
Citation: Wang, X.; Wang, K.-Y.; Gao,

Y.; Chen, J.-C.; Xue, H.-W.; Li, H.-M.
40Ar/39Ar Dating and In Situ Trace

Element Geochemistry of Quartz and

Mica in the Weilasituo Deposit in

Inner Mongolia, China: Implications

for Li–Polymetallic Metallogenesis.

Minerals 2024, 14, 575. https://

doi.org/10.3390/min14060575

Academic Editor: Aleksei V. Travin

Received: 15 April 2024

Revised: 25 May 2024

Accepted: 28 May 2024

Published: 30 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article
40Ar/39Ar Dating and In Situ Trace Element Geochemistry of
Quartz and Mica in the Weilasituo Deposit in Inner Mongolia,
China: Implications for Li–Polymetallic Metallogenesis
Xue Wang 1, Ke-Yong Wang 1,2, Yang Gao 1,*, Jun-Chi Chen 1, Han-Wen Xue 1 and Hao-Ming Li 1

1 College of Earth Sciences, Jilin University, Changchun 130061, China; wxue22@mails.jlu.edu.cn (X.W.);
wangky@jlu.edu.cn (K.-Y.W.); jcchen22@mails.jlu.edu.cn (J.-C.C.); xuehw22@mails.jlu.edu.cn (H.-W.X.);
hmli22@mails.jlu.edu.cn (H.-M.L.)

2 MNR Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Changchun 130061, China
* Correspondence: yanggao@jlu.edu.cn; Tel.: +86-159-4809-0410

Abstract: The Weilasituo Li–polymetallic deposit, located on the western slope of the southern Great
Xing’an Range in the eastern Central Asian Orogenic Belt, is hosted by quartz porphyry with crypto-
explosive breccia-type Li mineralisation atop and vein-type Sn-Mo-W-Zn polymetallic mineralisation
throughout the breccia pipe. This study introduces new data on multistage quartz and mica in
situ trace elements; the study was conducted using laser ablation inductively coupled plasma mass
spectrometry and 40Ar/39Ar dating of zinnwaldite to delineate the metallogenic age and genesis of
Li mineralisation. Zinnwaldite yields a plateau age of 132.45 ± 1.3 Ma (MSWD = 0.77), representing
Early Cretaceous Li mineralisation. Throughout the magmatic–hydrothermal process, quartz trace
elements showed Ge enrichment. Li, Al, and Ti contents decreased, with Al/Ti and Ge/Ti ratios
increasing, indicating increased magmatic differentiation, slight acidification, and cooling. Mica’s
rising Li, Rb, Cs, Mg, and Ti contents and Nb/Ta ratio, alongside its falling K/Rb ratio, indicate
the magma’s ongoing crystallisation differentiation. Fractional crystallisation primarily enriched
Li, Rb, and Cs in the late melt. Mica’s high Sc, V, and W contents indicate a high fO2 setting, with
a slightly lower fO2 during zinnwaldite formation. Greisenisation observed Zn, Mg, and Fe influx
from the host rock, broadening zinnwaldite distribution and forming minor Zn vein orebodies later.
Late-stage fluorite precipitation highlights a rise in F levels, with fluid Sn and W levels tied to magma
evolution and F content. In summary, the Weilasituo Li–polymetallic deposit was formed in an
Early Cretaceous extensional environment and is closely related to a nearby highly differentiated
Li-F granite. During magma differentiation, rare metal elements such as Li and Rb were enriched in
residual melts. The decrease in temperature and the acidic environment led to the precipitation of Li-,
Rb-, and W-bearing minerals, and the increased F content in the late stage led to Sn enrichment and
mineralisation. Fluid metasomatism causes Zn, Mg, and Fe in the surrounding rock to enter the fluid,
and Zn is enriched and mineralised in the later period.

Keywords: Weilasituo Li–polymetallic deposit; 40Ar/39Ar dating; trace element geochemistry; Great
Xing’an Range; Central Asian Orogenic Belt

1. Introduction

Rare metals (Li, Be, Rb, Cs, Nb, Ta, W, and Sn) have been designated as critical minerals
and listed as strategic resources due to their unique physical and chemical properties and
numerous important applications in emerging industries such as information technology,
atomic energy, aerospace, and weapons development [1–7]. In recent years, with the
continuous investment in critical mineral prospecting and the development of metallogenic
theory, the results for rare metals such as Li-Rb-W-Sn in China are important [8–12]. Several
rare metal deposits that show great potential for critical mineral prospecting have been
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discovered in the Great Xing’an Range (GXR) [13], such as the Weilasituo Li–polymetallic
deposit [14,15] and Shihuiyao Ni-Ta-Rb deposit [16].

The Weilasituo Li–polymetallic deposit is associated with a quartz porphyry with
crypto-explosive breccia-type Li mineralisation at the top of the deposit and vein-type
Sn-Mo-W-Zn polymetallic mineralisation cutting through the breccia pipe. Its location
is the western slope of the southern GXR in the eastern Central Asian Orogenic Belt
(CAOB). Zinnwaldite is a Li(Rb)-bearing mineral produced in the crypto-explosive breccia
pipe during greisenisation. Previous studies on the Weilasituo Li–polymetallic deposit
have determined the following: (1) the Weilasituo Li–polymetallic deposit was formed
in an extensional environment during the Early Cretaceous [17–24]; (2) the fluid source
is magmatic [18,24–27], and the type of fluid inclusions indicates that it is a single-phase
intermediate-density (ID) fluid directly differentiated from the magma [12]; (3) the Li ore-
forming material was derived from the lower crust [12]; (4) the trace element geochemistry
of multiple generations of sphalerite shows decreases in temperature and in Fe and Mn
content in sphalerite over time, while the In content increases [10]; (5) the enrichment of
Sn-W-Nb-Ta in the Weilasituo micas is related to the early high-temperature magmatic fluid
near the granitic intrusion, and volatile elements are enriched by the continuous evolution
of the fluid as it migrates laterally [28]. However, the previous research on this deposit has
a few shortcomings. For example, previous studies have used indirect minerals for dating,
such as zircon and cassiterite, lacking the accuracy of dating with ore-forming minerals
such as zinnwaldite, which directly reflects the age of Li mineralisation. Previous trace
element geochemistry has focused on sphalerite and cassiterite, neglecting quartz and mica,
which are pervasive and have a direct bearing on mineralisation in this deposit.

