Multi-Elemental Characterization of Soils in the Vicinity of Siderurgical Industry: Levels, Depth Migration and Toxic Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Processing
2.2. Analytical Techniques
2.3. Depth Migration Index
2.4. Contamination and Toxic Risk Indices
2.5. Mapping and Statistical Data Analysis
3. Results and Discussion
3.1. Concentrations of Elements in Industrial Soils
3.2. Soil Mineralogy
3.3. Soil Contamination and Ecological Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Location | pH | OC (%) * | Clay (%) | Soil Type (WRB and SRTS) [23,24] | Soil Class (SRTS) [23] |
---|---|---|---|---|---|
TAU Smardan [21] | 8.00–8.37 | 0.86–2.74 | 12.26–19.97 | Calcaro-calcic Chernozem | Cernisols |
TAU Sendreni [21,22] | 7.88–8.44 | 0.91–1.66 | 1.15–27.98 | Calcaro-calcic Chernozem | Cernisols |
TAU Vadeni [21,22] | 8.18–8.21 | 0.69–1.45 | 19.20–33.87 | Calcaric and Calcaric Mollic Gleic Fluvisols | Protisols |
Galati town [11,16] | 8.40–8.84 | 1.37–2.47 | 13.00–20.00 ** | Calcaro-calcic Chernozem | Cernisols |
Site | D (cm) | As | Cr | Cu | Cd | Co | Hg | Mn | Ni | Pb | Zn | Fe | V | Sb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G1.1 | 0–5 | 1.49 | 1.06 | 0.86 | 3.56 | 0.67 | 2.14 | 1.26 | 0.91 | 2.11 | 1.96 | 0.88 | 1.06 | 2.03 |
5–20 | 1.65 | 1.03 | 0.68 | 3.22 | 0.89 | 0.69 | 1.18 | 1.36 | 2.77 | 1.76 | 1.11 | 1.05 | 2.45 | |
20–30 | 2.21 | 0.84 | 1.07 | 2.78 | 0.65 | 0.24 | 0.97 | 0.85 | 1.53 | 1.02 | 0.71 | 0.57 | 2.60 | |
G1.2 | 0–5 | 2.01 | 1.28 | 0.71 | 3.11 | 0.82 | 0.50 | 0.98 | 1.03 | 1.73 | 2.33 | 1.12 | 0.76 | 2.83 |
5–20 | 1.44 | 1.00 | 0.77 | 2.89 | 0.65 | 4.11 | 0.99 | 0.99 | 1.51 | 1.78 | 0.87 | 0.77 | 2.60 | |
20–30 | 1.65 | 0.94 | 0.75 | 2.56 | 0.71 | 0.69 | 0.86 | 0.98 | 1.41 | 1.26 | 0.78 | 0.63 | 1.95 | |
G1.3 | 0–5 | 1.54 | 1.09 | 0.79 | 2.67 | 0.53 | 3.04 | 0.92 | 0.65 | 1.34 | 1.41 | 0.76 | 0.65 | 3.33 |
5–20 | 1.66 | 0.96 | 1.96 | 2.56 | 0.55 | 2.14 | 1.09 | 0.64 | 1.28 | 1.75 | 1.10 | 0.65 | 2.33 | |
20–30 | 1.45 | 0.99 | 0.66 | 2.44 | 0.69 | 0.85 | 0.91 | 0.87 | 1.47 | 1.21 | 0.75 | 0.71 | 1.80 | |
G2.1 | 0–5 | 1.68 | 0.80 | 0.49 | 3.78 | 0.40 | 3.75 | 0.91 | 0.35 | 1.44 | 1.12 | 0.56 | 0.68 | 3.23 |
5–20 | 1.90 | 0.94 | 0.57 | 3.11 | 0.60 | 2.32 | 0.78 | 0.65 | 1.46 | 1.32 | 0.77 | 0.60 | 2.50 | |
20–30 | 1.82 | 1.10 | 0.58 | 2.89 | 0.73 | 0.57 | 0.74 | 0.92 | 0.64 | 1.07 | 0.81 | 0.53 | 2.25 | |
G2.2 | 0–5 | 1.71 | 1.20 | 0.62 | 4.67 | 0.60 | 16.07 | 1.37 | 0.76 | 1.80 | 1.69 | 0.93 | 0.72 | 2.48 |
5–20 | 1.76 | 1.28 | 0.76 | 4.33 | 0.62 | 7.50 | 1.05 | 0.71 | 1.62 | 1.41 | 0.89 | 0.72 | 2.33 | |
20–30 | 1.68 | 1.05 | 0.69 | 3.89 | 0.70 | 0.60 | 0.97 | 1.02 | 1.60 | 1.07 | 0.81 | 0.59 | 2.08 | |
G2.3 | 0–5 | 2.00 | 1.30 | 0.84 | 5.44 | 0.62 | 0.50 | 1.50 | 0.71 | 3.11 | 3.61 | 1.10 | 0.64 | 4.18 |
5–20 | 1.76 | 0.79 | 0.84 | 5.89 | 0.58 | 4.16 | 1.08 | 0.75 | 2.19 | 2.22 | 0.66 | 0.85 | 2.38 | |
