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Abstract: Mineral image segmentation based on computer vision is vital to realize automatic mineral
analysis. However, current image segmentation methods still cannot effectively solve the problem
of sandstone grains that are adjoined and concealed by leaching processes, and the segmentation
performance of small and irregular grains still needs to be improved. This investigation explores and
designs a Mask R-CNN-based sandstone image segmentation model, including a hybrid attention
mechanism, loss function construction, and receptive field enlargement. Simultaneously, we propose
a high-quality sandstone dataset with abundant labels named SMISD to facilitate comprehensive
training of the model. The experimental results show that the proposed segmentation model has
excellent segmentation performance, effectively solving adhesion and overlap between adjacent
grains without affecting the classification accuracy. The model has comparable performance to other
models on the COCO dataset, and performs better on SMISD than others.

Keywords: mineral image analysis; sandstone grain segmentation; deep learning; Mask R-CNN

1. Introduction

Most mineral identification and textural characterization in coarse-grained clastic sed-
iments (such as sandstones) necessitate the use of microscopy assessment, which involves
interpretation and the gathering of counting statistics using a light microscope [1–6]. The
analysis of sandstone images is a vital part of geological exploration research, as rocks
are rich in hydrocarbon resources [7]. Sedimentary petrology is a specialized field that
demands significant expertise to interpret and classify porosity, minerals, matrix materials,
and mineral cements, along with their associated subclasses. A range of objective lenses,
optical techniques, and light sources are employed to identify and quantify components.
Certain components in sandstone can be small, dark, or opaque, posing challenges for
interpretation even to an experienced petrologist. In such cases, methods beyond light
microscopy, such as scanning electron microscopy or bulk measurement techniques like
X-ray diffraction, are often utilized to assist in mineral identification [8]. Traditionally,
the analysis of sandstone thin sections is primarily conducted by professionals, which is
labor-intensive, expensive, and subjective.

At present, classic mineral image segmentation technology primarily relies on the
low-level visual information of image pixels and is mainly categorized into three types:
(1) the threshold-based mineral image segmentation algorithm, which compares each pixel
in the input images with a preset threshold value to segment the target areas [9–12]; (2) the

Minerals 2024, 14, 544. https://doi.org/10.3390/min14060544 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min14060544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://doi.org/10.3390/min14060544
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min14060544?type=check_update&version=1


Minerals 2024, 14, 544 2 of 15

region-based mineral image segmentation algorithm that divides the original image into
different pixel regions, separating the target areas from the background [13–15]; and (3) the
specific theory-based mineral image segmentation algorithm that employs more targeted
computational methods such as cluster analysis to separate mineral grain images [16].
Although these classic mineral image segmentation methods have improved the efficiency
of sandstone analysis, they cannot effectively address the issue of adhesion and overlap
between adjacent grains, and their segmentation performance for small and irregular grains
is relatively poor. Additionally, the classic image segmentation algorithm requires manual
tuning for different types of mineral grains, which lowers the efficiency of mineral image
segmentation and increases the time consumption.

Owing to the booming development of deep learning and the exceptional feature
extraction capabilities of CNNs (convolutional neural networks), deep learning-based ap-
proaches have been increasingly employed in mineral image segmentation. These methods,
diverging from traditional ones, adhere to an end-to-end paradigm and significantly sur-
pass conventional methods in accuracy and efficiency. Furthermore, they are data-driven
methods (i.e., the larger the dataset or the more refined the data analysis, the higher the
achievable accuracy), allowing for enhanced performance with continuous data expansion.
Some studies have explored and applied it in mineral image segmentation tasks. An RDU
(R: residual connection; DU: DUNet) ore image segmentation model was proposed to
estimate the grain size of ore fragments in conveyor belts, which can adjust the receptive
field adaptively according to the size and shape of different ore fragments and achieve
accurate segmentation [17]. Deep learning-based methods for mineral image segmentation
also excel in segmenting adherent, overlapping, and multi-scale mineral grains, effectively
addressing the typical challenges encountered in previous approaches [18]. However, exist-
ing image segmentation methods mainly focus on semantic segmentation, which cannot
meet the requirements to compute specified morphological data in the mineral analysis,
such as circularity, particle size, and contact relationship. Furthermore, these models are
mostly designed for scenarios with clean image backgrounds, whereas in sandstone analy-
sis scenarios, the image backgrounds are complex and filled with indistinguishable fillers,
which makes it a challenge to segment grains out [19].

