Further on the Choice of Space Group for Scapolite Group Members and Genetic Considerations about the Si-Al Ordering in Their Framework Construction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scapolites from Urdini Lakes (Northwestern Rila, Bulgaria), Samurski Dol (Chepelare Region, Central Rhodopes, Bulgaria), Sluydyanka (Urals, Russia), and Madagascar (Unknown Locality)
2.2. Scanning Electron Microscopy (SEM) and Energy-Dispersive Spectroscopy (EDS)
2.3. Single-Crystal X-ray Diffraction Analysis (SXDA)
3. Results
4. Comparative Study of Scapolites from the Marialite–Meionite Series
4.1. Previous Investigations
4.1.1. General Notes
4.1.2. Framework Topology
4.1.3. Determination of Framework Aluminum from X-ray Data
4.1.4. Si-Al Ordering in Scapolite Group Members and Its Relations with the Intensity of Peaks Violating the Body-Centered Symmetry (Odd Peaks)
4.1.5. Violations of Löwenstein’s (Lowenstein’s) Rule
4.1.6. The Choice of Space Group and Boundaries of Transitions I4/m↔P42/n↔ I4/m
4.2. Choice of Scapolites for the Comparative Study
4.3. Methodological Platform of Research
4.4. CIF Data Processing
4.5. Crystal–Chemical Investigations and Space Group Selection Considerations for Scapolites
5. Discussion
5.1. Further on the Si-Al Ordering in the Scapolite Framework Construction
5.2. Regarding the Possibilities of Lowering the Symmetry of the Scapolites
5.3. Genetic Consideration about the Mechanisms of Si-Al Ordering in Scapolites’ Framework
- (i)
- Al:Si < 1:2
- (ii)
- Al:Si > 1:2
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kostov-Kytin, V.; Nikolova, R.; Kadiyski, M.; Dimitrov, I. Crystal structure of scapolite from Samurski Dol, Chepelare region, Central Rhodopes, Bulgaria. Rev. Bulg. Geol. Soc. 2022, 83, 23–26. [Google Scholar] [CrossRef]
- Kostov-Kytin, V.; Nikolova, R.; Kadiyski, M.; Dimitrov, I. Crystal Structure of Scapolite from Urdini Lakes, Northwestern Rila, Bulgaria. Proc. Bulg. Acad. Sci. 2023, 76, 1045–1053. [Google Scholar] [CrossRef]
- Phakey, P.P.; Ghose, S. Scapolite: Observation of anti-phase domain structure. Nat. Phys. Sci. 1972, 238, 78–80. [Google Scholar] [CrossRef]
- Hassan, I.; Buseck, P.R. HRTEM characterization of scapolite solid solutions. Am. Mineral. 1988, 73, 119–134. [Google Scholar]
- Seto, Y.; Shimobayashi, N.; Miyake, A.; Kitamura, M. Composition and I4/m-P42/n phase transition in scapolite solid solutions. Am. Mineral. 2004, 89, 257–265. [Google Scholar] [CrossRef]
- Sokolova, E.; Hawthorne, F.C. The crystal chemistry of the scapolite-group minerals. I. Crystal structure and long-range order. Can. Mineral. 2008, 46, 1527–1554. [Google Scholar] [CrossRef]