20–30 | 1.92 | 0.97 | 1.04 | 5.56 | 0.64 | 0.49 | 1.05 | 0.82 | 1.97 | 1.38 | 0.74 | 0.56 | 2.78 | |
G3.1 | 0–5 | 2.03 | 1.08 | 0.79 | 2.89 | 0.68 | 0.50 | 0.86 | 0.71 | 1.60 | 1.52 | 0.81 | 0.69 | 2.63 |
5–20 | 1.73 | 0.98 | 0.78 | 2.78 | 0.66 | 1.13 | 0.83 | 0.85 | 1.37 | 1.07 | 0.71 | 0.58 | 2.30 | |
20–30 | 2.04 | 1.07 | 0.82 | 2.56 | 0.73 | 0.71 | 0.81 | 0.87 | 1.41 | 1.00 | 0.77 | 0.59 | 2.13 | |
G3.2 | 0–5 | 2.31 | 1.10 | 0.83 | 6.22 | 0.72 | 2.68 | 1.14 | 0.86 | 2.02 | 1.91 | 1.01 | 0.75 | 3.05 |
5–20 | 2.04 | 1.10 | 0.93 | 5.67 | 0.72 | 2.14 | 1.10 | 0.86 | 1.70 | 1.58 | 0.92 | 0.78 | 2.53 | |
20–30 | 2.10 | 0.93 | 0.86 | 5.22 | 0.68 | 0.65 | 0.90 | 1.00 | 1.77 | 1.06 | 0.79 | 0.58 | 2.10 | |
G4.1 | 0–5 | 0.78 | 0.43 | 0.80 | 3.00 | 0.24 | 0.50 | 0.94 | 0.29 | 2.48 | 0.79 | 0.84 | 0.70 | 1.40 |
5–20 | 1.90 | 0.88 | 0.53 | 2.78 | 0.57 | 2.32 | 0.95 | 0.61 | 1.87 | 1.58 | 0.72 | 0.75 | 3.33 | |
20–30 | 1.85 | 0.85 | 1.28 | 2.56 | 0.62 | 0.53 | 0.76 | 0.81 | 1.52 | 1.35 | 0.69 | 0.56 | 2.50 | |
GC | 0–5 | 1.03 | 0.60 | 0.27 | 1.89 | 0.45 | 0.50 | 0.56 | 0.45 | 0.64 | 0.89 | 0.45 | 0.45 | 1.60 |
5–20 | 0.98 | 0.48 | 0.31 | 1.78 | 0.42 | 2.50 | 0.61 | 0.36 | 1.12 | 0.75 | 0.43 | 0.54 | 1.53 | |
20–30 | 0.83 | 0.46 | 0.09 | 1.56 | 0.39 | 0.35 | 0.45 | 0.26 | 0.53 | 0.45 | 0.35 | 0.32 | 1.38 |
References
- Gonçalves, D.A.M.; Pereira, W.V.d.S.; Johannesson, K.H.; Pérez, D.V.; Guilherme, L.R.G.; Fernandes, A.R. Geochemical Background for Potentially Toxic Elements in Forested Soils of the State of Pará, Brazilian Amazon. Minerals 2022, 12, 674. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Megremi, I.; Ioannou, D.; Massas, I.; Economou-Eliopoulos, M. Assessment of Potentially Toxic Element Contamination in the Philippi Peatland, Eastern Macedonia, Greece. Minerals 2022, 12, 1475. [Google Scholar] [CrossRef]
- Ene, A.; Pantelică, A.; Sloată, F.; Zakaly, H.M.H.; Tekin, H.O. Gamma spectrometry analysis of natural and man-made radioactivity and assessment of radiological risk in soils around steel industry. Rom. J. Phys. 2023, 68, 803. [Google Scholar] [CrossRef]
- Andreu-Sánchez, Ó.; García-Lorenzo, M.L.; Esbrí, J.M.; Sánchez-Donoso, R.; Iglesias-Martínez, M.; Arroyo, X.; Crespo-Feo, E.; Ruiz-Costa, N.; Roca-Pérez, L.; Castiñeiras, P. Soil and Freshwater Bioassays to Assess Ecotoxicological Impact on Soils Affected by Mining Activities in the Iberian Pyrite Belt. Toxics 2022, 10, 353. [Google Scholar] [CrossRef]
- Mousavian, N.A.; Mansouri, N.; Nezhadkurki, F. Estimation of heavy metal exposure in workplace and health risk exposure assessment in steel industries in Iran. Measurement 2017, 102, 286–290. [Google Scholar] [CrossRef]
