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Abstract: The purpose of this study was to investigate the effect of the use of rubber powder from
tire recovery on the dynamic loading performance of CPB. Finally, it is concluded that using recycled
rubber material to backfill mine paste is helpful in reducing waste tire pollution and improving
the impact resistance of the backfill body. The dynamic compressive strength, Dynamic Increase
Factor (DIF), peak dynamic load strain, and dynamic load elastic modulus of the samples composed
of slag, Portland cement, wastewater, and rubber powder were determined. Through the analysis
of the experimental data, it can be seen that the recycled rubber reduces the dynamic compressive
strength and DIF of the specimen but increases the peak dynamic load strain and dynamic load elastic
modulus and other characteristics, and enhances the ability of the filled body to absorb elastic strain
energy. The results show that recycled rubber can increase the deformation ability of the filler and
improve the impact resistance of the filler. The results of this study provide valuable information and
industrial applications for the effective management of solid waste based on sustainable development
and the circular economy.

Keywords: cemented paste backfill; dynamic loading characteristics; recycled rubber; metal mine

1. Introduction

Dynamiting is the main method for exploitation in metal mines [1]. In the process of
exploiting metal ore by using the two-step open stoping method with subsequent filling,
the shock generated by blasting in the second step has a great impact on the filling body of
the first step [2]. Once the energy transmitted by the shock exceeds the limit of the energy
that the filling body can absorb and conditions for release are present, the filling body is
destroyed. This not only results in the filling body losing its original designed support and
protection function, but the destroyed filling body collapses with the ore, which increases
the ore dilution rate and thus increases the cost of ore dressing. Therefore, improving the
impact resistance of filling bodies has always been a hot topic in the study of cemented
paste backfill (CPB) [3–5].

The use of CPB provides benefits in dealing with solid waste and protecting the mining
area environment. CPB utilizes solid waste generated by mines, mainly tailings in metal
mines, and a certain amount of cementitious material, generally cement, is added to prepare
a paste that is pumped into the area that needs to be filled [6]. After it solidifies, CPB plays
a supporting role, ensuring the safety of the working environment of practitioners, and it
can also effectively control surface subsidence [7].

Chen et al. [8] conducted impact tests on tailings backfill and found that increasing
the tailings ratio, solid mass concentration, and curing age could improve the dynamic
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compressive strength and dynamic elastic modulus of the tailings backfill. Xue et al. [9] an-
alyzed the dynamic mechanical behavior of fiber-reinforced backfill by using the SHPB test
and a high-speed camera and determined the influence of fiber content on the DCS of back-
fill. Libos et al. [10] studied the effects of curing time and temperature on the constitutive
behavior and mechanical properties of fiber-reinforced backfill and established a mathe-
matical model to predict a strong correlation between the compressive strength and tensile
strength of fiber and backfill. Chakilam et al. [11] evaluated the effects of polypropylene
fiber length, content, and curing time on the permeability of fiber-reinforced fillers.

Yu et al. [12] studied the performance of recycled tire polymer fiber (RTPF) to strengthen
the cementing paste backfill (CPB). The results showed that the fluidity of CPB enhanced
by RTPF decreased with the increase in fiber content. The failure strain, unconfined com-
pressive strength, and toughness values are generally higher than those of ordinary CPB
(i.e., CPB without fiber reinforcement). However, with the increase in RTPF content, the
mechanical properties of the material did not improve continuously. Guo et al. [13] studied
the rheology (i.e., static and dynamic yield stress, structure accumulation), strength (i.e.,
uniaxial and triaxial compressive, cleavage tensile, and bending strength), microstructure,
and life cycle of CTB strengthened by RTPF. They found that adding 0.6 wt% RTPF to a
CTB yielded a comparable mobility and strength to an enhanced CTB with 0.3 wt% PPF,
while reducing costs and improving sustainability. With the rapid development of the auto
industry, the environmental issues caused by discarded automotive tires, known as “black
pollution”, urgently need to be addressed [14–16]. Recycled rubber is the main means to
solve the issue of discarded tires. In the research field of traditional cement-based compos-
ites, rubber increases the toughness, ductility, and crack resistance of materials [17]. Adding
recycled rubber to the filling body can increase its toughness, deformation resistance, and
energy absorption capacity. However, the disadvantage of recycled rubber is that it reduces
the strength of the filling body [18–20].

There are few direct studies on rubber backfill at present, and there are no studies
on the influence of rubber on the mechanical properties of backfill; moreover, research
on the influence of rubber particles on the impact resistance of cemented tailing backfill
is also scarce. Therefore, in this study, in-depth research into the mechanical properties
of the filling body after adding rubber is carried out, with the aiming of contributing to
the protection of mine workers and the property safety of relevant practitioners, using the
backfilling method for exploitation in metal mines.