In order to solve the above problems and further improve the application prospects of
automatic sandstone analysis, we propose a high-accuracy instance segmentation model
based on Mask R-CNN [20] by introducing a hybrid attention mechanism to better adapt
to the complex shapes of sandstone particles. Secondly, we design a shape-aware training
loss function for the improved model and conduct an ablation experiment to confirm its
advantages. Additionally, original convolution is replaced with dilated convolution for
the purpose of obtaining more global information. Finally, this experiment establishes a
dataset of sandstone instance segmentation with 40,122 grain labels.

2. Methodology

Section 2 mainly introduces various methods and ideas involved in the improved
model of the sandstone image segmentation system. In the model-building stage, backbone
selection, module setting, and loss function design are the main considered aspects to
improve the segmentation model performance and solve edge blurring and incomplete
segmentation in the segmentation process.

2.1. Mask R-CNN

The deep learning-based Mask R-CNN network segmentation method has superior
performance and can achieve good results in the sandstone microscopic image segmen-
tation task [21]. We customize and optimize the Mask R-CNN network to form a task
specified model, based on the distribution characteristics of sandstone grains in sandstone
microscopic images.

The Mask R-CNN network is divided into three steps: object localization, object
category calculation, and segmentation mask prediction. The process of the Mask R-CNN
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network is as follows: the image passes through the ResNet backbone network, and
different levels of feature maps are obtained using the feature pyramid. This facilitates the
model in extracting features at different levels. It then enters the region proposal network
to generate candidate areas where grains might be present. On the one hand, a classifier
determines whether pixels belong to sandstone grains or the background. On the other
hand, a box regressor corrects the boundaries of the sandstone grains. The combination
of these two steps forms the candidate target areas. Finally, through a fully convolutional
neural network, accurate segmentation results are achieved, completely extracting the
sandstone grains. The processing procedure is shown in Figure 1.
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2.2. SE-Net

Squeeze-and-Excitation Network (SE-Net [22]) introduces the concept of channel
attention. By modeling and assigning weights to feature channels, it forms the parameters
that can be learned and updated and continuously increases the weights of useful feature
channels to optimize the generalization capability of the model. In this paper, SE-Net is
added to the backbone recognition network to improve the spatial information processing
capability of the model and therefore achieve better results for sandstone grains at different
scales. The specific structure of SE-Net is shown in Figure 2.
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The first operation is Ftr conversion, which converts the input x with a feature channel
number C1 by a series of general transformations such as convolution to obtain a feature
with a feature channel number C2. The Ftr operation is shown in Equation (1).

Ftr : X → U, X ∈ RH×W×c1 , U ∈ RH×W×c2 (1)
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The Squeeze operation is shown in Equation (2), where the two-dimensional feature
channels are mapped by compression to obtain a real number, which is connected to
form a one-dimensional vector to obtain the global distribution and construct the global
receptive field of the model. The dimension number of the vector equals the number of
input feature channels.

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (2)

Next is the Excitation operation. The parameter w is used to generate the weights
for each feature channel. Multiply W1 (which dimension is C/r × C) and z to reduce the
computational complexity by scale operation. The dimension of the feature map of W1z is
still 1 × 1 × C/r; it is then passed through the ReLU layer and multiplied with W2 (which
dimension is C × C/r) to obtain the feature map dimension 1 × 1 × C. Finally, the Sigmoid
is derived to generate the weights (s) of the feature maps (at a total of C). The parameter s
incorporates the feature map information of each feature channel and is part of the neural
network, which can be learned and optimized.

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (3)

Finally, the weights calculated by the model are weighted onto the original feature
map by the previous channels through the scale operation, as shown:

∼
xc = Fscale(uc, sc) = scuc (4)

2.3. Coordinate Attention and Spatial Attention

The channel attention mechanism models global information through channels, al-
lowing the model to effectively extract sandstone grains. When extracting, the location
information of the sandstone is directly related to the accuracy of the boundary fit. In this
paper, a CA + SP hybrid attention mechanism is proposed to optimize the model by com-
bining the coordinate attention mechanism [23] and the spatial attention mechanism [24].