We present a comprehensive study of the Weilasituo Li–polymetallic deposit using
40Ar/39Ar dating of zinnwaldite and the trace element geochemistry of quartz and mica.
We applied novel technologies, methods, and experimental simulations to analyse the
mechanisms of migration, enrichment, and precipitation of rare metal elements during the
magmatic–hydrothermal evolution of this deposit.

2. Regional Geology

The GXR is an important polymetallic metallogenic belt in eastern China, with nu-
merous high-intensity metallogenic periods and various types of deposits [29–31]. Many
deposits of Ag-Pb-Zn, rare earth elements (REEs), U, Sn, Mo, and Ni-Ta-Rb-Li-Be rare metal
minerals have been formed [13,32–46]. The stratigraphic units exposed on the western
slope of the southern section of the GXR include the Mesoproterozoic Xilinguole Com-
plex, Devonian formations, Carboniferous formations (Benbatu and Amushan formations),
Permian (Shoushangou, Dashizhai, Huanggangliang, and Linxi formations), Jurassic for-
mations (Xinmin, Manketoebo, Manitu, and Baiyinggaolao formations), Cretaceous Meiletu
Formation, and Quaternary formations (Figure 1).

During the subduction of the Paleo-Asian Ocean, numerous E-W-trending faults
formed in the Paleozoic GXR area. Numerous NNE-trending faults developed during
the Mesozoic and were controlled by the superposition of the Mongolia–Okhotsk and
Palaeo-Pacific Oceans [13,47]. These Mesozoic NNE-trending faults were superimposed
on Palaeozoic EW-trending faults, forming a complex tectonic framework within the GXR.
The Weilasituo breccia pipe-type Li deposit occurs in the Xilinguole Complex and is closely
associated with NNW-trending faults.

Magmatic activity in the GXR was intense and closely related to mineralisation, in-
cluding Variscan (386–257 Ma, Middle Devonian Early Permian), Indosinian (257–205 Ma,
Late Permian to Triassic), and Yanshanian (150–100 Ma, Jurassic to Early Cretaceous) mag-
matic activity [13,48–50]. Yanshanian magmatic activity is widely distributed and consti-
tutes the main body of magmatic rocks in the region, with a peak age of approximately
150–130 Ma [31,51]. The Weilasituo breccia pipe-type Li deposit is a product of magmatic
activity during Yanshanian magmatic activity (quartz porphyry 130.7–141.4 Ma, [17–24]).
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showing the SGXR faults and the location of the Weilasituo Li–polymetallic deposit. (C) Geological 

map of the Weilasituo district (modified from [15,53]). 
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The Palaeoproterozoic Xilinguole Complex and Quaternary strata are exposed in the 

Weilasituo mining area (Figures 1 and 2). The Xilinguole Complex is a set of strongly de-

formed metamorphic rock series exposed in this area, which represents the Baoyintu 

group strata and their metamorphic plutonic intrusion. The Xilinguole Complex is the 

main ore-hosting rock. It underwent greenschist–amphibolite facies metamorphism and 

multistage tectonic deformation [54], and biotite/hornblende plagioclase gneiss is the 

main exposed rock type. The strike was 36–61°, the dip was 45–70°, and the thickness ex-

ceeded 917 m.  

The faults in the region are NW-trending-, NE-trending-(20–30°), and nearly EW-

trending (80–90°). Among these, the NE-trending and nearly EW-trending faults are not 

related to Li mineralisation, and the NW-trending fault is an important Li(-Rb) ore-

Figure 1. (A) Schematic map showing the location of the Central Asian Orogenic Belt (CAOB,
modified from [52]). (B) Sketch map of the Southern Great Xing’an Range (SGXR, modified from [23]),
showing the SGXR faults and the location of the Weilasituo Li–polymetallic deposit. (C) Geological
map of the Weilasituo district (modified from [15,53]).

3. Ore Deposit Geology
3.1. Stratigraphy, Structures, and Magmatic Rocks

The Palaeoproterozoic Xilinguole Complex and Quaternary strata are exposed in the
Weilasituo mining area (Figures 1 and 2). The Xilinguole Complex is a set of strongly
deformed metamorphic rock series exposed in this area, which represents the Baoyintu
group strata and their metamorphic plutonic intrusion. The Xilinguole Complex is the
main ore-hosting rock. It underwent greenschist–amphibolite facies metamorphism and
multistage tectonic deformation [54], and biotite/hornblende plagioclase gneiss is the
main exposed rock type. The strike was 36–61◦, the dip was 45–70◦, and the thickness
exceeded 917 m.
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Figure 2. (A) Simplified geological map of the Weilasituo Li–polymetallic deposit (modified from [28]);
(B) Cross-section of the crypto-explosive breccia-type Li deposit along the Weilasituo exploration line
AA’ (modified from [15]).