2. Materials and Methods

It is necessary to understand the basic properties of the raw materials used to produce
backfilling materials, in order to determine the flow properties of filling paste and the
mechanical properties of filling bodies [21–23]. To study the effect of rubber content on
the impact resistance of filling bodies, it is necessary to determine the appropriate paste
concentration, rubber particle size, and cement content of the filling paste. Therefore, or-
thogonal preliminary experiments were designed and conducted, with paste concentration,
rubber particle size, and cement content as variables, to test the rheological properties of
the filling paste [24–26].

It should be confirmed that the flow properties of the filling paste meet the trans-
portation requirements of the filling process before considering its mechanical characteris-
tics [27,28]. Generally speaking, the lower the concentration of paste, the better the flow
properties. However, too low a paste concentration may lead to reduced strength due to
settlement and stratification. A higher cement content results in higher strength but also
poorer flow properties [29–31]. Therefore, rheological experiments were used to test the
flow properties of filling paste, ultimately determining the appropriate paste concentration,
rubber particle size, and cement content, providing a foundation for subsequent research
on the effect of rubber content on the mechanical properties of CPB [32–34].
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2.1. Materials
2.1.1. Rubber

The rubber material used in this study is 100% vulcanized recycled rubber powder,
which is mainly derived from discarded tires and is obtained by crushing discarded tire
rubber at room temperature [35–37]. Since the preparation of rubber powder mainly utilizes
mechanical shearing and extrusion, the rubber particles are irregular, with angular dark
particles in a torn state. A stereomicroscope image of the rubber powder used in this study
is shown in Figure 1.
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Figure 1. Stereomicrograph of recycled rubber powder.

The particle-size distribution of the rubber powder particles after sieving is shown in
Table 1. It can be observed in Table 1 that the particle size of the rubber powder particles is
between 0 and 1.65 mm. The bulk density of the rubber powder was also measured, and
the results revealed a range from 0.35 to 0.40 kg/dm3.

Table 1. Sieving particle-size distribution of recycled rubber powder.

Sieve (mm) Minimum Portion of Retained Material (%) Maximum Portion of Retained Material (%)

1.65 0 5
0.5 30 50
0.3 30 50
0 10 47

2.1.2. Tailings

Tailings, as the aggregate in the backfilling paste, have a significant effect on both the
flow properties of the paste and the strength of the filling body due to their composition and
grading [9,38–40]. The tailings used in this study were collected from a copper–zinc mine
in southern Portugal. The tailings were unclassified full tailings collected through a disc
filter in the ore-washing plant. The tailings were transported to the laboratory in buckets
for preprocessing to ensure homogeneity and a uniform particle-size distribution. The
tailings were mixed, dried, and packaged in sealed bags for future use. The preprocessing
procedure is shown in Figure 2.

The surface morphology and particle-size distribution of the tailings were analyzed
by stereomicroscope (Nikon SMZZ645 with digital camera MOTICAM 10 MP) and laser
particle-size analyzer (MS2000). The results are shown in Figures 3 and 4a.

According to the results of the stereomicroscope experiment, the tailings appeared
yellowish-brown and contained sheet-like reflective crystals. The laser particle-size analysis
revealed that the particle size of the tailings ranged from 0.3 to 355 µm (µm). The specific
surface area was 425 m2/kg. The span of the particle size was 3.122, with D[3:2] = 14.1 µm,



Minerals 2024, 14, 553 4 of 20

D[4:3] = 62.2 µm, D10 = 6.63 µm, D30 = 23.8 µm, and D60 = 57.8 µm. Based on the classifi-
cation of tailings based on particle-size distribution, the tailings used in the experiment
belonged to fine tailings.
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The mineral composition of the tailings was analyzed using an XRD diffractometer,
and the results are shown in Figure 4b. The tailings were mainly composed of pyrite,
quartz, chlorite, and dolomite.

2.1.3. Cement

The cementitious material used in this study was #425 high-early-strength cement.
The particle-size distribution of the cement is shown in Figure 5a. The particle size of the



Minerals 2024, 14, 553 5 of 20

cement ranged from 0.2 to 233.1 µm (µm), with a specific surface area of 527 m2/kg. The
span of the particle size was 1.77, with D[3:2] = 7.12 µm, D[4:3] = 21.2 µm, D10 = 3.52 µm,
D30 = 12.09 µm, and D60 = 24.28 µm.
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The XRD diffraction pattern of the cement is shown in Figure 5b. The main compo-
nents of the cement include calcium oxide (CaO), silicon dioxide (SiO2), aluminum oxide
(Al2O3), and iron (III) oxide (Fe2O3). The main minerals in Portland cement are trical-
cium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and tetracalcium
aluminoferrite (C4AF).