- Bruker. APEX4; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Teertstra, D.K.; Sherriff, B.L. Scapolite cell parameter trends along the solid-solution series. Am. Mineral. 1996, 81, 169–180. [Google Scholar] [CrossRef]
- Antao, S.M. Unit-cell parameters for scapolite solid solutions and a discontinuity at Me 75, ideally NaCa3 [Al5Si7O24](CO3). Powder Diffr. 2013, 28, 269–275. [Google Scholar] [CrossRef]
- Swayze, G.A.; Clark, R.N. Infrared spectra and crystal chemistry of scapolites: Implications for Martian mineralogy. J. Geophys. Res. Solid Earth 1990, 95, 14481–14495. [Google Scholar] [CrossRef]
- Teertstra, D.K.; Schindler, M.; Sherriff, B.L.; Hawthorne, F.C. Silvialite, a new sulfate-dominant member of the scapolite group with an Al-Si composition near the I4/m-P42/n phase transition. Mineral. Mag. 1999, 63, 321–329. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Sokolova, E. The crystal chemistry of the scapolite-group minerals. II. The origin of the I4/m-P42/n phase transition and the nonlinear variations in chemical composition. Can. Mineral. 2008, 46, 1555–1575. [Google Scholar] [CrossRef]
- Shaw, D.M. The geochemistry of scapolite part I. Previous work and general mineralogy. J. Petrol. 1960, 1, 218–260. [Google Scholar] [CrossRef]
- Evans, B.W.; Shaw, D.M.; Haugton, D.R. Scapolite stoichiometry. Contrib. Mineral. Petrol. 1969, 24, 293–305. [Google Scholar] [CrossRef]
- Teertstra, D.K.; Sherriff, B.L. Substitutional mechanisms, compositional trends and the end-member formulae of scapolite. Chem. Geol. 1997, 136, 233–260. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. Thermal behavior of scapolite Me79.6 and Me33.3. Can. Mineral. 2002, 40, 1395–1401. [Google Scholar] [CrossRef]
- Zolotarev, A.A.; Petrov, T.G.; Moshkin, S.V. Peculiarities of chemical compositions of the scapolite group minerals. Zap. Vser. Mineral. Obshchest. 2003, 132, 63–84. [Google Scholar]
- Papike, J.J.; Zoltai, T. The crystal structure of a marialite scapolite. Am. Mineral. J. Earth Planet. Mater. 1965, 50, 641–655. [Google Scholar]
- Lin, S.B.; Burley, B.J. The crystal structure of an intermediate scapolite–wernerite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1975, 31, 1806–1814. [Google Scholar] [CrossRef]
- Levien, L.; Papike, J.J. Scapolite crystal chemistry: Aluminum-silicon distributions, carbonate group disorder, and thermal expansion. Am. Mineral. 1976, 61, 864–877. [Google Scholar]
- Smith, J.T.; Bailey, S.W. Second review of Al–O and Si–O tetrahedral distances. Acta Crystallogr. 1963, 16, 801–811. [Google Scholar] [CrossRef]
