
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Figure 10. Variogram model for Domain 2.

Table 2. Summary of estimation parameters.

Domains Search
Distances

Rotation Search
Angles

(about Z, Y, X Axes)

Minimum, Maximum,
Samples

Cell Sizes
(X, Y, Z) Top-Cuts

Domain 1 Linear estimate
25 m × 50 m × 5 m; −30◦, 55◦, 25◦ 1;20 5 m × 5 m × 1 m 30 g/t Au

Domain 2 Linear estimate
25 m × 50 m ×5 m −30◦, 55◦, 25◦ 1;20 5 m × 5 m × 1 m 200 g/t Au
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4.2.4. Model Validation

Interpolated grades are examined relative to borehole composite values through visual
checks, one example of the checks is demonstrated in Figure 12. The estimated blocks and
data compare well in areas where sufficient data exist. Areas where discrepancies exist due
to insufficient data can be targeted for future sampling or drilling.
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Figure 12. Model vs. the underlying data used for estimation.

The interpolated grades relative to borehole composite values were also checked
through 20 m slice swath plots as shown in Figures 13–18. Although the domains are
expected to be homogenous, there is still a potential for local trends considering the nature
of the orebody. The values from the borehole data and block estimates indicate that
the model follows the local trend within the domain and optimal block estimates exist
within each slice. The model values in domain 1 are generally lower than values from the
composite due to the conservative application in top capping.
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Figure 13. Domain 1 swath plots in the easting direction (NRECORDS = number of samples,
M_TONNES = modelled tonnes, S_AU = average composite grade, M_AU = average estimated
grade).
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The reconciliation data in Table 3, comparing actual and estimated tonnages and
average grades from the three primary stoping areas, indicates that the geological modelling
approach generally aligned with expected tonnages. Nevertheless, there were discrepancies:
the average grade in Stope 1 was underestimated, while the mean grade was overestimated
in Stope 3. The variance between actual and estimated grades can likely be attributed to
the model incorporating the latest samples. It is anticipated that this discrepancy will be
adequately addressed in the subsequent reconciliation analysis, as the model continues to
incorporate more up-to-date information.

Table 3. Reconciliation of actual versus modelled tonnages and average grades.

Workplace
Actual Modelled (Including Waste) Variance

Tonnes (t) Au (g/t) Tonnes (t) AU (g/t) Tonnes (%) Au (%)

Stope 1 317 11.11 308 9.82 −3% −12%

Stope 2 2918 27.82 2898 26.60 −1% −4%

Stope 3 116 22 119 29.31 3% 33%

4.2.5. Reasonable Prospect for Eventual Economic Extraction

MSO analysis showed a 15 m × 15 m block to be less optimal in terms of grade,
whilst a 25 m × 25 m SMU brings additional waste into the ore stream. Based on the
interpolated grade model, 3 m × 3 m to 6 m × 6 m were found to be the optimal SMU sizes
for Mineral Resource reporting as shown in Figure 19. Further assessment considering other
factors such as engineering (including geotechnical, mining, and processing parameters),
metallurgical, legal, infrastructural, and economic assumptions are applied by the mine
planning engineer. The reasonable prospects for eventual economic extraction have been
demonstrated through the application of an appropriate level of consideration of the
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potential viability of Mineral Resources MSO. In the case of Mineral Resource reporting,
the SMU must match the design SMU chosen by the Mine Planning Engineer.
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The GTC was adjusted to account for several modifying factors to approximate or
estimate the potentially mineable material available at various cut-off grades. Figure 20
shows the GTC for in situ Mineral Resources compared with more realistic Resources from
MSO.
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5. Discussion

The combined use of deterministic and probabilistic methods for modelling vein ge-
ology, as proposed by [4], produced satisfactory results at Fairview Mine. The estimated
tonnage did not vary significantly from the actual production output. The initial determin-
istic model provided the large-scale geological trend within which a probabilistic model
could be estimated. The iterative nature of probabilistic modelling enabled the analysis of
various probable options, facilitating the selection of the model that best captured the un-
derlying geology. This approach allowed for mathematical modelling while incorporating
valuable input from geological knowledge and expectations.

Further studies could explore how this approach might be used to optimize future
exploration or sampling targets. Additionally, there is potential for enhancing the repre-
sentation of natural, local-scale variations within ore shoots by incorporating dynamic
anisotropy into the AIDW method. To enhance the validation process, it is suggested to
incorporate cross-validation along with visual checks and swath plots. Statistical tests could
be integrated as part of interpreting swath plot results. Furthermore, the grade interpola-
tion approach could be improved by adopting the domaining guidelines suggested by [64],
and by including an assessment of the uncertainty associated with Au grade distribution.
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