The faults in the region are NW-trending-, NE-trending-(20–30◦), and nearly EW-
trending (80–90◦). Among these, the NE-trending and nearly EW-trending faults are
not related to Li mineralisation, and the NW-trending fault is an important Li(-Rb) ore-
controlling structure. The NW-trending fault is tensile (SW-dipping with a 60–70◦ dip
angle) and of varying thickness; it has developed tectonic breccia. The large NE-trending
compressional fault (SE-dipping with a 21–56◦ dip angle) contains local fault breccia. The
nearly EW-trending transpressional fault (N-dipping with an 8–35◦ dip angle, steeper
toward the north) is a secondary structure of the NE-trending faults. The intrusive rocks in
this area are predominantly Carboniferous quartz diorites that intrude into the Xilinguole
Complex. Quartz diorite is predominantly composed of plagioclase (55%–70%), quartz
(10%–15%), grey–green semi-automorphic granular hornblende (15%–25%), and minor
mafic minerals.

3.2. Mineralisation and Alteration Features

The magma–hydrothermal mineralisation process in the western part of Weilasituo
comprises the early Li(-Rb) and late Sn(-W-Mo-Zn) phases, and from magmatic rocks to
lithium mineralisation, it can be divided into three stages (Figure 3): (I) amazonitised quartz
porphyry, (II) crypto-explosive breccia pipe, and (III) greisen vein in breccia pipe.

The crypto-explosive breccia-type Li mineralisation is located above the ore-forming
rock mass (Figure 3a–c, amazonitised quartz porphyry, 130.7–141.4 Ma, [15,17–19,21–25])
and is crosscut by vein-type Sn-Mo-W-Zn polymetallic mineralised veins (Figure 2). The
wall rock alterations are characterised by widespread silicic, greisen, fluorite, and carbonate
alterations. The diameter of the breccia pipe is 140–300 m, with a vertical depth of 640 m
(Figures 2 and 3d–l). It runs in the NW plunge direction, with a plunge angle of 75◦. Li
orebody is 32.25–164.15 m thick (average 97.42 m), with average ore grades of 1.28% Li2O,
0.34% Rb2O, and an ore grade variation coefficient of 21%. The vein-type Sn-Mo-W-Zn
polymetallic orebodies cut through the breccia pipe with a strike of 16–47◦ and an inclination
angle of 14–52◦ SE. These ore bodies are 138–1152 m long and 0.18–9.55 m thick, with an
average ore grade of 0.59–1.21% Sn, 0.153–1.58% WO3, 0.093% Mo, and 2.57%–2.92% Zn.
Greisenisation has mainly been developed in the breccia pipe, forming quartz–zinnwaldite
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veins in the upper part (Figure 3g–i). A few feldspar grains are altered to zinnwaldite,
which is a Li-bearing mica, and a small amount of disseminated zinnwaldite is observed
in the ore-forming rock mass (quartz porphyry). Fluoridisation and greisenisation occur
simultaneously (Figure 3g–j). Fluorite only develops in the quartz–zinnwaldite veins at the
top of the breccia pipe (Figure 3j).
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Figure 3. Hand specimen photographs and microphotographs of the Weilasituo polymetallic de-
posit: (a) ore-forming rock mass (amazonitised quartz porphyry); (b) quartz phenocryst in quartz
porphyry; (c) quartz phenocryst and mica in quartz porphyry; (d) crypto-explosive breccia rocks; (e,f)
quartz and mica in crypto-explosive breccia cements; (g–i) greisenizsation and quartz–zinnwaldite
veins; (j) quartz–fluorite–topaz–mica; (k,l) quartz, zinnwaldite, cassiterite, and topaz in greisen vein.
Abbreviations: Znw—zinnwaldite; Toz—topaz; Cst—cassiterite; Qtz—quartz; Ms—muscovite.

4. Sampling and Analytical Methods

4.1. 40Ar/39Ar Dating Analysis
40Ar/39Ar dating of zinnwaldite samples from crypto-explosive breccia pipe (Figure 3g–i)

was performed at the State Key Laboratory of Isotope Geochemistry, Guangzhou Institute
of Geochemistry, Chinese Academy of Sciences.

Samples packed in aluminium foil, alongside ZBH-25 Biotite standard, were put
into quatz tubes, after which 40Ar/39Ar step heating formed a flat age spectra with a
plateau age of 132.7 ± 0.1 Ma (1se) [55]. The disc was subjected to cadmium shielding
to minimise unwanted nuclear interference reactions and was irradiated in the reactor
for 72 h in the MRR [56]. The average J values calculated for the standard grains in
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the small pits were 0.00146044 to 0.00000146. Quality identification was regularly mon-
itored by using an automated air pipette analysis, and an average air ratio of 0.979268
(±0.5%)/Dalton (atomic mass unit) relative to 298.56 ± 0.31 was provided [57]. The cor-
rection factors for interfering Ar isotopes derived from irradiated CaF2 and K2SO4 were
(39Ar/37Ar) Ca = 18.4 ± 3.6× 10−r, (36Ar/37Ar) Ca = 4.17 ± 0.07× 10−r, and (40Ar/39Ar) K
= 146.5 ± 42.4 × 10−r.

The CO2 (IR, 10.4 µm) laser was used to heat the matrix grain step by step, and the
heating time was 60 s. The released gas was purified with a newly designed gas purifi-
cation system to remove moisture and other impurities [58–60]. Two SAES NP10 Zr/Al
gasifiers were used to further purify the gas at approximately 400 ◦C and room temper-
ature, respectively, to produce inert gas with sufficient purity for Ar isotope analysis in
mass spectrometers.