- Lin, S.B.; Burley, B.J. Crystal structure of a sodium and chlorine-rich scapolite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 1272–1278. [Google Scholar] [CrossRef]
- Lin, S.B.; Burley, B.J. The crystal structure of meionite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 2024–2026. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. Unusual Al-Si ordering in calcic scapolite, Me79.6, with increasing temperature. Am. Mineral. 2008, 93, 1470–1477. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. Increase in Al–Si and Na–Ca disorder with temperature in scapolite Me32.9. Can. Mineral. 2008, 46, 1577–1591. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. Complete Al-Si order in scapolite Me37.5, ideally Ca3Na5[Al8Si16O48]Cl(CO3), and implications for antiphase domain boundaries (APBs). Can. Mineral. 2011, 49, 581–586. [Google Scholar] [CrossRef]
- Sokolova, E.V.; Kabalov, Y.K.; Sherriff, B.L.; Teertstra, D.K.; Jenkins, D.M.; Kunath-Fandrei, G.; Goetz, S.; Jäger, C. Marialite: Rietveld structure-refinement and 29Si MAS and 27Al satellite transition NMR spectroscopy. Can. Mineral. 1996, 34, 1039–1050. [Google Scholar]
- Sherriff, B.L.; Sokolova, E.V.; Kabalov, Y.K.; Jenkins, D.M.; Kunath-Fandrei, G.; Goetz, S.; Jäger, C.; Schneider, J. Meionite: Rietveld structure-refinement, 29Si MAS and 27Al SATRAS NMR spectroscopy and comments on the marialite–meionite series. Can. Mineral. 2000, 38, 1201–1213. [Google Scholar] [CrossRef]
- Sherriff, B.L.; Sokolova, E.V.; Kabalov, Y.K.; Teertstra, D.K.; Kunath-Fandrei, G.; Goetz, S.; Jäger, C. Intermediate scapolite: 29Si MAS and 27Al SATRAS NMR spectroscopy and Rietveld structure-refinement. Can. Mineral. 1998, 36, 1267–1283. [Google Scholar]
- Lin, S.B.; Burley, B.J. On the weak reflections violating body-centered symmetry in scapolites. Tschermaks Mineral.-Petrol. Mitteilungen 1973, 20, 28–44. [Google Scholar] [CrossRef]
- Lin, S.B. The Crystal Structure and Crystal Chemistry of Scapolites. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1971. [Google Scholar]
- Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. J. Earth Planet. Mater. 1954, 39, 92–96. [Google Scholar]
- Peters, L.; Rahmoun, N.S.; Knorr, K.; Depmeier, W. Why do super-aluminous sodalites and melilites Exist, but not so feldspars? In Minerals as Advanced Materials I; Krivovichev, S.V., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 17–25. [Google Scholar] [CrossRef]
- Fletcher, R.E.; Ling, S.L.; Slater, B. Violations of Lowenstein’s Rule in Zeolites. Chem. Sci. 2017, 8, 7483–7491. [Google Scholar] [CrossRef] [PubMed]