Coordinate attention takes a similar operation to channel attention in both horizontal
and vertical directions to obtain relatively independent feature maps in both directions,
effectively preserving one-dimensional location information and establishing spatial long-
range dependence in one dimension. This mechanism is very sensitive to coordinate
information and can effectively pinpoint spatial coordinate information. Similar to the
channel attention mechanism, the coordinate attention mechanism first performs coordinate
position encoding and then generates coordinate attention. A coordinate attention module
can be seen as a computational unit used to augment feature representation capabilities.
It can take any intermediate tensor X = [x1, x2, . . . , xC] ∈ RC×H×W as input and produces
an output Y =

[
y1, y2, . . . , yC

]
of the same size with enhanced representational power.

The horizontal and vertical directions are treated separately and computed using pooling
kernels of dimensions (H, 1) and (1, W), giving the following outputs for the vertical and
horizontal channels.

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i), zw

c (w) =
1
W ∑

0≤j<W
xc(j, w) (5)

The two feature maps generated by the previous module are cascaded and then
transformed using a shared 1 × 1 convolution to perform the transformation F1, expressed
as in Equation (5); the generated f ∈ RC/r×(H+W) is the intermediate feature map during
the computation, where r denotes the down-sampled ratio, which is used to control the
size of the module, like the SE module.

f = δ
(

F1

([
zh, zw

]))
(6)
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Next, f is cut into two direction-independent tensors, fh ∈ R
C
r ×H, fw ∈ R

C
r ×W, and

then using the two 1 × 1 convolutions Fh and Fw, we transform two tensors to the same
number of channels as the input and output, as in the following equation:

gh = σ
(

Fh

(
fh
))

, gw = σ
(

Fh

(
fh
))

(7)

The two are then expanded as attention weights, and final output of the CA module is

∼
yc(i, j) = xc(i, j)× gh

c (i)× gw
c (j) (8)

The spatial attention mechanism can simulate the function of the human eye and
extract the parts of interest to the model, which generates a mask for the space, and draws
out one way, which undergoes similar operations as described above to form the spatial
attention mechanism, effectively extracting its relative spatial information.

2.4. Dilated Convolution

The up-sampling process of bilinear interpolation has large errors, leading to problems
such as distortion when generating sandstone grain contours, and this paper achieves
refinement of sandstone contours by introducing dilated convolution. The dilated convolu-
tion [25] has the following main functions:

1. Expanding the Mask R-CNN network receptive fields more efficiently while taking
into account image resolution;

2. Changing the size of the convolution kernel and the perceptual field of the model by
adjusting the expansion rate (r) to obtain multi-scale global semantic information.

The dilated convolution is shown in Figure 3. Only non-zero elements play a role in
the calculation, and the dilated convolution fills the ordinary convolution with zeros to
increase the size of the receptive field, as shown in Equation (9).
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K = k + (k − 1)(r − 1) (9)

K is the size of the expanded convolution kernel, k is the size of the original convolution
kernel, and r represents the expansion rate. As shown in the figure, when k = 5 and r = 2,
compared with the ordinary 5 × 5 convolution on the left, the dilated convolution expands
the convolution kernel to 11 × 11, and the range of the sensory field is greatly improved.

3. Methods and Materials
3.1. Experimental Methods
3.1.1. Hybrid Attention Mechanism

In this paper, the SE module is embedded in the backbone network ResNet and its
processing flow is shown in Figure 4. In contrast to the SE-Net structure mentioned earlier,
Squeeze takes global average pooling and Excitation takes two full connection layers for
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computation. To maintain the ResNet structure, it is also necessary to ensure that the
input and output dimensions are the same: the feature dimension is first reduced to 1/4 of
the input, and then the dimension is recovered after ReLU activation. This operation not
only complies more with the specification of the Excitation operation but also reduces the
computational costs by reducing the dimensionality. The neural network architecture with
two fully connected layers allows for better modeling of correlations between channels.
Finally, analogous to the SE-Net model, the scale operation is set to weight the weights by
channel onto the corresponding original feature maps to form the SE-ResNet model.
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Additionally, a CA + SP-ResNet backbone network is proposed to optimize the model
by combining the coordinate attention mechanism and the spatial attention mechanism in
a re-weighted way, which is shown in Figure 5.
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After the spatial attention mechanism, the output section of the module should also
multiply the coordinate attention output above by the effect of spatial attention and modify
the final output to Equation (10).
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y(i, j) =
∼
y(i, j)× gs

c(i, j) (10)

Finally, the output of SE-ResNet and CA + SP-ResNet also uses the similar re-weighted
method to obtain the final result.