- Pantelica, A.; Freitas, M.C.; Ene, A.; Steinnes, E. Soil pollution with trace elements at selected sites in Romania studied by instrumental neutron activation analysis. Radiochim. Acta 2013, 101, 45–50. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Vergel, K.; Duliu, O.G.; Grozdov, D.; Yushin, N.; Chaligava, O. Assessment of Soil Pollution with Presumably Contaminating Elements in Moscow Recreational Areas Using Instrumental Neutron Activation Analysis. Sustainability 2023, 15, 7886. [Google Scholar] [CrossRef]
- Balaram, V. Advances in Analytical Techniques and Applications in Exploration, Mining, Extraction, and Metallurgical Studies of Rare Earth Elements. Minerals 2023, 13, 1031. [Google Scholar] [CrossRef]
- Badawy, W.; Elsenbawy, A.; Dmitriev, A.; El Samman, H.; Shcheglov, A.; El-Gamal, A.; Kamel, N.H.M.; Mekewi, M. Characterization of major and trace elements in coastal sediments along the Egyptian Mediterranean Sea. Mar. Pollut. Bull. 2022, 177, 113526. [Google Scholar] [CrossRef]
- Badawy, W.; Silachyov, I.; Dmitriev, A.; Lennik, S.; Saleh, G.; Mitwalli, M.; El-Farrash, A.; Sallah, M. Elemental distribution patterns in rock samples from Egypt using neutron activation and complementary X-ray fluorescence analyses. Appl. Radiat. Isot. 2023, 202, 111063. [Google Scholar] [CrossRef]
- Ene, A.; Bosneaga, A.; Georgescu, L. Determination of heavy metals in soils using XRF technique. Rom. Journ. Phys. 2010, 55, 815–820. Available online: https://rjp.nipne.ro/2010_55_7-8/0815_0820.pdf (accessed on 14 December 2023).
- Di Duca, F.; Montuori, P.; De Rosa, E.; De Simone, B.; Russo, I.; Nubi, R.; Triassi, M. Assessing Heavy Metals in the Sele River Estuary: An Overview of Pollution Indices in Southern Italy. Toxics 2024, 12, 38. [Google Scholar] [CrossRef]
- Zhou, T.; Bo, X.; Qu, J.; Wang, L.; Zhou, J.; Li, S. Characteristics of PCDD/Fs and metals in surface soil around an iron and steel plant in North China Plain. Chemosphere 2019, 216, 413–418. [Google Scholar] [CrossRef]
- Sloata, F.; Ene, A.; Bogdevici, O.; Spanos, T. Characterization of soils around a former chemical plant in Braila, SE Romania, using high performance atomic techniques (EDXRF, AAS, ICP-MS). Ann. Dunarea De Jos Univ. Galati Fasc. II Math. Phys. Theor. Mech. 2022, 45, 23–32. [Google Scholar] [CrossRef]
- Bosneaga (Sion), A. Quantification of the Soil Pollution Level (Cuantificarea Gradului de Poluare a Solului—In Romanian). PhD Thesis, Dunarea de Jos University of Galati, Galați, Romania, 2011. [Google Scholar]
- Ene, A.; Bogdevich, O.; Sion, A. Levels of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in topsoils from SE Romania. Sci. Total Environ. 2012, 439, 76–86. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Occupational Exposures during Iron and Steel Founding; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans No. 100F; International Agency for Research on Cancer: Lyon, France, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK304429/ (accessed on 29 April 2024).