2.2. Methods
2.2.1. Uniaxial Compressive Strength Test

The uniaxial compressive strength (UCS) test machine is one of the most important
devices to determine the relevant parameters of the static characteristics of backfill. Figure 6
shows the UCS-testing machine (TYE-50) used in the experiment in this study. The UCS of
backfill can be measured using the UCS-testing machine. The UCS of the filling body was
obtained by testing according to the Chinese standard GB/T 50081-2019.
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The experimental steps of the UCS test are as follows:

(a) Polish the upper surface of the specimen required for the UCS test so that the upper
and lower surfaces are parallel, to ensure that the stress distribution of the specimen
is balanced during the process of loading;

(b) Adjust the bearing head so that the upper part of the specimen and the testing
machine are fully fitted, to ensure that the specimen is evenly stressed. Zeroing of the
parameters is carried out using the control system;
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(c) Start the experiment and carry out a uniaxial compression test on the specimen at a
loading speed of 0.2 mm/min until the specimen is damaged;

(d) Record the experimental data, draw the stress–strain process curve of the specimen, and
calculate the UCS of the specimen. The calculation formula is shown in Equation (1):

P =
F

R2 (1)

where P is the uniaxial compressive strength of the backfill, kPa; F is the load on the backfill
when it is damaged, kN; and R is the side length of the specimen, dm.

2.2.2. Split-Hopkinson Pressure Bar Test

The dynamic testing of CPB was conducted using the Split-Hopkinson Pressure Bar
(SHPB) test [41–43].

(1) Experimental Principle

In the SHPB experiment, three basic assumptions need to be satisfied:

(a) The stress wave in the bar is a one-dimensional stress wave. This condition can be
achieved by controlling the dimensions of the bar, and, typically, the bars are designed
with the same diameter.

(b) To minimize wave distortion caused by dispersion, the diameters of the SHPB test
bars and the specimen should not be too large compared with the wavelength of the
applied load pulse.

(c) The stress uniformity assumption is satisfied within the specimen, meaning that the
stress transmitted within the specimen is uniform in magnitude from the perspective
of the specimen’s scale.

In the SHPB test, the stress inside the rod is measured by a strain gauge, and then the
data are recorded and collected by a data collector with a signal amplification function.
The signal amplifier amplifies the signal using the Wheatstone 1/4 bridge. Figure 7 shows
the schematic diagram of the Wheatstone 1/4 bridge, where Rsg1 = Rsg2 = Rsg. Then, the
resulting expression is as follows:

R1 = 2Rsg (2)

R2 = R3 = R4 = R (3)
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The sensitivity coefficient of the strain gauge is defined as follows:

GF =
∆R
R

∗ 1
ε

(4)

Then, the resulting expression is as follows:

R = 2Rsg (5)

When impacted, the resistance on each gauge is 0.5 ∆R.
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R1 = R + ∆R (6)

The output voltage of the Wheatstone bridge is calculated using Equation (7).

U0 =

(
1
2
− 1

2 + ∆R
R

)
U1 (7)

Substituting Equation (7) for Equation (4), the rod strain is as follows:

ε =
4U0

GFU1
(8)

The incident rod used in the test is a pure aluminum rod with an elastic modulus
of 72,000 MPa and a longitudinal wave velocity of 5000 m/s. The elastic modulus of
the aluminum rod is much smaller than that of the 40Cr alloy steel, which has an elastic
modulus of 206,000 MPa.

Based on the one-dimensional elastic stress wave theory, the displacement relationship
between the bar and the specimen end face can be obtained as follows:

D1 = c0

∫ t

0
(εi − εr)dt (9)

D2 = c0

∫ t

0
εtdt (10)

where D1 is the displacement of the end face between the specimen and the incident bar;
D2 is the displacement of the end face between the specimen and the transmission rod; c0
is the elastic wave velocity in the pressure rod; εi is the strain corresponding to the incident
wave; εr is the strain corresponding to the reflected wave; and εt is the strain corresponding
to the transmitted wave.

Assuming that the original length of the sample is l0, the average strain in the sample
is as follows:

ε(t) =
D1 − D2

l0
=

c0

l0

∫ t

0
(εr − εr − εr)dt (11)

The average strain rate obtained using Equation (11) is as follows:

ε̄ =
c0

l0
(εt − εr − εt) (12)

where l0 is the length of the specimen.
The pressure between the specimen and the contact surfaces of the incident and

transmission rod are, respectively, as follows:

F1 = AE(εr + εr) (13)

F2 = AEε1 (14)

where F1 is the pressure of the contact surface of the incident rod; F2 is the contact surface
pressure of the transmission rod; A is the section area of the member; and E is the elastic
modulus of the member.