3.1.2. Loss Function

Sandstone grains are often dense and complex in shape. To reduce segmentation
error, an accurate sandstone grain boundary is of great importance. In fact, it is necessary
to compare the real grain area with the predictions to ensure that their boundaries and
contours fit perfectly. Thus, we use DiceLoss [26] to calculate the segmentation error,
which is used to calculate the Dice (the graphical similarity between the true and predicted
segmentation results of the sandstone grains). Let the true result of segmentation be |T|
and the predicted result be |P|, and then |T∩P| be the dot product of the binary plot of
the predicted segmentation result and the true segmentation result. The elements in |T|
and |P| directly take the summation. The similarity coefficient Dice and segmentation
error DiceLoss are as follows:

Dice(P, T) =
|P ∩ T|

(|P + T|)/2
=

2 ∗ gtmask ∩ predmask
gtmask + predmask

(11)

DiceLoss(P, T) = 1 − 2
|P ∩ T|
|P|+|T| (12)

To avoid the denominator of the equation being zero and to reduce over-fitting,
smoothing is added to the numerator and denominator at the same time:

DiceLoss(P, T) = 1 − 2
|P ∩ T|+ smooth
|P|+ |T|+ smooth

(13)

Since cross-entropy is only a form of proxy, we directly adopt DiceLoss as the loss
function. The real target of the segmentation is to maximize the overlap between the
predicted results and the true segmentation results, i.e., the Dice coefficient, thus minimizing
DiceLoss. Also, the prediction of segmentation network accuracy performance often
needs to be tested with IoU, which is very similar to DiceLoss; this operation allows the
performance metric to be trained and optimized directly as a component of the loss function.
Due to the non-convexity of the DiceLoss function, there can be problems such as gradient
explosion, which typically leads to problems such as more unstable training and difficulty in
converging the training. Through several experiments, this paper uses Log-Cosh DiceLoss,
based on the Log-Cosh function, to smooth the DiceLoss. The Cosh function as well as the
Log-Cosh DiceLoss equation, i.e., Llc-dce, are shown in Equations (14) and (15).

Cosh x =
ex + e−x

2
(14)

Llc−dce = log(cosh(DiceLoss)) (15)

By changing the segmentation loss from Lmask to Llc-dce, we obtain a more refined sim-
ulation of sandstone microscopic image boundaries, effectively improving the segmentation
effect and contour refinement for irregular sandstone grains.

3.2. Material Preparation

Physical thin sections were acquired in a standard manner, in which blue epoxy (vari-
able hue) was impregnated into the sandstone (a strictly coarse-grained clastic sediment),
an approximately 30 µm thick thin section on a glass slide was prepared, and a mechanical
polish was applied to the surface. Immediately prior to imaging, mineral oil and a cover
slip were applied to the thin section. Generally, few label sets for petrology disciplines
exist and their generation is extremely time-consuming. The images, used for labeling,
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were acquired on several different optical microscopes using objective lenses with 5× or
10× magnification.

The dataset SMISD has 288 typical labeled, single-polarized sandstone grain images
with a cumulative total of 40,122 sandstone grains. An approach was taken to expand the
dataset by rotating the images counterclockwise by different degrees, as shown in Figure 6,
to a total of 1121 images with a total of 153,466 grains.
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In order to obtain better generalization ability, in this paper, 85% of them are divided
into a training set and the remaining 15% are divided into a test set.

4. Results
4.1. Experiments and Analysis

To test the performance of the improved Mask R-CNN model based on the above
theory for sandstone microscopic image segmentation, several experiments were conducted
based on the traditional Mask R-CNN network and the improved Mask R-CNN network,
and the experimental environment is shown in Table 1.

Table 1. Table of experimental environment.

Software/Hardware Configuration

Operating system Ubuntu 20.04
Memory 32 GB

CPU Intel(R) Core(TM) i9-10920X CPU @ 3.50 GHz
GPU NVIDIA GeForce RTX 3090

Related software Python3.8/Torch1.8.0/cuda11.1

The basic parameters of the Mask R-CNN network were adjusted to obtain the best
experimental results, and the hyper-parameters were set as follows: the model threshold
was set to 0.5, the MINI_MASK was set to (28,28) (to facilitate the detection of fine grains),
ResNet50 was used for the skeleton network (to increase the model processing speed),
and the maximum number of grains present in a single image was set to 1000 (taking into
account the dense distribution of grains in some sandstone micro-graphs).