- Sloată, F. Performant Analytical Techniques Used for Toxic Substances Monitoring and Industrial Waste Management (Tehnici Analitice Performante Utilizate pentru Monitorizarea Substanțelor Toxice și Managementul Deșeurilor Industriale—In Romanian). PhD Thesis, Dunarea de Jos University of Galati, Galati, Romania, 2023. [Google Scholar]
- Chiţescu, C.L.; Ene, A.; Geana, E.-I.; Vasile, A.M.; Ciucure, C.T. Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. Appl. Sci. 2021, 11, 9721. [Google Scholar] [CrossRef]
- Ene, A.; Zubcov, E.; Spanos, T.; Bogdevich, O.; Teodorof, L. MONITOX international network for monitoring of environmental toxicants and risk assessment in the Black Sea Basin: Research and interdisciplinary cooperation dimensions. In Proceedings of the 10th International Conference “Sustainable Use and Protection of Animal World in the Context of Climate Change”, Chisinau, Moldova, 16–17 September 2021; pp. 11–17. [Google Scholar] [CrossRef]
- Moraru, S.-S.; Ene, A.; Badila, A. Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania. Sustainability 2020, 12, 9174. [Google Scholar] [CrossRef]
- Arbanas (Moraru), S.S. Research on Iron and Steel Works Industry Impact on Soil Edaphic and Vegetal Potential in the Adjacent Areas (Cercetări Privind Impactul Activităţilor Industriei Siderurgice Asupra Potenţialului Edafic şi Vegetal al Solurilor din Zonele Adiacente—In Romanian). Ph.D. Thesis, Dunarea de Jos University of Galati, Galati, Romania, 2022. [Google Scholar]
- Florea, N.; Munteanu, I. (Eds.) Romanian Soil Taxonomy System (Sistemul Român de Taxonomie a Solurilor (SRTS)); Sitech Publisher: Craiova, Romania, 2012. (In Romanian) [Google Scholar]
- FAO/UNESCO Soil Map of the World. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (accessed on 28 April 2024).
- Barac, M.; Kalmár, J.; Kuti, L.; Vatai, J. Soil Stability and Groundwater Chemistry in Urban Areas Covered by Loess (Investigation Site—Galati City, Romania). Earth Sci. Res. 2013, 2, 214–220. [Google Scholar] [CrossRef]
- Dobrescu, C.F.; Calarasu, E.A.; Craifaleanu, I.G. Ground settlement in urban structures exposed to geo-environmental and anthropic hazards: A case study for Galati. Procedia Eng. 2017, 190, 611–618. [Google Scholar] [CrossRef]
- Frontasyeva, M.V. Epithermal Neutron Activation Analysis at the IBR-2 reactor of the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (Dubna). Phys. Atom. Nucl. 2008, 71, 1684–1693. [Google Scholar] [CrossRef]
- Pavlov, S.S.; Dmitriev, A.Y.; Frontasyeva, M.V. Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. J. Radioanal Nucl. Chem. 2016, 309, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Badawy, W.M.; Ghanim, E.H.; Duliu, O.G.; El Samman, H.; Frontasyeva, M.V. Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley. J. Afr. Earth Sci. 2017, 131, 53–61. [Google Scholar] [CrossRef]
- Dorronsoro, C.; Martin, F.; Garcia, I.; Simon, M.; Fernandez, E.; Aguilar, J.; Fernandez, J. Migration of trace elements from pyrite tailings in carbonate soils. J. Environ. Qual. 2002, 31, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.B.; Mazurek, R.; Gasiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef]
- Kumar, V.; Pandita, S.; Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 2022, 103, 487–501. [Google Scholar] [CrossRef]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Res. 1980, 14, 975–1101. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Ferri-Moreno, I.; Barquero-Peralbo, J.I.; Andreu-Sánchez, O.; Higueras, P.; Roca-Pérez, L.; García-Lorenzo, M.L.; Esbrí, J.M. Categorization of Mining Materials for Restoration Projects by Means of Pollution Indices and Bioassays. Minerals 2023, 13, 492. [Google Scholar] [CrossRef]
- Order No. 756 of 3 November 1997 for the Approval of the Regulation on Environmental Pollution Assessment. Eminent: Ministry of Waters, Forests and Environmental Protection. (Published in: Official Gazette No 303 bis of 6 November 1997). Available online: http://legislatie.just.ro/Public/DetaliiDocumentAfis/151788 (accessed on 10 January 2024). (In Romanian).