When the two ends of the specimen are balanced, the result is as follows:

F1 = F2 (15)

According to Equations (13) and (14), the following expression can be obtained:

εr + εr = εt (16)

Moreover, applying Equation (16) results in the following expression:

σ =
AE
A0

εt (17)

where A0 is the section area of the specimen.
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ε = −2c0

l0

∫ t

0
εrdt (18)

ε̄ = −2c0

l0
εr (19)

The stress, strain, and average strain rate of the material can be obtained by combining
Equations (17)–(19) according to the recorded data of the strain gauge on the incident rod
and transmission rod in the SHPB test.

The strain gauges in the incident bar measure the incident wave and reflected wave,
while the strain gauges in the transmitted bar measure the transmitted wave [44–46].

The energy calculation formula is as follows:

WI =
cB AB

EB

∫
σ2

I (t)dt (20)

WR =
cB AB

EB

∫
σ2

R(t)dt (21)

WT =
cB AB

EB

∫
σ2

T(t)dt (22)

where WI is the incident energy, J; WR is the reflection energy, J; WT is the transmission
energy, J; t is time, s; cB is the wave velocity of the pressure rod, m

s ; AB is the cross-sectional
area, m2; EB is elastic modulus, GPa; σI is the incident stress, MPa; σR is the reflection
stress, MPa; and σT is the transmission stress, MPa.

According to the law of conservation of energy, the absorbed energy WA during the
SHPB test can be calculated using the following formula:

WA = WI − WR − WT (23)

(2) Test apparatus

To obtain the dynamic characteristic parameters of the rubberized cemented paste
backfill (RCPB), dynamic testing of the RCPB was conducted using the SHPB test setup
shown in Figure 8. The SHPB test setup mainly consists of a power system, a bullet-
launching system, a bar system, a velocity measurement device, a control system, and a
signal acquisition system.
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In the power system, compressed air stored in an air pump is used to propel the
impact bullet, causing it to collide with the incident bar at a preset speed [47–49]. A rubber
sheet is placed at the end of the incident bar to adjust the wave shape, and the rubber sheet
and incident bar are bonded with Vaseline. The strain gauges are attached to the middle
sections of the incident and transmitted bars, at equal distances from the specimen. The
strain gauges used are high-sensitivity semiconductor strain gauges (BE120-3AA-P200)
with a sensitivity coefficient of 2.22. Due to the relatively high wave impedance of rubber,
the strain gauges in the transmitted bar employ ultra-high-sensitivity semiconductor strain
gauges (SB3.8-120-P-2) with a sensitivity coefficient of 110.

2.2.3. Preparation of Specimen

To investigate the effect of rubber on the impact resistance of CPB, an experiment was
designed to vary the amount of rubber mixed into the paste. Based on a literature review
and preliminary experiments, the rubber content was determined to be 0%, 1%, 3%, 4%,
5%, and 7%, with a cement content of 5% and a slurry concentration of 73.8% (with minor
adjustments made to the concentration based on specific conditions). In the experiment, the
increased mass of rubber was replaced with tailings, and the experimental ratios are shown
in Table 2. The paste was prepared according to the experimental ratios, and relevant
dynamic loading tests were conducted.

Table 2. Experimental material proportions.

Groups Rubber (%) Cement (%) Tailings (%) Water (%)

G-0 0.0 5.0 95.0 26.2
G-1 1.0 5.0 94.0 26.2
G-3 3.0 5.0 92.0 26.2
G-4 4.0 5.0 91.0 26.2
G-5 5.0 5.0 90.0 26.2
G-7 7.0 5.0 88.0 26.2

The specimens for impact testing were prepared using a cylindrical mold with a
diameter of 50 mm and a height of 10 mm. The preparation process for the slurry was
as follows:

(a) The raw materials were weighed according to the design table, as shown in Table 2.
(b) The solid materials were poured into a mixing container and stirred at a speed of

75 r/min for 2 min.
(c) Water was poured into the mixing container and stirred at a speed of 75 r/min for

5 min.