- Klee, W.E. Al/Si distribution in tectosilicates: Scapolites. Z. Für Krist.-Cryst. Mater. 1974, 140, 163–168. [Google Scholar] [CrossRef]
- Oterdoom, W.H.; Wenk, H.R. Ordering and composition of scapolite: Field observations and structural interpretations. Contrib. Mineral. Petrol. 1983, 83, 330–341. [Google Scholar] [CrossRef]
- Tossell, J.A. A theoretical study of the molecular basis of the Al avoidance rule and of the spectral characteristics of Al–O–Al linkages. Am. Mineral. 1993, 78, 911–920. [Google Scholar]
- Antao, S.M.; Hassan, I. The structures of marialite (Me6) and meionite (Me93) in space groups P42/n and I4/m, and the absence of phase transitions in the scapolite series. Powder Diffr. 2011, 26, 119–125. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Grove, T.L.; Baker, M.B.; Kinzler, R.J. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry. Geochim. Cosmochim. Acta 1984, 48, 2113–2121. [Google Scholar] [CrossRef]
- Kusachi, I.; Osanai, Y.; Toyoshima, T.; Owada, M.; Tsunogae, T.; Hokada, T.; Crowe, W.A. Mineralogy of scapolite from Skallen in the Lutzow-Holm Bay region, East Antarctica. Polar Geosci. 1999, 12, 143–156. [Google Scholar]
Space Group | Madagascar, Unknown Locality | Urdini Lakes, Northwestern Rila, Bulgaria | |||
Data | P 42/n | I 4/m | P 42/n | I 4/m | |
1 | 2 | 3 | 4 | ||
Chemical formula/Z | Ca0.69Na1.27Al1.88Si4.12O12.57 C0.18Cl0.29S0.02/4 | Ca0.62Na1.38Al1.92Si4.08O12.55 C0.18Cl0.31 S0.01/4 | Ca1.36Na0.59Al2.39Si3.629O13.58 C0.42S0.08/4 | Ca1.38Na0.58Al2.32Si3.68O13.58 C0.42S0.08/4 | |
Formula weight | 437.78 | 437.20 | 459.18 | 459.46 | |
a,b/Å | 12.0600(4) | 12.0595(5) | 12.1350(7) | 12.1293(9) | |
c/Å | 7.5779(4) | 7.5781(4) | 7.5560(5) | 7.5552(7) | |
Volume/Å3 | 1102.16(9) | 1102.09(11) | 1112.68(15) | 1111.52(19) | |
ρcalc (g/cm3) | 2.638 | 2.635 | 2.741 | 2.746 | |
Crystal size/mm3 | 0.025 × 0.02 × 0.02 | 0.025 × 0.02 × 0.02 | 0.15 × 0.1 × 0.1 | 0.15 × 0.1 × 0.1 | |
Temperature/K | 273.15 K | 273.15 K | 273.15 K | 273.15 K | |
Radiation, λ [Å] | 0.71073 | 0.71073 | 0.71073 | 0.71073 | |
2Θ range for data collection/° | 4.776 to 51.366 | 4.76 to 52.6 | 4.74 to 56.528 | 4.75 to 56.592 | |
Reflections collected/unique | 9812/1057[R(int) = 0.0810] | 4908/610[R(int) = 0.0591] | 13,464/1372[R(int) = 0.1130] | 7245/745[R(int) = 0.0602] | |
Data/restraints/para-meters | 1057/0/99 | 610/0/59 | 1372/0/106 | 745/0/66 | |
Goodness-of-fit on F2 | 1.083 | 1.103 | 1.044 | 1.074 | |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0449, wR2 = 0.09 | R1 = 0.0362, wR2 = 0.0709 | R1 = 0.0461, wR2 = 0.0858 | R1 = 0.0319, wR2 = 0.0728 | |