4.2. Performance Metric

For the sandstone microscopic image segmentation task, the IoU is fixed and the
average precision rate and average recall rate are taken as evaluation metrics.

4.2.1. Accuracy and Recall Rate, AP

To introduce the performance metric of sandstone microscopic image segmentation
models (i.e., the generalization ability), the following four concepts are introduced: TP and
FP, respectively, refer to the number of correct and incorrect determinations for all samples
judged to be sandstone grains. TN and FN, respectively, refer to the number of correct and
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incorrect determinations for samples judged to be non-sandstone grains. Accuracy is the
probability that all samples predicted to be sandstone grains are indeed sandstone grains,
and it addresses the accuracy of the prediction results for a specific sample and sets the
accuracy rate as P, given by the following equation:

P =
TP

TP + FP
(16)

The recall rate is the probability that the model correctly predicts a sample that is
indeed sandstone grains and it focuses on the prediction of the specific sample. If we set
the recall as R, the equation is as follows:

R =
TP

TP + FN
(17)

Accuracy and recall rate are interactive, with both being high when the model gen-
eralization is strong. The two are usually negatively correlated. If the X-axis is the recall
rate and the Y-axis is the precision rate, the PR curve is obtained by tracing the points. The
average accuracy (AP) is the PR curve integrated from 0 to 1. The calculation formula is
as follows:

AP =
∫ 1

0
P(r)dr (18)

The calculation is simplified by smoothing, which is calculated as follows:

AP =
1

11 ∑
i=0,0.1,...,1.0

smooth(i) (19)

4.2.2. IoU

IoU [27] represents the overlap ratio between the generated and real image segmenta-
tion regions. The calculation of IoU is shown in Equation (20), where C is the real image
segmentation area and G is the segmentation area generated by the model. A diagram of
IoU is shown in Figure 7. The left side of the image is the intersection of the two and the
right side is the merging of the two.

IoU =
Area(C) ∩ Area(G)

Area(c) ∪ Area(G)
(20)
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The following six metrics for characterizing the performance of image segmentation
can be obtained based on the above concepts, separately shown in Table 2.



Minerals 2024, 14, 544 10 of 15

Table 2. Image segmentation performance indicators.

Average Precision (AP)

AP AP When IoU = 0.50:0.05:0.95
AP50 AP When IoU = 0.50
AP75 AP When IoU = 0.75

AP Across Scales

APs AP When the grain is small: pixel area < 322

APM AP When the grain is medium: 322 < pixel area < 962

APL AP When the grain is large: pixel area > 962

AP50 means that the model is judged to be correct when the IoU of the predicted and
real grain area is greater than 0.5; then, the classification AP of the model is calculated.
AP75 needs a higher IoU threshold; thus, the segmentation needs to be more refined.

AP, i.e., AP:IoU = 0.50:0.05:0.95:, means, respectively, setting the correct determination
IoU to 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, or 0.95 and then averaging it after calculating
the AP value to obtain the final AP.

At the same time, the test results are classified according to the area occupied by the
pixels. AP Across Scales means that the detection targets are classified according to area
into three categories—small, medium, and large—and then the predictive ability of the
model is judged.

The accuracy rate of the model was calculated separately by several indicators such as
IoU accuracy and target size to obtain the final image segmentation performance metrics,
as shown in Table 2.

Compared to the conventional model, the improved model identified significantly
more grains, segmented grain contours were significantly finer, and AP values were im-
proved by about 5%.

The effectiveness of the hybrid attention mechanism, its shape awareness, and its
dilated convolution are shown in Tables 3–5, respectively.

Table 3. The effectiveness of the attention mechanism.

Backbone
SMISD (%)

APS APM APL

ResNet 15.4 37.4 41.2
+SE 18.9 38.1 42.3

+X attention 19.3 38.9 41.9
+Y attention 19.2 38.7 42.0

+CA 20.3 39.5 43.1
+CA + SP 20.8 39.7 43.2

Table 4. The effectiveness of the shape-aware loss function.