Next, the paste was poured into an oil-coated mold and vibrated during the casting
process. The mold and paste were allowed to cure for 24 h until they solidified, and then
the specimens were de-molded. To simulate the underground paste environment, the
specimens were cured in a curing box (YH-40B) at a temperature of (25 ± 2) ◦C and a
humidity greater than 90%. After reaching the specified curing times (7 and 28 days), the
specimens were taken out for testing. Three samples were tested for each batch, and the
results were averaged [50,51]. The process of specimen preparation is shown in Figure 9.
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3. Results and Analysis

When the SHPB test reaches an ideal dynamic equilibrium, the sum of the incident
wave and the reflected wave is equal to the transmitted wave, satisfying the assumptions
of the one-dimensional stress wave propagation theory [52]. Figure 10a demonstrates
the relationship between the amplitude values of the incident wave, reflected wave, and
transmitted wave signals with a rubber content of 4%. Based on the original waveform
diagram, it can be observed that the stress wave curve received by the incident bar is the
sum of the incident wave and the reflected wave, while the stress wave curve at the end
of the transmitted bar is the transmitted wave. The relationship between stress and time
in the pressure bars at both ends of the specimen can be obtained by superimposing the
incident wave and reflected wave.
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In Figure 10a, it can be observed that the amplitudes of the incident wave and reflected
wave are approximately equal and in opposite directions. Compared with those of the
incident and reflected waves, the amplitude of the transmitted wave is significantly smaller.

Figure 10b shows the original waveform diagrams of rubber-filled specimens under
different impact speeds. An analysis of the images revealed that the amplitudes of the
incident wave and reflected wave are similar in magnitude but opposite in direction. Due
to the small amplitude of the transmitted wave, the transmitted signal is amplified 55 times
compared with the incident signal. The small amplitude of the transmitted wave indicates
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that less stress wave energy is received by the transmission bar after passing through
the composite specimen. Only a small portion of the energy penetrates the specimen,
while the majority of the stress is reflected. This suggests that, during impact testing, the
higher the rubber content of RCPB, the higher the amplitude of the reflected wave and the
smaller the amplitude of the transmitted wave. This indicates that less stress and energy
penetrate RCPB.

3.1. Dynamic Compressive Strength of RCPB

The dynamic compressive strength of RCPB was calculated based on the principles
of impact testing and the amplitude data collected by strain gauges. When the impact
speeds were similar, the same aggregate, binder, and rubber type were used, and the results
were averaged. Table 3 presents the statistical results of the dynamic compressive strength
of RCPB.

Table 3. Dynamic compressive strength of RCPB.

Rubber (%) Velocity of the Bullet (m·s−1) Average Strain Rate (s−1) Dynamic Strength (MPa)

0

4.062 40.16 1.43
6.122 70.61 1.87
7.921 118.55 2.15
9.451 131.89 2.98

1

4.350 45.55 1.01
5.804 68.59 1.61
7.822 115.96 1.95
9.673 135.23 2.75

3

4.219 44.03 0.90
5.894 70.36 1.57
7.831 126.45 1.84
9.961 140.01 2.62

4

4.101 43.94 0.81
6.020 71.29 1.49
7.974 127.32 1.76
9.602 132.43 2.53

5

4.216 45.06 0.76
6.157 73.86 1.25
7.928 126.56 1.63
9.996 145.32 2.30

7

4.010 44.89 0.73
5.891 71.36 1.02
7.898 122.2 1.58
9.928 143.42 2.19

To demonstrate the relationship between the dynamic strength of RCPB and the
rubber content, as well as the impact speed, the dynamic compressive strength results of
the rubber-filled body were plotted and are shown in Figure 11a,b.

Figure 11a shows the change in dynamic compressive strength of RCPB with rubber
content at different impact speeds. At the same impact speed, as the rubber content
increases, the dynamic compressive strength of RCPB decreases. This result is consistent
with the static compressive strength results. This is because the hydrophobic nature of
rubber leads to poor bonding between the rubber and the RCPB matrix, resulting in a weak
structural interface. This weak interface structure causes the dynamic compressive strength
of RCPB to decrease as the rubber content increases.

Figure 11b illustrates the relationship between the dynamic compressive strength and
average strain rate of RCPB with different rubber content. It can be observed that, when
the rubber content is the same, the higher the average strain rate, the higher the dynamic
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strength of RCPB. This result also aligns with the strain rate effect of RCPB. As shown in
Figure 11b, for CPB without rubber, when the average strain rate increases from 40.16 s−1

to 118.55 s−1, the dynamic strength increases by 108%. By increasing the impact speed,
the dynamic compressive strength of RCPB increases. When the rubber content is 4%,
the dynamic strength increases by a maximum of 213%. This indicates that the impact
of rubber content on the degree of strength first increases and then decreases. When the
rubber content is around 4%, it reaches the maximum value, and the degree of increase is
the highest.
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3.2. Dynamic Strength Enhancement Factor and Strain Rate Effect

Due to the use of pressure-controlled bullet launch speeds in the SHPB test employed
by the research institute, it was not possible to ensure complete consistency in impact
speeds. Instead, bullet velocities were measured using an infrared speed tester, and strain
gauge data were utilized to calculate the average strain rate of the specimen during dynamic
impact loading.