The Ar isotopes were measured using an ARGUS VI multi-collector mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) in static mode with a permanent resolution
of approximately 200. The Faraday (F) measurement was carried out in multi-acquisition
mode, using 4 F to measure the atomic mass of 40–37 and using a 0-background compact
discrete dipole ion counter to measure the atomic mass of 36. The integration time for each
mass was 80 s, and the relative abundance of each mass was measured simultaneously.
The detector was electronically calibrated using air-beam signals. ArArCALC software
(version 2.4, [61]) was used to process the original data, and the attenuation constants
recommended by Renne et al. [62,63] were used to calculate the date.

4.2. Cathodoluminescence (CL) and Backscattered Electron (BSE) Images

Quartz and mica CL/BSE images from various stages of the Xi’an Kuangpu Geological
Exploration Technology Co., Ltd. (Xi’an, China) were used to prepare the next step for
quantifying the mineral abundance. The CL images of quartz were collected with a JEOL
system using a scanning electron microscopy cathodoluminescence (SEM-CL) instrument
with a voltage of 30 keV and a filament current of 200 nA. The measurements were con-
ducted in a high-vacuum environment with an acceleration voltage of 25 kV, electricity of
9 nA, and a working distance of 15 mm. Platinum Faraday cups were used to calibrate the
electrical and BSE signals, and Mn standards were used to calibrate the EDS signals.

4.3. Trace Element Analysis

The tested quartz and mica samples were sampled in three stages: (I) amazonitised
quartz porphyry, (II) crypto-explosive breccia pipe, and (III) greisen vein in breccia pipe.
The BSE images of a single mica particle show obvious composition changes (different
levels of brightness: light–lighter–dark). At that time, it was not possible to determine what
kind of mica it was, so different colours (M1YEL, M2YEL, M2BLU, M1RED, M2RED) were used
in different light and dark areas with different brightness levels for later reference. Trace
element concentrations in quartz and mica were measured using laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) on polished thick sections at the in situ
Mineral Geochemistry Lab, Ore Deposit and Exploration Centre (ODEC), Hefei University
of Technology, China. The analysis was performed on an Agilent 7900 Quadrupole ICP-MS
coupled to an IRIDIA 193 nm ArF Excimer Laser Ablation system. Argon was used as a
supplementary gas and mixed with the carrier gas through a T-connector before entering
the ICP [64,65]. After measuring the gas blank for 20 s, each analysis was performed for 40 s
with a uniform spot diameter of 35 mm at 7 Hz and an energy of approximately 2.5 J/cm2.

Calibration curves were plotted using NIST SRM 610, 612, and BCR-2G as external
standards. The preferred elemental concentration of the USGS reference glass was deter-
mined using the GeoReM database. The standard reference material was run after each of
the 10 unknowns, and the detection limit of each element in each point analysis was calcu-
lated. Offline data processing was performed using ICPMSDataCal [66]. The trace element
compositions of the silicate and oxide minerals were calibrated using multiple reference



Minerals 2024, 14, 575 7 of 22

materials without internal standardisation. The sum of all elemental concentrations was
considered to be 100% m/m.

5. Results

5.1. 40Ar/39Ar Chronology

The 40Ar/39Ar analysis results are represented in Figure 4 and Table S1. The
age spectrum of the zinnwaldite particles was relatively flat. The zinnwaldite sam-
ple (GIG08D34) was collected from the crypto-explosive breccia pipe and yielded a
plateau age of 132.45 ± 0.28 Ma (Figure 4) MSWD (0.77), corresponding to 94.55% of the
39Ar release. The calculated inverse isochron age is 132.42 ± 0.46 Ma, and the initial ratio
of 40Ar/36Ar is 296.06 ± 7.28, which is close to the atmospheric argon ratio (295.5) within
the error range, indicating that the zinnwaldite did not capture excess argon when it was
formed. This corresponds to only 0.3 %, although the uncertainty of age cannot be less than
the error with which the decay constant is determined. Therefore, the above error should
be at least ±1.3 Ma (1 %). The plateau age and isochron age are very consistent, indicating
that the plateau age of 132.45 ± 1.3 Ma can represent the cooling age when the zinnwaldite
was formed.
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Figure 4. The 40Ar-39Ar dating analysis results of zinnwaldite in the Weilasituo Li–polymetallic
deposit, compared with the data of magmatic rock and metallogenic age in the Weilasituo mining
area. Previous age data are from [15,17,19–24,44].

5.2. Trace Element Geochemistry
5.2.1. Quartz and Mica Textures by SEM-CL

Based on the geological characteristics of the deposit, we analysed the trace elements
of quartz and mica in three stages: quartz porphyry, crypto-explosive breccia pipes, and
greisen veins. Using the SEM-CL images of the thin sections, the trace element dotting
locations were determined at three stages in the Weilasituo Li deposit (Figure 5).

Quartz porphyry: Samples WL-2-26, WL-2-14, and WL-2-17 were obtained from quartz
porphyry, which developed disseminated mica (Figures 5 and 6). Q1 refers to the anhedral
quartz aggregate in sample WL-2-26, and M1 and M2 represent mica in samples WL-2-14
and WL-2-17, respectively. In general, Q1 quartz glows darker under the SEM-CL beam.
The quartz samples in the quartz porphyry were CL-homogenous without growth zoning,
and the CL intensity changes were limited (Figure 5d). Mica in this stage showed clear light
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and dark changes in the BSE images (Figure 6c,d), indicating that two types of mica with
different compositions were observed in the quartz porphyry: muscovite (M1YEL, M2YEL,
and M2BLU) and zinnwaldite (M1RED, M2RED). Muscovite was replaced by zinnwaldite to
represent the residual structure (Figure 6c,d).
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Crypto-explosive breccia pipe: WL-2-9 was sampled from the crypto-explosive brec-
cia and characterised by the development of quartz + mica + surrounding rock breccia
(Figure 5d). Q2 and M3 refer to the quartz and mica in the WL-2-9 sample, respectively. Q2
quartz always coexisted with mica and showed a dark CL texture and a ring-shaped quartz
oscillation zone (Figure 5e). The brightness of the CL image of M3 was more uniform than
that of M1 and M2 (Figure 6g).