Final R indexes [all data] | R1 = 0.0726, wR2 = 0.1020 | R1 = 0.0435, wR2 = 0.0733 | R1 = 0.1002, wR2 = 0.1053 | R1 = 0.0430, wR2 = 0.0787 | |
Largest diff. peak/hole/e Å−3 | 0.52/−0.37 | 0.447/−0.445 | 0.69/−0.55 | 0.93/−0.46 | |
Space Group | Samurski dol Central Rhodopes, Bulgaria | Sluydyanka (Urals, Russia) | |||
Data | P 42/n | I 4/m | P 42/n | I 4/m | |
5 | 6 | 7 | 8 | ||
Chemical formula/Z | Ca1.44Na0.52Al2.49Si3.51O13.47 C0.49Cl0.010S0.002/4 | Ca1.43Na0.53Al2.41Si3.59O13.48 C0.49Cl0.007 S0.002/4 | Ca1.63Na0.33Al2.62Si3.38O13.63 C0.36Cl0.007 S0.129/4 | Ca1.63Na0.33Al2.61Si3.39O13.63 C0.36Cl0.008 S0.127/4 | |
Formula weight | 457.24 | 457.17 | 465.48 | 465.31 | |
a,b/Å | 12.1450(2) | 12.1445(3)) | 12.1604(2) | 12.1613(2) | |
c/Å | 7.5572(2) | 7.5572(2) | 7.5689(2) | 7.5688(2) | |
Volume/Å3 | 1114.69(4)) | 1114.60(5) | 1119.25(4) | 1119.40(4) | |
ρcalc (g/cm3) | 2.725 | 2.724 | 2.762 | 2.761 | |
Crystal size/mm3 | 0.02 × 0.02 × 0.01 | 0.02 × 0.02 × 0.01 | 0.02 × 0.01 × 0.01 | 0.02 × 0.01 × 0.01 | |
Temperature/K | 273.15 K | 273.15 K | 273.15 K | 273.15 K | |
Radiation, λ [Å] | 0.71073 | 0.71073 | 0.71073 | 0.71073 | |
2Θ range for data collection/° | 4.74 to 52.6 | 4.74 to 52.6 | 4.74 to 52.64 | 4.74 to 56.64 | |
Reflections collected/unique | 14573/1380[R(int) = 0.0354] | 6533/605[R(int) = 0.0247] | 14690/1398[R(int) = 0.0393] | 7344/752[R(int) = 0.0342] | |
Data/restraints/para-meters | 1380/0/103 | 605/0/63 | 1398/0/111 | 752/0/67 | |
Goodness-of-fit on F2 | 1.03 | 1.055 | 1.035 | 1.062 | |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0380, wR2 = 0.0836 | R1 = 0.0280, wR2 = 0.0651 | R1 = 0.0331, wR2 = 0.852 | R1 = 0.0261, wR2 = 0.0653 | |
Final R indexes [all data] | R1 = 0.0511, wR2 = 0.0914 | R1 = 0.0288, wR2 = 0.0660 | R1 = 0.0499, wR2 = 0.0979 | R1 = 0.0284, wR2 = 0.0671 | |
Largest diff. peak/hole/e Å−3 | 1.08/−0.67 | 1.08/−0.51 | 1.36/−0.63 | 1.24/−0.49 |
Me% | Sample Code This Work | Sample Code Original Work | Locality | Reference |
---|---|---|---|---|
1 | 2 | 3 | 4 | 5 |
6.2 | AH6.2 | Me6 | Badakhshan, Afghanistan | Antao and Hassan, 2011 [39] |
26.4 | SH26.4 | S(7) | Tanzania | Sokolova and Hawthorne, 2008 [6] |
28.7 | SH28.7 | S(8) | Madagascar | Sokolova and Hawthorne, 2008 [6] |
32.3 | SH32.3 | S(9) | Pamir, Tajikistan | Sokolova and Hawthorne, 2008 [6] |
32.9 | AH32.9 | Me32.9 | Monmouth Township, Ontario | Antao and Hassan, (2008) [26] |
34.4 | RV34.4 | - | Madagascar, unknown locality | This work |
36.6 | AH36.6 | Me36.6 | Lake Clear, Ontario | Antao and Hassan, 2011 [27] |
42.0 | SH42.0 | S(10) | Monte Somma, Italy | Sokolova and Hawthorne, 2008 [6] |