In dynamic research, the Dynamic Increase Factor (DIF) is often referenced to reflect
the increase in dynamic compressive strength relative to the static compressive strength of
RCPB. The formula for calculating the DIF is shown in Equation (24):

DIF =
fd
P

(24)

where fd is the dynamic strength and P is the static strength.
Based on Equation (5), the DIF of RCPB can be calculated. The calculated results are

summarized in Table 4.
The relationship between the dynamic strength enhancement factor of RCPB and the

rubber content and impact speed is plotted in Figure 12a.
It can be observed in Figure 12a that the relationship between the dynamic enhance-

ment factor of RCPB and the rubber content is not completely the same at different impact
speeds. At the same impact speed, as the rubber content increases, the dynamic en-
hancement factor of RCPB generally follows a trend of first decreasing and then slightly
increasing. This is because the performance of rubber in dynamic loading differs depending
on the rubber content.

Figure 12b shows the curve of the dynamic strength enhancement factor of the ce-
mented filling body when the average strain rate ranges from 40.16 to 148.42 s−1. When the
rubber content is constant, as the impact speed increases, the dynamic strength enhance-
ment factor of RCPB also increases, indicating that the growth rate of the dynamic strength
increases with the increase in impact speed. When the average strain rate is relatively low
at 40.16 s−1, the DIF of RCPB is 1.69. When the average strain rate exceeds 70 s−1, the
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DIF starts to be greater than 2. As the average strain rate increases, the DIF also increases,
reaching a maximum of 3.84. The results indicate that, under dynamic loading, the dynamic
strength enhancement factor of the cemented filling body increases with the increase in
average strain rate, indicating that the rubber-doped filling body exhibits a significant
strain rate effect.

Table 4. Statistical results of DIF for RCPB.

Rubber (%) P (MPa) Velocity of the Bullet (m/s) Average Strain Rate (s−1) fd (MPa) DIF

0 0.851

4.062 40.16 1.43 1.69
6.122 70.61 1.87 2.19
7.921 118.55 2.15 2.53
9.451 131.89 2.98 3.50

1 0.796

4.350 45.55 1.01 1.27
5.804 68.59 1.61 2.03
7.822 115.96 1.95 2.45
9.673 135.23 2.75 3.46

3 0.759

4.219 44.03 0.90 1.18
5.894 70.36 1.57 2.07
7.831 126.45 1.84 2.42
9.961 140.01 2.62 3.45

4 0.717

4.101 43.94 0.81 1.13
6.020 71.29 1.49 2.07
7.974 127.32 1.76 2.45
9.602 132.43 2.53 3.53

5 0.599

4.216 45.06 0.76 1.27
6.157 73.86 1.25 2.08
7.928 126.56 1.63 2.72
9.996 145.32 2.30 3.84

7 0.573

4.010 44.89 0.73 1.27
5.891 71.36 1.02 1.77
7.898 122.2 1.58 2.76
9.928 143.42 2.19 3.83
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3.3. Peak Dynamic Load Strain of RCPB

By calculating the amplitude signal of the strain gauge during the dynamic loading
process of RCPB, the dynamic stress–strain curve of RCPB can be obtained. The dynamic
peak strain of RCPB corresponds to the dynamic compressive strength, and the dynamic
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peak strain of RCPB can be obtained from the dynamic stress–strain curve. Table 5 presents
the calculated results of the dynamic peak strain and the dynamic peak strain growth factor
of RCPB. The calculation method of the dynamic peak strain growth factor of RCPB is
similar to that of the dynamic strength growth factor, and the calculation formula is shown
in Equation (25):

DIFε =
εd
ε

(25)

where εd is the dynamic peak strain and ε is the static peak strain.

Table 5. Dynamic peak strain of RCPB.

Rubber (%) Velocity of the Bullet (m/s) Average Strain Rate (s−1) Dynamic Peak Strain (%) DIFε

0

4.062 40.16 3.5 0.953494011
6.122 70.61 4.26 1.160538424
7.921 118.55 10.22 2.784202511
9.451 131.89 14.5 3.950189473

1

4.350 45.55 5.01 0.968222587
5.804 68.59 6.34 1.225255729
7.822 115.96 10.99 2.123905435
9.673 135.23 15.4 2.976173221

3

4.219 44.03 5.89 0.95937245
5.894 70.36 6.97 1.135284546
7.831 126.45 12.34 2.009958579
9.961 140.01 16.3 2.654969598

4

4.101 43.94 6.53 0.973484837
6.020 71.29 7.34 1.094238699
7.974 127.32 14.8 2.206366859
9.602 132.43 17.7 2.638695501

5

4.216 45.06 7.68 0.971326886
6.157 73.86 8.56 1.082624758
7.928 126.56 15.6 1.973007736
9.996 145.32 18.3 2.314489845

7

4.010 44.89 10 1.064573856
5.891 71.36 13.7 1.458466183
7.898 122.2 16.8 1.788484079
9.928 143.42 18.7 1.990753111

Figure 13a shows the variation in the dynamic peak strain of RCPB with rubber content
at different impact speeds. As the rubber content increases, the dynamic compressive
strength of RCPB exhibits an increasing trend. Figure 13b presents the variation in the
dynamic peak strain of RCPB with an average strain rate at different rubber contents. RCPB
exhibits a strain rate strengthening effect under dynamic loading, i.e., as the strain rate
increases, the dynamic compressive strength of RCPB also exhibits an increasing trend.