- Sur, I.M.; Micle, V.; Polyak, E.T.; Gabor, T. Assessment of soil quality status and the ecological risk in the Baia Mare, Romania Area. Sustainability 2022, 14, 3739. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis (Springer Series in Statistics); Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-0387954424. [Google Scholar]
- McLachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition; Wiley Interscience: Hoboken, NJ, USA, 2004; ISBN 978-0-471-69115-0. [Google Scholar]
- Spatial Analyst in ArcGIS for Desktop 10.4. Available online: https://www.esri.com/arcgis-blog/products/analytics/analytics/spatial-analyst-in-arcgis-for-desktop-10-4/ (accessed on 16 February 2024).
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015; ISBN 9780198742845. [Google Scholar]
- Blebea-Apostu, A.-M.; Margineanu, R.M.; Persa, D.; Dumitras, D.-G.; Gomoiu, M.C.; Duliu, O.G. The distribution of natural radionuclides 40K, 228Ac, and 226Ra on Romanian Territory: A radiometric study. Environ. Monit. Assess. 2024, 196, 186. [Google Scholar] [CrossRef]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM National Conference; Association for Computing Machinery: New York, NY, USA, 1968; pp. 517–524. Available online: https://dl.acm.org/doi/pdf/10.1145/800186.810616 (accessed on 22 February 2024).
- Spatial Autocorrelation (Global Moran’s I) (Spatial Statistics). Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/spatial-autocorrelation.htm (accessed on 10 February 2024).
- PAST 4.03 Statistical analysis app for Windows. Available online: https://past.en.lo4d.com/windows (accessed on 10 February 2024).
- StatSoft, Inc. STATISTICA 11. Available online: www.statsoft.com (accessed on 10 January 2024).
- OriginLab Corporation. Available online: https://www.originlab.com/2021 (accessed on 16 January 2024).
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Amsterdam, The Netherlands, 2004; Volume 3, pp. 1–64. ISBN 978-0-08-098300-4. [Google Scholar]
- Marshak, S. Essentials of Geology, 6th ed.; W.W. Norton & Company: New York, NY, USA, 2019; ISBN 978-0393667523. [Google Scholar]
- Norman, J.C.; Haskin, L.A. The geochemistry of Sc: A comparison to the rare earths and Fe. Geochim. Et Cosmochim. Acta 1968, 32, 93–108. [Google Scholar] [CrossRef]
- Armstrong-Altrin, J.S.; Nagarajan, R.; Madhavaraju, J.; Rosalez-Hoz, L.; Lee, Y.I.; Balaram, V.; Cruz-Martínez, A.; Avila-Ramírez, G. Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting. Comp. Ren. Geosci. 2013, 45, 185–202. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical Approaches to Sedimentation, Provenance, and Tectonics; Special Paper; Geological Society of America: Boulder, CO, USA, 1993; Volume 284, p. 20. [Google Scholar]