45.7 | SH45.7 | S(11) | Madagascar | Sokolova and Hawthorne, 2008 [6] |
57.7 | SH57.7 | S(12) | Minden, Canada | Sokolova and Hawthorne, 2008 [6] |
66.7 | SH66.7 | S(13) | Pargas, Finland | Sokolova and Hawthorne, 2008 [6] |
69.6 | SH69.6 | S(14) | Bolton, USA | Sokolova and Hawthorne, 2008 [6] |
70 | RV70 | - | Urdini lakes, Bulgaria | This work |
72 | RV72 | - | Samurski dol, Bulgaria | This work |
76.9 | SH76.9 | S(15) | Sluydyanka, Russia | Sokolova and Hawthorne, 2008 [6] |
82 | RV82 | - | Sluydyanka, Russia | This work |
92.9 | AH92.9 | Me93 | Mt. Vesuvius, Italy | Antao and Hassan, 2011b [39] |
Me, % | Sample Code | <T1-O>, Å | <T2-O>, Å | <T3-O>, Å | DELTA | (111) | (201) | ||||||||
I, rel. int. | ǀFǀ | ǀFFMAǀ | ǀFIFCǀ | ǀFIFAǀ | I, rel | ǀFǀ | ǀFFMAǀ | ǀFIFCǀ | ǀFIFAǀ | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
6.2 | AH6.2 | 1.5996 | 1.6545 | 1.6633 | 0.0088 | 0.0091 | 1.17 | 1.46 | 2.63 | 0 | 0.0694 | 3.91 | 2.43 | 1.48 | 0 |
26.4 | SH26.4 | 1.6066 | 1.7189 | 1.6265 | 0.0924 | 0.0632 | 3.14 | 8.28 | 5.08 | 0.0548 | 0.4582 | 10.20 | 7.99 | 2.60 | 0.3843 |
28.7 | SH28.7 | 1.6079 | 1.7261 | 1.6214 | 0.1047 | 0.0784 | 3.48 | 9.38 | 5.86 | 0.03628 | 0.6120 | 11.76 | 9.06 | 2.96 | 0.2635 |
32.3 | SH32.3 | 1.6091 | 1.7241 | 1.6247 | 0.0994 | 0.0742 | 3.41 | 8.90 | 5.48 | 0.0111 | 0.5395 | 11.11 | 8.79 | 2.73 | 0.4081 |
32.9 | AH32.9 | 1.6059 | 1.7256 | 1.6117 | 0.1139 | 0.1169 | 4.27 | 9.40 | 5.09 | 0.0428 | 0.7411 | 12.98 | 10.41 | 2.86 | 0.2798 |
34.4 | RV34.4 | 1.6071 | 1.7316 | 1.6120 | 0.1196 | 0.1641 | 5.05 | 11.26 | 6.16 | 0.0430 | 0.7737 | 13.25 | 10.60 | 3.02 | 0.3646 |
36.6 | AH36.6 | 1.6172 | 1.7439 | 1.6014 | 0.1425 | 0.1770 | 5.22 | 12.13 | 5.93 | 0.9742 | 0.9335 | 14.47 | 12.91 | 2.98 | 1.4143 |
42 | SH42.0 | 1.6133 | 1.7377 | 1.6158 | 0.1219 | 0.1160 | 4.29 | 11.21 | 6.84 | 0.0921 | 0.7412 | 13.09 | 10.87 | 3.29 | 1.0647 |
45.7 | SH45.7 | 1.6165 | 1.7364 | 1.6176 | 0.1188 | 0.0999 | 3.96 | 10.83 | 6.89 | 0.0187 | 0.7320 | 12.94 | 10.52 | 3.25 | 0.8292 |
57.7 | SH57.7 | 1.6283 | 1.7310 | 1.6220 | 0.1090 | 0.0654 | 3.24 | 9.99 | 6.51 | 0.2428 | 0.5336 | 11.17 | 9.78 | 2.97 | 1.5794 |
66.7 | SH66.7 | 1.6348 | 1.7194 | 1.6327 | 0.0867 | 0.0292 | 2.18 | 7.85 | 5.75 | 0.0748 | 0.4107 | 9.85 | 7.48 | 2.56 | 0.1861 |
69.6 | SH69.6 | 1.6378 | 1.7241 | 1.6295 | 0.0946 | 0.0301 | 2.21 | 8.42 | 6.27 | 0.0410 | 0.5021 | 10.87 | 8.28 | 2.76 | 0.1728 |
70 | RV70 | 1.6358 | 1.7203 | 1.6285 | 0.0918 | 0.0544 | 2.98 | 8.82 | 5.47 | 0.3805 | 0.3750 | 9.42 | 8.77 | 2.42 | 1.8019 |
72 | RV72 | 1.6388 | 1.6957 | 1.6529 | 0.0427 | 0.0091 | 1.22 | 4.04 | 2.85 | 0.0086 | 0.1165 | 5.25 | 4.14 | 1.27 | 0.1728 |