Greisen vein: WL-11 was sampled from a greisen vein (Figure 5c) located in the upper
part of the breccia pipe. Q3 and M4 represent quartz and mica, respectively, in the WL-11
sample. Q3 quartz showed a slightly irregular light–dark CL texture associated with mica
(Figure 5f). The CL image of the M4 mica showed that its characteristics were consistent
with those of the M3 mica (Figure 6h).

5.2.2. Trace Element Trends

More than 30 trace elements in quartz and mica were analysed, but only the elements
that yielded data are represented in Tables S2 and S3 due to the contents of a few elements
falling below the detection limit of the instrument. As other elements are susceptible to
contamination by fluids and mineral inclusions [67–74], this discussion focuses on Ti, Li,
Al, and Ge. These elements exist structurally in the quartz and reflect the physicochemical
conditions of quartz formation [67–74]. Table S2 illustrates the variations in the Ti, Li, Al,
and Ge concentrations in Q1–Q2 in the Weilasituo Li–polymetallic deposit. The quartz
samples from Q1 to Q3 were similar, with low Ti concentrations (5.31–13.8 ppm). Li
concentrations generally decreased slightly from the early to late generations, from 11
to 25.8, 15.1 to 24.7, and 8.64 to 17 ppm for Q1, Q2, and Q3, respectively. The aluminium
concentrations had a certain range of variation, from 70.9 to 177, 115 to 141, and 105 to
207 ppm for Q1, Q2, and Q3, respectively, and averages of 139.2, 125.6, and 138.8 ppm,
respectively. The germanium contents ranged from 3.03 to 4.58, 3 to 5, and 1.42 to 4.51 ppm
for Q1, Q2, and Q3, respectively.
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mica: (a,b) quartz porphyry; (c,d) BSE image of mica in quartz porphyry; (e) crypto-explosive breccia
rocks; (f) greisen vein cut through the surrounding rock; (g) CL image of mica in crypto-explosive
breccia rocks; (h) CL image of mica in greisen vein.
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The trace components of muscovite and zinnwaldite were obtained through LA-
ICP-MS analysis (Table S3), with REEs, Ca, Ni, Cu, Y, Zr, Mo, Cd, Sb, Cd, Bi, Th,
and U mostly falling below the detection limits. The Li, Rb, and Cs contents in zin-
nwaldite (17,412–19,766 ppm Li, 6216–8318 ppm Rb, and 308–403 ppm Cs) and mus-
covite (132–19,333 ppm Li, 8.84–6059 ppm Rb, and 71.3–300 ppm Cs) in the quartz por-
phyry were significantly different. The Li, Rb, and Cs contents in zinnwaldite were rel-
atively stable and higher than those in muscovite, and the muscovite content varied
significantly, indicating that muscovite was transformed into zinnwaldite. The analysis of
other trace elements in the quartz porphyry indicated that zinnwaldite was enriched in
Be, Na, Mg, Ca, Sc, Ti, V, Mn, Fe, Co, Zn, Nb, Ta, W, Tl, and Pb, whereas muscovite was
enriched in B, Ni, Ga, Sr, In, Sn, and Ba. The Li, Rb, and Cs contents of zinnwaldite in the
crypto-explosive breccia were 20,810–21,985, 9210–10,213, and 329–446 ppm, respectively,
whereas those in the greisen were 20,590–22,001, 8973–9883, and 333–388 ppm, respectively.
The overall data showed no significant change in the composition of zinnwaldite in the
crypto-explosive breccia and greisen, whereas a few elements showed a significant change
compared to zinnwaldite in the quartz porphyry (Table S3, Figure 7). The Li, Mg, Rb, Ti, Pb,
Zn, Cs, V, Co, Sr, and Ba contents showed a significant upward trend, whereas the Fe, Be,
Ga, Mn, Sc, Ta, W, and Nb contents decreased, and the Ge, Tl, In, and Sn contents showed
no distinct change.
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6. Discussion
6.1. Metallogenic Chronology

Previous studies have conducted in-depth research on the chronology of ore-forming
rock masses. This study focused on 40Ar/39Ar dating of zinnwaldite in the breccia pipe. Pre-
vious studies determined that the age of the quartz porphyry was 130.7–141.4 Ma [15,17–24].
A particularly young age is likely to be derived from minerals that have been generated
later and are not representative. Excluding relatively low-age data, the magma rock age
was mainly concentrated at 135–141 Ma (Figure 4). The 40Ar/39Ar age of mica should be
used with caution because the closure temperature of the system is low and can be easily
modified by hydrothermal events in the later stages of mineralisation, which makes the age
results unreliable [22]. The 40Ar/39Ar ages from this study of zinnwaldite are consistent
with results obtained from previous geochronological studies of other minerals (cassiterite,
molybdenite, and muscovite; 133.7 ± 1.5 Ma to 137.3 ± 2.5 Ma; [19,22,53]) in the pipe within
the error range, indicating that the 40Ar/39Ar age of zinnwaldite is reliable and represents
the time of ore-forming events. As the ore-bearing mineral of the deposit, the plateau age
of zinnwaldite indicates Li mineralisation at 132.45 ± 1.3 Ma. Based on the previous age
data (Figure 4), we concluded that the ages of some cassiterite and molybdenite in the
crypto-explosive breccia pipe (136.8 ± 3.8 Ma to 137.3 ± 2.5 Ma; [22]) were the same as
those of the ore-forming rock mass; some cassiterite and molybdenite (135 ± 5.8 Ma to
135 ± 11 Ma; [19,22]) are formed before the formation of zinnwaldite after quartz porphyry,
and the age of the mica minerals was slightly later, suggesting that the zinnwaldite truly
formed and was enriched after the molybdenite and cassiterite. Zhang (2020) showed that
133.7 ± 1.5 Ma is the cooling age of muscovite formed in the breccia pipe, which is closely
associated with cassiterite. The cooling age of zinnwaldite is slightly later than that of
muscovite, indicating that the Li mineralisation time may be between 133.7 ± 1.5 Ma and
132.45 ± 1.3 Ma. This chronological study confirmed that the age of Li mineralisation was
in the Early Cretaceous, which showed that the rock mass closely related to Li–polymetallic
mineralisation in this area was quartz porphyry from the late Yanshan period. Moreover,
Sn polymetallic mineralisation in this area occurred close to the time of Li–polymetallic
mineralisation, indicating that the two may have a close genetic relationship.