Loss Function
SMISD (%)

AP AP50 AP75

Lmask 33.2 38.6 29.1
Ldice 36.3 41.3 37.3

Table 5. The effectiveness of dilated convolution.

Type
SMISD (%)

AP AP50 AP75

Original convolution 33.2 38.6 29.1
Dilated convolution 37.9 43.2 34.2
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4.2.3. Results and Visualization

The sandstone micrographic images used to visualize the effectiveness our model are
shown in Figure 8. The results of segmentation when directly using the original Mask
R-CNN network are shown in Figure 9; the contour fitting was poor for sandstone grains
of varying sizes and shapes. The network can only fit about 10% when grains are small.
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After the above modification, new segmented images are shown in Figure 10. Ob-
viously, the model can identify about 80% of the grains regardless of their size, and the
contours fit more closely. The mis-segmentation and under-segmentation are greatly re-
duced, and the generalization ability of the model is greatly improved.
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Comparison of the Results of the Improved Mask R-CNN Network in Fitting Irregular
Sandstone Grain Images

For the irregular, narrow sandstone grains, the new model is far superior to the original
model in segmentation integrity as well as fit, which is shown in Figure 11.
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Experiments on the Performance of the Improved Segmentation Network

The performance of the proposed image segmentation network is predicted by testing
238 sandstone images in the test set. Experiments were conducted using Mask R-CNN,
HTC, PointRend, the latest Refine Mask, and the improved image segmentation algorithm
(labeled Hybrid + Loss in the table), based on the publicly available COCO image segmen-
tation dataset [28] and the sandstone microscopic dataset in this paper. For the best results,
the recognition backbone networks all adopted ResNet101.

As shown in Table 6, our algorithm achieved the best results out of all the algorithms
in the sandstone microscopic image segmentation task, based on SMISD. Compared to
the conventional Mask R-CNN network, the improvement is 4.3%, 5.2%, and 6.9% for
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each of the three grain types (large, medium, and small), which is slightly better than the
state-of-the-art Refine Mask network. Hybrid + Loss gained significant improvement in
AP values for all sizes of grains, which indicates that the image segmentation algorithm
tailored to the sandstone microscopic image segmentation task can effectively identify and
extract sandstone grains, and can better fit the contours to achieve fine segmentation of
sandstone grains.

Table 6. Performance comparison of segmentation algorithms.

Algorithm

Dataset COCO (%) SMISD (%)
AP APS APM APL AP APS APM APL

Mask R-CNN 39.6 27.2 49.0 57.7 32.3 15.4 37.4 41.2
HTC 41.2 27.2 51.9 61.5 33.9 15.6 38.9 44.0

PointRend 41.1 27.8 52.0 62.0 35.1 16.3 39.9 45.7
RefineMask 41.8 28.6 53.1 62.8 36.7 18.0 41.1 47.3

Hybrid + Loss 41.7 28.9 52.7 62.5 37.9 19.7 42.6 48.1

5. Discussion

Channel attention can enhance the network’s ability to extract image information.
Coordinate attention can improve the model’s ability to locate boundaries. Spatial attention
can enhance the model’s receptive capability and optimize the model’s generalization
ability, that is, its performance on images that have not been used for training. By intro-
ducing the hybrid attention mechanism, the model proposed in this paper surpasses other
models on SMISD. With the goal of the task—to make the boundaries of grain segmentation
results more precise—as the performance evaluation index, a shape-aware loss function
can improve the model’s segmentation effect on grain contours, especially irregular grains.
Therefore, the model adopts Log-Cosh DiceLoss as the model’s loss function. Finally, the di-
lated convolution can expand the receptive field and segment by combining more regional
information surrounding the grains, which makes model perform better. Additionally, the
dataset with rich labeled grains helps the model fully learn the segment rules, which is
vital for data-driven methods.

6. Conclusions

Intelligent analysis of images of thin sandstone sections is of high research and applica-
tion value, but the search for automatic segmentation and recognition is challenging because
of the variety and complexity of sandstone images. This paper designed a high-accuracy
sandstone segmentation model by mixing several attention mechanisms and applying
appropriate loss functions and dilated convolution. The segmented particle images can be
classified using other methods to obtain their mineralogical categories. The research on the
automatic analysis of thin sandstone sections has made some progress in this paper, but it
is difficult to identify filler, especially heterogeneous groups and cementation, and there is
still much room for improvement in recognition accuracy.
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