76.9 | SH76.9 | 1.6431 | 1.6908 | 1.6662 | 0.0246 | 0.0089 | 1.21 | 2.80 | 1.66 | 0.0694 | 0.0303 | 2.69 | 2.15 | 0.74 | 0.1975 |
82 | RV82 | 1.6451 | 1.6904 | 1.6650 | 0.0236 | 0.0036 | 0.77 | 2.47 | 1.65 | 0.0501 | 0.0402 | 3.09 | 2.53 | 0.69 | 0.0982 |
92.9 | AH92.9 | 1.6615 | 1.6755 | 1.6637 | 0.0118 | 0.1033 | 4.09 | 1.34 | 5.58 | 0.1566 | 0.0251 | 2.43 | 1.14 | 2.45 | 1.1123 |
Me, % | Sample code | <T1-O>, Å | <T2-O>, Å | <T3-O>, Å | DELTA | (221) | (3-11) | ||||||||
I, rel. int | ǀFǀ | ǀFFMAǀ | ǀFIFCǀ | ǀFIFAǀ | I, rel | ǀFǀ | ǀFFMAǀ | ǀFIFCǀ | ǀFIFAǀ | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
6.2 | AH6.2 | 1.5996 | 1.6545 | 1.6633 | 0.0088 | 0 | 0.13 | 1.69 | 1.82 | 0 | 0.0016 | 0.85 | 0.07 | 0.79 | 0 |
26.4 | SH26.4 | 1.6066 | 1.7189 | 1.6265 | 0.0924 | 0.5416 | 14.26 | 11.20 | 2.85 | 0.2074 | 0.2592 | 10.82 | 11.04 | 0.70 | 0.4793 |
28.7 | SH28.7 | 1.6079 | 1.7261 | 1.6214 | 0.1047 | 0.6780 | 15.91 | 12.57 | 3.24 | 0.0951 | 0.3152 | 11.90 | 12.41 | 0.75 | 0.2356 |
32.3 | SH32.3 | 1.6091 | 1.7241 | 1.6247 | 0.0994 | 0.5651 | 14.61 | 11.59 | 2.98 | 0.0431 | 0.3041 | 11.76 | 11.81 | 0.61 | 0.5634 |
32.9 | AH32.9 | 1.6059 | 1.7256 | 1.6117 | 0.1139 | 0.7223 | 16.47 | 13.49 | 2.86 | 0.1141 | 0.4290 | 13.93 | 14.64 | 1.01 | 0.2994 |
34.4 | RV34.4 | 1.6071 | 1.7316 | 1.6120 | 0.1196 | 0.8281 | 17.62 | 14.19 | 3.32 | 0.1153 | 0.4085 | 13.58 | 13.78 | 0.60 | 0.4091 |
36.6 | AH36.6 | 1.6172 | 1.7439 | 1.6014 | 0.1425 | 1.2012 | 21.10 | 15.30 | 3.11 | 2.6855 | 0.5876 | 16.19 | 16.61 | 0.58 | 0.1674 |
42 | SH42.0 | 1.6133 | 1.7377 | 1.6158 | 0.1219 | 0.8271 | 17.76 | 13.96 | 3.54 | 0.2644 | 0.4906 | 15.01 | 14.20 | 0.50 | 1.3112 |
45.7 | SH45.7 | 1.6165 | 1.7364 | 1.6176 | 0.1188 | 0.7893 | 17.27 | 13.81 | 3.48 | 0.0310 | 0.4756 | 14.71 | 13.89 | 0.37 | 1.1792 |
57.7 | SH57.7 | 1.6283 | 1.7310 | 1.6220 | 0.1090 | 0.6772 | 16.14 | 12.28 | 3.19 | 0.6771 | 0.4348 | 14.20 | 12.63 | 0.16 | 1.7326 |
66.7 | SH66.7 | 1.6348 | 1.7194 | 1.6327 | 0.0867 | 0.4370 | 13.04 | 10.50 | 2.75 | 0.2146 | 0.2401 | 10.60 | 10.23 | 0.03 | 0.3967 |
69.6 | SH69.6 | 1.6378 | 1.7241 | 1.6295 | 0.0946 | 0.5256 | 14.27 | 11.45 | 2.94 | 0.1138 | 0.2776 | 11.38 | 11.03 | 0.04 | 0.3086 |
70 | RV70 | 1.6358 | 1.7203 | 1.6285 | 0.0918 | 0.4916 | 13.85 | 10.05 | 2.72 | 1.0918 | 0.3072 | 12.01 | 10.33 | 0.07 | 1.7872 |
72 | RV72 | 1.6388 | 1.6957 | 1.6529 | 0.0427 | 0.1131 | 6.63 | 5.25 | 1.42 | 0.0210 | 0.0712 | 0.57 | 5.57 | 0.06 | 0.2207 |
76.9 | SH76.9 | 1.6431 | 1.6908 | 1.6662 | 0.0246 | 0.0228 | 2.99 | 2.42 | 0.77 | 0.1911 | 0.0193 | 3.02 | 2.58 | 0.02 | 0.4206 |