- Tugulan, L.; Duliu, O.; Bojar, A.-V.; Dumitras, D.; Zinicovskaia, I.; Culicov, O.A.; Frontasyeva, M.V. On the geochemistry of the Late Quaternary loess deposits of Dobrogea (Romania). Quat. Int. 2016, 399, 100–110. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Gromet, L.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The North American shale composite: Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Cui, X.; Geng, Y.; Sun, R.; Xie, M.; Cui, Z. Distribution, speciation and ecological risk assessment of heavy metals in Jinan Iron & Steel Group soils from China. J. Clean. Prod. 2021, 295, 126504. [Google Scholar] [CrossRef]
- Lianwen, L.; Wei, L.; Weiping, S.; Mingxin, G. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Cui, Z. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. J. Clean. Prod. 2018, 172, 475–480. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182 Pt B, 247–268. [Google Scholar] [CrossRef]
Code | Longitude | Latitude | Description |
---|---|---|---|
G1.1 | 45°23′00.4″ | 27°57′46.2″ | TAU Vadeni, BR, rural, S of ISP |
G1.2 | 45°22′22.0″ | 27°56′40.6″ | TAU Vadeni, BR, rural |
G1.3 | 45°23′03.7″ | 27°54′56.8″ | TAU Vadeni, BR, agricultural |
G2.1 | 45°25′53.8″ | 27°55′28.4″ | TAU Sendreni, GL, agricultural, W of slag dump |
G2.2 | 45°25′02.0″ | 27°56′31.6″ | TAU Sendreni, Movileni, GL, rural, SW of slag dump |
G2.3 | 45°24′18.2″ | 27°58′26.1″ | GL town limit, peri-urban, S of ISP |
G3.1 | 45°29′39.6″ | 27°55′17.0″ | TAU Smardan, Mihail Kogalniceanu, GL, rural, N of ISP |
G3.2 | 45°28′27.0″ | 27°57′13.7″ | TAU Smardan, GL, agricultural, N of ISP |
G4.1 | 45°25′14.1″ | 28°01′31.3″ | GL town, urban, E of ISP |
GC | 45°31′20.5″ | 27°59′41.6″ | TAU Vanatori, GL, control rural site |
Element | Literature Data | This Work | ||||
---|---|---|---|---|---|---|
Normal [36] | Low; High-Alert [36] | Low; High-Intervention [36] | Upper Continental Crust Mean [48] | Galati ISP, min–max | Galati ISP, Average | |
Al, g·kg−1 | 79.24 | 38–55.6 | 44.68 | |||
As | 5 | 15; 25 | 25; 50 | 4.8 | 3.72–11.1 | 8.55 |
Au, µg·kg−1 | 1.5 | 3.53–69.4 | 10 | |||
Ba | 200 | 400; 1000 | 625; 2000 | 628 | 143–430 | 355.6 |
Br | 50; 100 | 100; 300 | 1.6 | 3.19–13.2 | 6.87 | |
Ca, g·kg−1 | 24.93 | 10.23–47.82 | 29.26 | |||
Cd | 1 | 3; 5 | 5; 10 | 0.09 | 0.22–0.56 | 0.33 |
Ce | 63 | 28.6–80.8 | 66.65 | |||
Co | 15 | 30; 100 | 50; 250 | 17.3 | 4.23–15.4 | 11.08 |
Cr | 30 | 100; 300 | 300; 600 | 92 | 40–120 | 92.11 |
Cs | 4.9 | 1.88–7.89 | 4.69 | |||
Cu | 20 | 100;250 | 200;500 | 28 | 13.79–54.93 | 23.13 |
Dy | 3.9 | n.d.–6.91 | 4.20 | |||
Eu | 1 | n.d.–1.62 | 0.377 | |||
Fe, g·kg−1 | 38.06 | 21.5–42.8 | 31.89 | |||
Hf | 5.3 | 3.43–11.6 | 7.85 | |||
Hg | 0.1 | 1; 4 | 2; 10 | 0.05 | n.d.–0.9 | 0.13 |
I | 1.4 | 4.82–10.6 | 6.62 | |||