6.2. Trace Element Geochemistry of Quartz

Quartz is one of the most abundant minerals in the Earth’s crust and is widely ob-
served in various rocks. Its chemical composition is mostly SiO2, which is generally
relatively pure but contains abundant trace elements such as Li, Na, K, Al, Ti, and Ge [75].
These trace elements are observed in quartz in two main ways: (1) they enter the quartz
lattice in the form of isomorphism [72,76] or (2) they exist in mineral/fluid inclusions of
quartz [72,77–80]. The surrounding environmental conditions (such as temperature, pres-
sure, pH, and fluid chemical composition) play crucial roles in the entry of trace elements
into quartz lattices [79,81,82]. For a magmatic–hydrothermal system, the trace element
content of quartz and its ratio changes can reflect the source and evolutionary history of
the magmatic–hydrothermal fluid [68,74,78,79,81,83–86].

Figure 6 shows that, from Q1 to Q3, the Li, Al, and Ti contents decreased, whereas the
Al/Ti and Ge/Ti ratios increased with a limited change in the Ge content. The content of Li
in quartz is 8.64–25.8 ppm, which was consistent with the most common range of Li content
in quartz (13–27 ppm; [87]), and it showed a slight decrease from Q1 to Q3 (Figure 7a).
The Ti content of quartz is positively correlated with the temperature [88]. From Q1 to Q3,
the Ti content gradually decreased, indicating that Ti formed during continuous cooling.
The Al and Li contents in the quartz were normal (no obvious extreme enrichment or
deficiency), indicating that Al3+ replaced Si4+ in its lattice by coordinating with Li+. During
quartz crystallisation, Li preferentially enters mica, resulting in a gradual decrease in
Li, and the crystallised quartz gradually becomes poor in Li. The lower Li in Q3 might
reflect competition with mica. Owing to the absence of coordination ions, the amount of
Al incorporated into quartz gradually decreased. Rusk et al. [81] proved that there is a
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strong positive correlation between the concentration of Al in hydrothermal quartz and the
content of Al in the fluid and that the latter strongly depends on the pH value. However,
in this study, the Al values of the three stages showed a slight decrease (70.9–207 ppm; no
magnitude change), indicating a slight shift in pH towards acidity during the mineralisation
process (Figure 7b).

The elements most sensitive to magmatic differentiation were Li, Rb, Al, Ge, Ti, and
Sn, and the degree of magmatic differentiation can be illustrated by Al-Ti, Ge-Ti, or Li-Ti
diagrams in quartz [76,87,89–93]. The Al/Ti, Ge/Ti, and Li/Ti ratios reflect the degree
of magmatic differentiation [71,84]. In Figures 7 and 8, the changes in the Al-Ti, Ge-Ti,
and Li-Ti diagrams and the increased Al/Ti and Ge/Ti ratios indicate that the degree of
magmatic differentiation from Q1 to Q3 increased.
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The average Ge concentration in the upper crust is 1.4 ppm [94]. The quartz of the
deposit was enriched in Ge, and most of the content was >1.5 ppm (maximum 5 ppm),
which is considered typical for pegmatite quartz and strongly fractionated granite [72].
Owing to its compatibility with quartz, Ge can replace Si4+ in quartz [67], whereas the
correlation between Ge and Al is weak because Ge is not bound together in the combined
defects (Figure 8b). Rottier and Casanova [79] showed that the Ge/Ti ratio is the most stable
and reliable in igneous rock systems and that it should be the first choice for analysing
granite genesis. The Ge/Ti ratio strongly depends on the precipitation temperature and
decreases with increasing temperature. The Ge/Ti value of quartz in the ore-forming
process showed an upward trend, and the change in Ti content was relatively small,
suggesting that the quartz temperature decreased and did not change too much during the
precipitation process.

6.3. Trace Element Geochemistry of Mica

Mica is a layered silicate and widely distributed rock-forming mineral. The special
layered crystal structure of mica can accommodate a variety of high-content trace elements;
however, its composition and type are easily affected by changes in the metallogenic
environment and multistage magmatic–hydrothermal processes [95]. The morphology,
crystal structure, physical properties, chemical composition, co-existence relationship,
and spectral characteristics of mica can reflect the ore-forming pressure, temperature and
oxygen fugacity (fO2), petrogenesis, and ore-bearing properties of rock mass [95], which
are of great significance to the evolution degree of melt, the evolution process of vein, the
crystallisation conditions, and the mineralisation potential of rare metals [96–104].