82 | RV82 | 1.6451 | 1.6892 | 1.6656 | 0.0236 | 0.0295 | 3.39 | 2.38 | 0.84 | 0.1770 | 0.0142 | 2.59 | 2.48 | 0.01 | 0.3101 |
92.9 | AH92.9 | 1.6615 | 1.6755 | 1.6637 | 0.0118 | 0.0206 | 2.82 | 4.86 | 2.47 | 0.4192 | 0.0076 | 1.88 | 0.81 | 0.14 | 1.2107 |
Crystall. Direction | R2 ǀFǀ vs. DELTA | R2 ǀFFMAǀ vs. DELTA | R2 ǀFIFCǀ vs. DELTA | R2 ǀFIFAǀ vs. DELTA | ∑ǀFFMAǀ/∑ǀFabsǀ × 100 | ∑ǀFIFCǀ/∑ǀFabsǀ × 100 | ∑ǀFIFAǀ/∑ǀFabsǀ × 100 |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
(111) | 0.5529 | 0.9914 | 0.6320 | 0.1318 | 59.07 | 39.86 | 1.07 |
(201) | 0.9758 | 0.9879 | 0.7107 | 0.1479 | 71.10 | 23.09 | 5.81 |
(221) | 0.9938 | 0.9648 | 0.7072 | 0.1303 | 76.45 | 20.55 | 3.00 |
(3-11) | 0.9505 | 0.9931 | 0.1493 | 0.0390 | 89.50 | 4.19 | 6.31 |
Me, % | Sample Code | O3-IFC, Å | O4-IFC, Å | O5-IFC, Å | O6-IFC, Å | O3-IFA, Å | O4-IFA, Å | O5-IFA, Å | O6-IFA, Å |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
6.2 | AH6.2 | 2.5390 | 2.5880 | 2.9580 | 2.8950 | 4.5750 | 4.5580 | 3.9710 | 4.0660 |
26.4 | SH26.4 | 2.5289 | 2.4972 | 2.7891 | 2.8944 | 4.5650 | 4.5452 | 4.0443 | 4.0242 |
45.7 | SH45.7 | 2.5188 | 2.4882 | 2.7063 | 2.8499 | 4.5700 | 4.5367 | 4.0709 | 4.0291 |
70 | RV70 | 2.5190 | 2.4940 | 2.6530 | 2.7870 | 4.5830 | 4.5430 | 4.1110 | 4.0480 |
82 | RV82 | 2.5000 | 2.5020 | 2.6680 | 2.7080 | 4.5650 | 4.5720 | 4.1160 | 4.0950 |
92.9 | AH92.9 | 2.4910 | 2.5530 | 2.7680 | 2.6220 | 4.6000 | 4.5820 | 4.0570 | 4.1670 |
average | 2.5161 | 2.5204 | 2.7571 | 2.7927 | 4.5763 | 4.5562 | 4.0617 | 4.0716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostov-Kytin, V.; Kadiyski, M.; Nikolova, R. Further on the Choice of Space Group for Scapolite Group Members and Genetic Considerations about the Si-Al Ordering in Their Framework Construction. Minerals 2024, 14, 556. https://doi.org/10.3390/min14060556
Kostov-Kytin V, Kadiyski M, Nikolova R. Further on the Choice of Space Group for Scapolite Group Members and Genetic Considerations about the Si-Al Ordering in Their Framework Construction. Minerals. 2024; 14(6):556. https://doi.org/10.3390/min14060556
Chicago/Turabian StyleKostov-Kytin, Vladislav, Milen Kadiyski, and Rositsa Nikolova. 2024. "Further on the Choice of Space Group for Scapolite Group Members and Genetic Considerations about the Si-Al Ordering in Their Framework Construction" Minerals 14, no. 6: 556. https://doi.org/10.3390/min14060556
APA StyleKostov-Kytin, V., Kadiyski, M., & Nikolova, R. (2024). Further on the Choice of Space Group for Scapolite Group Members and Genetic Considerations about the Si-Al Ordering in Their Framework Construction. Minerals, 14(6), 556. https://doi.org/10.3390/min14060556