The relationship between the performance of RCPB under dynamic loading and static
loading is explored. Figure 14a shows the relationship between the DIFε of RCPB and
rubber content at different average strain rates. As can be seen from Figure 14a, when the
speed of the bullet is 4 m/s and 6 m/s, the DIFε of RCPB slightly increases with the increase
in rubber, which means that rubber increases the deformation ability of the filling body at
this time. When the bullet velocity is 8 m/s and 10 m/s, the result is opposite, meaning that
the rubber reduces the deformation ability of the filling body at this time. The relationship
with the average strain rate shown in Figure 14b can be obtained by converting the velocity
of the bullet to the average strain rate. It can be found by combining Figure 14a,b that
rubber increases the elastic deformation capacity of RCPB, but the degree of this increase is
limited. Therefore, it is necessary to reasonably utilize the properties of rubber to increase
the deformation capacity of RCPB.
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3.4. Dynamic Load Elastic Modulus of RCPB

The dynamic elastic modulus of RCPB characterizes its deformation capacity under
dynamic loading. The influence of rubber content and strain rate on the dynamic elastic
modulus is characterized by the dynamic elastic modulus enhancement factor, and the
sensitivity of the dynamic elastic modulus of RCPB to both factors is studied. Table 6
presents the calculated results of the dynamic elastic modulus and dynamic elastic modulus
enhancement factor of RCPB. The calculation method of the dynamic elastic modulus
enhancement factor is similar to that of the dynamic strength enhancement factor. The
calculation formula is shown in Equation (26):

DIFE =
Ed
E

(26)

where Ed is the dynamic elastic modulus and E is the static elastic modulus.
Figure 15a shows the relationship between the dynamic elastic modulus of RCPB

and rubber content. It can be observed in Figure 15a that the dynamic elastic modulus
of RCPB decreases as the rubber content increases. This is because rubber increases the
deformation capacity of RCPB. Under the same strain rate, RCPB with more rubber content
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has a better deformation capacity. This result is also consistent with the experimental
results of static loading.

Table 6. Dynamic elastic modulus of RCPB.

Rubber (%) Velocity of the Bullet (m/s) Average Strain Rate (s−1) Dynamic Elastic Modulus (kPa) DIFE

0

4.062 40.16 2603 2.100887813
6.122 70.61 3042 2.455205811
7.921 118.55 3246 2.619854722
9.451 131.89 3409 2.751412429

1

4.350 45.55 1835 1.934445676
5.804 68.59 2216 2.336093525
7.822 115.96 2687 2.832618818
9.673 135.23 3012 3.175231812

3

4.219 44.03 1706 1.885476672
5.894 70.36 1908 2.10872772
7.831 126.45 2324 2.568492254
9.961 140.01 2653 2.93210411

4

4.101 43.94 1586 2.060208216
6.020 71.29 1689 2.19400484
7.974 127.32 1826 2.371967341
9.602 132.43 2295 2.98119663

5

4.216 45.06 1428 1.924551077
6.157 73.86 1603 2.160402925
7.928 126.56 1732 2.33425943
9.996 145.32 1919 2.586283976

7

4.010 44.89 1255 1.790408602
5.891 71.36 1311 1.870299345
7.898 122.2 1621 2.312551669
9.928 143.42 1744 2.488025978
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between dynamic elastic modulus and average strain rate.