K, g·kg−1 | 25.14 | 16.73–24.42 | 16.8 | |||
La | 31 | 13.6–40.9 | 33.85 | |||
Mg, g·kg−1 | 14.56 | 2.04–3.6 | 2.7 | |||
Mn | 900 | 1500; 2000 | 2500; 4000 | 753 | 554–1130 | 749.5 |
Mo | 2 | 5; 15 | 10; 40 | 1.1 | 0.37–2.04 | 1.06 |
Na, g·kg−1 | 23.57 | 5.19–8.27 | 6.88 | |||
Nd | 27 | 8.9–36.4 | 25.46 | |||
Ni | 20 | 75; 200 | 150; 500 | 47 | 13.5–63.7 | 37.99 |
Pb | 20 | 50; 250 | 100; 1000 | 17 | 10.84–52.90 | 29.40 |
Rb | 84 | 32.4–119 | 82.53 | |||
Sb | 5 | 12.5; 20 | 20; 40 | 0.4 | 0.51–1.62 | 0.95 |
Sc | 14 | 7.31–13.9 | 10.29 | |||
Sm | 4.7 | 2.54–7.67 | 6.23 | |||
Sn | 20 | 35; 100 | 50; 300 | 2.1 | n.d.–9.16 | 0.89 |
Sr | 320 | 43–173 | 117.6 | |||
Ta | 0.9 | 0.42–1.14 | 0.925 | |||
Tb | 0.7 | 0.31–0.91 | 0.725 | |||
Tm | 0.3 | 0.28–3.43 | 0.88 | |||
Th | 10.5 | 4.65–13.2 | 10.17 | |||
Ti, g·kg−1 | 3.69 | 3.19–4.76 | 3.84 | |||
U | 2.7 | 1.05–3.34 | 2.651 | |||
V | 50 | 100; 200 | 200; 400 | 97 | 51.2–103 | 67.25 |
W | 1.9 | 0.84–2.74 | 2.14 | |||
Y | 21 | 3.04–6.58 | 4.47 | |||
Yb | 1.96 | 1.14–3.77 | 2.76 | |||
Zn | 100 | 300; 700 | 600; 1500 | 67 | 52.6–242 | 102.26 |
Zr | 193 | 105–482 | 300.63 |
a | b | ||||||
---|---|---|---|---|---|---|---|
Depth (cm) | 0–5 | 5–20 | 20–30 | depth (cm) | 0–5 | 5–20 | 20–30 |
0–5 | 0.791 | 0.063 | 0–5 | 0.883 | 0.672 | ||
5–20 | 0.871 | 0.004 | 5–20 | 0.573 | 0.672 | ||
20–30 | 0.065 | 0.022 | 20–30 | 0.030 | 0.006 |
Site Code | Depth (cm) | RI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hg | As | Pb | Cd | Cu | Cr | Zn | Co | Ni | Mn | |||
G1.1 | 0–5 | 85.71 | 14.90 | 10.54 | 106.67 | 4.32 | 2.11 | 1.96 | 3.35 | 4.53 | 1.26 | 235.35 |
5–20 | 27.71 | 16.54 | 13.84 | 96.67 | 3.41 | 2.05 | 1.76 | 4.45 | 6.78 | 1.18 | 174.39 | |
20–30 | 9.43 | 22.08 | 7.63 | 83.33 | 5.35 | 1.69 | 1.02 | 3.27 | 4.27 | 0.97 | 139.03 | |
G1.2 | 0–5 | 20.00 | 20.08 | 8.63 | 93.33 | 3.57 | 2.57 | 2.33 | 4.10 | 5.14 | 0.98 | 160.73 |
5–20 | 164.29 | 14.42 | 7.55 | 86.67 | 3.85 | 2.00 | 1.78 | 3.27 | 4.96 | 0.99 | 289.75 | |
20–30 | 27.57 | 16.48 | 7.06 | 76.67 | 3.73 | 1.89 | 1.26 | 3.53 | 4.89 | 0.86 | 143.93 | |
G1.3 | 0–5 | 121.43 | 15.40 | 6.68 | 80.00 | 3.95 | 2.17 | 1.41 | 2.66 | 3.26 | 0.92 | 237.88 |
5–20 | 85.71 | 16.65 | 6.41 | 76.67 | 9.81 | 1.93 | 1.75 | 2.75 | 3.20 | 1.09 | 205.96 | |
20–30 | 33.93 | 14.48 | 7.33 | 73.33 | 3.29 | 1.98 | 1.21 | 3.47 | 4.34 | 0.91 | 144.27 | |
G2.1 | 0–5 | 150.00 | 16.79 | 7.19 | 113.33 | 2.46 | 1.60 | 1.12 | 2.01 | 1.74 | 0.91 | 297.15 |
5–20 | 92.86 | 18.98 | 7.29 | 93.33 | 2.86 | 1.88 | 1.32 | 2.98 | 3.26 | 0.78 | 225.54 | |
20–30 | 22.64 | 18.23 | 3.19 | 86.67 | 2.88 | 2.20 | 1.07 | 3.67 | 4.61 | 0.74 | 145.88 | |
G2.2 | 0–5 | 642.86 | 17.06 | 9.02 | 140.00 | 3.09 | 2.39 | 1.69 | 3.01 | 3.81 | 1.37 | 824.28 |