The muscovite in the quartz porphyry had low Li, Fe, Mg, Rb, Mn, Sc, Ti, Ge,
Zn, Nb, W, Cs, Ba, and Ta contents and high Be, Ga, and Sn contents compared to
zinnwaldite (Figures 9 and 10). Regarding trace elements, Nb and Ta were strongly en-
riched in zinnwaldite (12.2–75.2 ppm Nb, 3.46–69.1 ppm Ta) compared to muscovite in
the quartz porphyry. In contrast, the muscovite in the porphyry was rich in Sn (mostly
600–1900 ppm Sn) (Figure 10a). The Nb/Ta ratios of magmatic and hydrothermal mica
were 1.2 and 4.3, respectively, indicating a significant difference and a potential distinguish-
ing factor (Figure 10b). The Nb/Ta ratio and Rb content increased during the evolution
from growing muscovite to growing zinnwaldite (Figure 10c). Compared to magmatic
mica, the Nb and Ta contents in hydrothermal mica were much lower, whereas the Nb/Ta
ratio was relatively higher, which may have been caused by the generally low partition
coefficients of Nb and Ta (DTa < DNb) in the fluid–melt system [105]. Sn and W exhib-
ited different behaviours in muscovite and zinnwaldite (Figure 10d,e). Muscovite was
significantly enriched in Sn and poorly enriched in W, whereas the Sn and W contents
in zinnwaldite showed the opposite trend. The mineralisation of rare metals continued
into the hydrothermal stage, which may explain the high ore grades. The Li, Rb, Cs, and
K/Rb ratios can be used to determine the degree of differentiation and evolution of rare
metal granites [95]. The type of mica in the quartz porphyry changed from muscovite to
zinnwaldite, the contents of Li, Rb, Cs, Mg, and Ti gradually increased, and the K/Rb
ratio gradually decreased (15.34–159.25 to 10.13–15.23 ppm), showing a good evolution
trend. This indicates that the degree of evolution from muscovite to zinnwaldite gradually
increased and that fractional crystallisation was the main mechanism for the enrichment of
Li, Rb, and Cs in the late melt phase (Figure 10f; [106]).



Minerals 2024, 14, 575 14 of 22

Minerals 2024, 14, 575 14 of 23 
 

 

zinnwaldite (12.2–75.2 ppm Nb, 3.46–69.1 ppm Ta) compared to muscovite in the quartz 

porphyry. In contrast, the muscovite in the porphyry was rich in Sn (mostly 600–1900 ppm 

Sn) (Figure 10a). The Nb/Ta ratios of magmatic and hydrothermal mica were 1.2 and 4.3, 

respectively, indicating a significant difference and a potential distinguishing factor (Fig-

ure 10b). The Nb/Ta ratio and Rb content increased during the evolution from growing 

muscovite to growing zinnwaldite (Figure 10c). Compared to magmatic mica, the Nb and 

Ta contents in hydrothermal mica were much lower, whereas the Nb/Ta ratio was rela-

tively higher, which may have been caused by the generally low partition coefficients of 

Nb and Ta (DTa < DNb) in the fluid–melt system [105]. Sn and W exhibited different behav-

iours in muscovite and zinnwaldite (Figure 10d,e). Muscovite was significantly enriched 

in Sn and poorly enriched in W, whereas the Sn and W contents in zinnwaldite showed 

the opposite trend. The mineralisation of rare metals continued into the hydrothermal 

stage, which may explain the high ore grades. The Li, Rb, Cs, and K/Rb ratios can be used 

to determine the degree of differentiation and evolution of rare metal granites [95]. The 

type of mica in the quartz porphyry changed from muscovite to zinnwaldite, the contents 

of Li, Rb, Cs, Mg, and Ti gradually increased, and the K/Rb ratio gradually decreased 

(15.34–159.25 to 10.13–15.23 ppm), showing a good evolution trend. This indicates that the 

degree of evolution from muscovite to zinnwaldite gradually increased and that fractional 

crystallisation was the main mechanism for the enrichment of Li, Rb, and Cs in the late 

melt phase (Figure 10f; [106]). 

 

Figure 9. Trace element box plot of mica in each stage of the Weilasituo Li–polymetallic deposit. 

Muscovite: M1YEL, M2YEL, and M2BLU; zinnwaldite: M1RED, M2RED, M3, M4. 

Figure 9. Trace element box plot of mica in each stage of the Weilasituo Li–polymetallic deposit.
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The mica composition in the breccia pipe and greisen was similar but significantly
different from that in the quartz porphyry, which may be related to large-scale fluid
exsolution. From the compositional variation of zinnwaldite in the quartz porphyry to the
crypto-explosive breccia and greisen (Figure 9), the Li, Mg, Rb, Ti, Pb, Zn, Cs, V, Co, Sr, and
Ba contents showed a significant upward trend, whereas the Fe, Be, Ga, Mn, Sc, Ta, W, and
Nb contents decreased, and the Ge, Tl, In, and Sn contents displayed no distinct change.
The Zn content of mica in quartz porphyry was low (9.16–2004 ppm), while the Zn content
of mica in the hydrothermal stage significantly increased (3099–4469 ppm). Additionally,
vein-type Zn orebodies appeared later (Figure 2B). Previous studies have shown that the
Weilasituo rock mass displays melt–fluid interactions [15,24,26], and S and Pb isotopes
indicate that some of the material originates from the surrounding rock [23,28,38,107].
Therefore, some Zn may have originated from magmatic differentiation, and some may
have originated from the surrounding rock.