Meanwhile, Figure 15b shows the relationship between the dynamic elastic modulus
of RCPB and the average strain rate. The dynamic elastic modulus of RCPB increases as
the average strain rate increases, indicating that during the impact process, the higher the
impact energy, the worse the deformation capacity of RCPB. This indicates that, although
rubber particles overall improve the deformation capacity of RCPB, there is still a limit to
this improvement.
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Figure 16a shows the relationship between the DIFE of RCPB and rubber content.
It can be observed that as the rubber content increases, the DIFE generally exhibits a
decreasing trend. However, careful observation reveals that in some stages there is a trend
of first increasing and then decreasing. For example, when the bullet travels at 8m/s, the
DIFE of RCPB shows a decreasing trend when the rubber content is between 0% and 3%.
When the rubber content increases to 4%, the DIFE increases slightly. When the rubber
content increases to 7%, the DIFE again shows a decreasing trend. Overall, there is a
decreasing trend, indicating that the rubber content has a high sensitivity to the dynamic
elastic modulus of RCPB. Figure 16b shows the relationship between the dynamic elastic
modulus enhancement factor of RCPB and the average strain rate. The results of this study
show that the DIFE of RCPB increases as the average strain rate increases. Combined with
Figure 16a,b, it can be seen that rubber can improve the deformation ability of RCPB to a
certain extent, Therefore, it is necessary to reasonably utilize the properties of rubber to
increase the deformation capacity of RCPB.

Minerals 2024, 14, 553 18 of 21 
 

 

4 

4.101 43.94 1586 2.060208216 

6.020 71.29 1689 2.19400484 

7.974 127.32 1826 2.371967341 

9.602 132.43 2295 2.98119663 

5 

4.216 45.06 1428 1.924551077 

6.157 73.86 1603 2.160402925 

7.928 126.56 1732 2.33425943 

9.996 145.32 1919 2.586283976 

7 

4.010 44.89 1255 1.790408602 

5.891 71.36 1311 1.870299345 

7.898 122.2 1621 2.312551669 

9.928 143.42 1744 2.488025978 
 

 

  
(a) (b) 

Figure 16. (a) Relationship between 𝐷𝐼𝐹𝐸 and rubber content; (b) relationship between 𝐷𝐼𝐹𝐸 and 

average strain rate. 

4. Conclusions 

Rubber particles have become the main raw material choice to enhance the impact 

resistance of cement-based composite materials because of their good elasticity and tough-

ness. Adding rubber particles to the backfill body not only improves its mechanical prop-

erties but also fully utilizes the residual value of waste rubber, thus solving the problem 

of “black pollution” caused by waste tires. However, there is a lack of research on the 

influence of rubber particles on the impact resistance of backfill. This study examined the 

influence of rubber particles on the impact resistance of backfill through dynamic loading 

experiments. Based on the results of this study, the following conclusions were reached: 

(1) Under identical impact velocities, the dynamic compressive strength of rubber-

doped filling bodies is reduced compared with those without rubber. As the rubber 

content increases, the rate at which the dynamic compressive strength decreases be-

comes slower. 

(2) As the rubber content rises, the dynamic strength enhancement factor of RCPB typi-

cally follows a trend of first decreasing and then slightly increasing. This is due to the 

varying performances of rubber content under dynamic loading conditions. Addi-

tionally, the dynamic compressive strength of rubber-filled bodies increases with an 

increase in the average strain rate. For CPB without rubber, when the average strain 

rate increases from 40.16 s-1 to 118.55 s-1, the dynamic strength increases by 108%. 

Figure 16. (a) Relationship between DIFE and rubber content; (b) relationship between DIFE and
average strain rate.

4. Conclusions

Rubber particles have become the main raw material choice to enhance the impact re-
sistance of cement-based composite materials because of their good elasticity and toughness.
Adding rubber particles to the backfill body not only improves its mechanical properties
but also fully utilizes the residual value of waste rubber, thus solving the problem of “black
pollution” caused by waste tires. However, there is a lack of research on the influence of
rubber particles on the impact resistance of backfill. This study examined the influence of
rubber particles on the impact resistance of backfill through dynamic loading experiments.
Based on the results of this study, the following conclusions were reached:

(1) Under identical impact velocities, the dynamic compressive strength of rubber-doped
filling bodies is reduced compared with those without rubber. As the rubber content in-
creases, the rate at which the dynamic compressive strength decreases becomes slower.

(2) As the rubber content rises, the dynamic strength enhancement factor of RCPB typ-
ically follows a trend of first decreasing and then slightly increasing. This is due
to the varying performances of rubber content under dynamic loading conditions.
Additionally, the dynamic compressive strength of rubber-filled bodies increases with
an increase in the average strain rate. For CPB without rubber, when the average
strain rate increases from 40.16 s−1 to 118.55 s−1, the dynamic strength increases
by 108%. With an increasing impact speed, the dynamic compressive strength of
RCPB increases. When the rubber content is 4%, the dynamic strength increases by a
maximum of 213%.
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(3) Rubber can increase the elastic deformation capacity of RCPB, which means the inclu-
sion of rubber improves the impact resistance of RCPB. However, this improvement
is not infinite, indicating that there is a limit to the deformation capacity achieved
through the addition of rubber. The findings of this study provide both invaluable
information and industrial applications for the efficient management of solid waste,
based on sustainable development and the circular economy.
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