5–20 | 300.00 | 17.56 | 8.08 | 130.00 | 3.79 | 2.57 | 1.41 | 3.09 | 3.54 | 1.05 | 471.09 | |
20–30 | 24.00 | 16.81 | 8.01 | 116.67 | 3.43 | 2.09 | 1.07 | 3.50 | 5.10 | 0.97 | 181.64 | |
G2.3 | 0–5 | 20.00 | 20.04 | 15.56 | 163.33 | 4.21 | 2.61 | 3.61 | 3.12 | 3.57 | 1.50 | 237.56 |
5–20 | 166.43 | 17.60 | 10.97 | 176.67 | 4.22 | 1.59 | 2.22 | 2.92 | 3.73 | 1.08 | 387.44 | |
20–30 | 19.79 | 19.19 | 9.86 | 166.67 | 5.19 | 1.93 | 1.38 | 3.21 | 4.09 | 1.05 | 232.35 | |
G3.1 | 0–5 | 20.00 | 20.27 | 7.99 | 86.67 | 3.96 | 2.16 | 1.52 | 3.38 | 3.57 | 0.86 | 150.39 |
5–20 | 45.21 | 17.33 | 6.83 | 83.33 | 3.91 | 1.97 | 1.07 | 3.32 | 4.27 | 0.83 | 168.08 | |
20–30 | 28.36 | 20.40 | 7.03 | 76.67 | 4.08 | 2.13 | 1.00 | 3.67 | 4.34 | 0.81 | 148.48 | |
G3.2 | 0–5 | 107.14 | 23.13 | 10.08 | 186.67 | 4.14 | 2.20 | 1.91 | 3.58 | 4.30 | 1.14 | 344.29 |
5–20 | 85.71 | 20.44 | 8.52 | 170.00 | 4.66 | 2.20 | 1.58 | 3.58 | 4.31 | 1.10 | 302.09 | |
20–30 | 26.07 | 21.04 | 8.87 | 156.67 | 4.31 | 1.86 | 1.06 | 3.38 | 5.02 | 0.90 | 229.19 | |
G4.1 | 0–5 | 20.00 | 7.75 | 12.38 | 90.00 | 3.98 | 0.86 | 0.79 | 1.22 | 1.44 | 0.94 | 139.35 |
5–20 | 92.86 | 19.00 | 9.34 | 83.33 | 2.66 | 1.75 | 1.58 | 2.84 | 3.03 | 0.95 | 217.34 | |
20–30 | 21.36 | 18.48 | 7.59 | 76.67 | 6.39 | 1.71 | 1.35 | 3.12 | 4.04 | 0.76 | 141.47 | |
G.C. | 0–5 | 20.00 | 10.29 | 3.21 | 56.67 | 1.33 | 1.19 | 0.89 | 2.23 | 2.26 | 0.56 | 98.63 |
5–20 | 100.00 | 9.77 | 5.60 | 53.33 | 1.53 | 0.95 | 0.75 | 2.09 | 1.82 | 0.61 | 176.46 | |
20–30 | 14.07 | 8.31 | 2.67 | 46.67 | 0.46 | 0.91 | 0.45 | 1.95 | 1.29 | 0.45 | 77.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, A.; Sloată, F.; Frontasyeva, M.V.; Duliu, O.G.; Sion, A.; Gosav, S.; Persa, D. Multi-Elemental Characterization of Soils in the Vicinity of Siderurgical Industry: Levels, Depth Migration and Toxic Risk. Minerals 2024, 14, 559. https://doi.org/10.3390/min14060559
Ene A, Sloată F, Frontasyeva MV, Duliu OG, Sion A, Gosav S, Persa D. Multi-Elemental Characterization of Soils in the Vicinity of Siderurgical Industry: Levels, Depth Migration and Toxic Risk. Minerals. 2024; 14(6):559. https://doi.org/10.3390/min14060559
Chicago/Turabian StyleEne, Antoaneta, Florin Sloată, Marina V. Frontasyeva, Octavian G. Duliu, Alina Sion, Steluta Gosav, and Diana Persa. 2024. "Multi-Elemental Characterization of Soils in the Vicinity of Siderurgical Industry: Levels, Depth Migration and Toxic Risk" Minerals 14, no. 6: 559. https://doi.org/10.3390/min14060559
APA StyleEne, A., Sloată, F., Frontasyeva, M. V., Duliu, O. G., Sion, A., Gosav, S., & Persa, D. (2024). Multi-Elemental Characterization of Soils in the Vicinity of Siderurgical Industry: Levels, Depth Migration and Toxic Risk. Minerals, 14(6), 559. https://doi.org/10.3390/min14060559