Oxygen fugacity is one of the main factors affecting mica composition. As the Fe in the
structure of zinnwaldite is mostly ferrous (Fe2+), accurate measurements of Fe2+/Fe3+ are
necessary to estimate the fO2 conditions during the crystallisation process. However, the
electron probe cannot accurately measure the Fe2+/∑Fe ratio in mica, making it difficult
to determine the fO2 in mica [108]. Weilasituo mineralisation develops in a low fS2 and
high fO2 environment [14,109], with the surrounding rock providing Mg and Fe during
greisenisation through fluid–rock interactions [110]. The addition of a large amount of
Fe to the fluid leads to a wide distribution of zinnwaldites. Mica formed in an oxidised
environment is more enriched in Sc, V, and W [111], and zinnwaldite in the porphyry was
more enriched in Sc, V, and W than in muscovite. The Sc, V, and W contents of zinnwaldite
were lower than those of the porphyry. This may indicate that fO2 was higher during the
formation of the porphyry and that fO2 decreased during the Li mineralisation process.
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Pb isotopes indicate that some of the material originates from the surrounding rock 

[23,28,38,107]. Therefore, some Zn may have originated from magmatic differentiation, 

and some may have originated from the surrounding rock. 

Figure 10. Evaluation of mica chemistry: (a) Sn vs. Nb—distributions of Nb and Sn in mica are
independent. Nb (and Ta) are preferentially enriched in magmatic mica from the porphyry, while
muscovite is rich in Sn. (b) Ta vs. Nb; (c) Nb/Ta vs. Rb; (d) Sn vs. Nb/Ta; (e) W vs. Nb/Ta; (f) Mg/Li
vs. K/Rb.

6.4. Implications for Li–Polymetallic Metallogenesis

The Southern Great Xing’an Range (SGXR) has the characteristics of a large met-
allogenic period (120–270 Ma), rapid mineralisation in a short time (120–140 Ma), the
diversification of ore-forming elements (Zn-Ag-Au-Cu-Pb-Mo-W-Sn-REE-U-Fe), minerali-
sation related to intermediate-acid magmatism, and the relatively complete preservation
of the metallogenic system [112,113]. 40Ar/39Ar dating determined that the metallogenic
age (132.45 ± 0.28 Ma) of the Weilasituo breccia pipe-type Li deposit is Early Cretaceous,
which is consistent with the formation time of numerous magmatic–hydrothermal deposits
developed in the SGXR within the error range, such as the Shuangjianzishan Ag-Pb-Zn
deposit (135 Ma, [114]), Dajing Cu-Sn deposit (138.5 Ma, [112]), and Taipinggou Mo deposit
(130 Ma, [115]). Recent studies have shown that the GXR was affected only by the Paleo-
Pacific Ocean during the Early Cretaceous and was in an extensional environment [116].
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Rare metal magmas are derived from highly differentiated granitic magmas [117–122]
or the low-grade partial melting of metamorphic and sedimentary rocks [123,124]. The
enrichment of Rb and Cs in muscovite in quartz porphyry indicated that quartz porphyry
was a highly evolved granite, which confirmed the previous results of rock trace element
analysis: the quartz porphyry is a highly differentiated Li-F granite [15]. The extensive
crystallisation differentiation of granite affected the enrichment of rare metal elements,
forming rare metal magma [125,126]. The Nb/Ta ratio of the magmatic evolution differenti-
ation index showed continuous variation from muscovite (quartz porphyry) to zinnwaldite
(greisen) (Figure 10c), indicating the continuous differentiation of the initial magma. The
Al-Ti and Ge-Ti values of quartz and the Nb/Ta ratio of mica illustrate that the degree of
magmatic evolution increased gradually.

Rare metal elements (Li, Be, Rb, Cs, Nb, Ta, W, and Sn) are strongly incompatible
with granitic melts; therefore, the crystallisation separation of magma greatly increases
the content of elements in residual melts [127,128]. The mica in the quartz porphyry was
more inclined to be Li-rich, indicating that its formation environment was in a magmatic–
hydrothermal metasomatic period, and the muscovite in this process gradually evolved into
zinnwaldite, as confirmed by previous geochemical and inclusion characteristics [20,25,27].
Therefore, the enrichment from ore-forming elements to mineralisation has undergone two
processes of magma and hydrothermal fluid. The significant changes in trace elements
in the mica of the rock mass and crypto-explosive breccia are related to crystallisation
differentiation in the melt stage, crypto-explosives, and large-scale fluid dissolution. Fluid
metasomatism influences the redistribution of rare metals [129], enriching rare metal ele-
ments such as Li and Rb in large quantities to form ore-bearing fluids. The Al content and
Ge/Ti value of quartz increased, and the Ti content decreased, indicating that the tempera-
ture decrease and acidic environment may have led to Li precipitation mineralisation.

During greisenisation, the surrounding rock (Palaeoproterozoic Xilinguole Complexes)
may have provided Zn, Mg, and Fe through fluid–rock interactions, resulting in a wide
distribution of zinnwaldite and the formation of minor vein-type Zn orebodies in the later
period. Sn exists mainly as two types of ions, Sn2+ and Sn4+, which are variable-valence
elements. Therefore, the variation in fO2 had a significant influence. The high Sc, V, and
W contents of mica indicated a high-fO2 environment with Sn in the form of Sn4+. The
solubility of Sn in the melt is high [130], and Sn is enriched in the melt, with a relatively low
distribution in the fluid. The lower Sn content of the hydrothermal zinnwaldite supports
this observation. Huang [131] showed that the Sn content in late magmatic fluid depends
on the level of magmatic evolution and F content. The precipitation of fluorite in the late
stage of Li mineralisation demonstrated an increase in the F content. The vein-type Sn
orebodies may be due to an increase in late magmatic evolution and F content, which
promoted the enrichment of Sn in the hydrothermal fluid and subsequent precipitation.
Tungsten is almost unaffected by the fO2 and F contents and is related to the degree of
magmatic evolution [131]. During the mineralisation process, W in mica first increased and
then decreased, which proved that W was enriched in the fluid with highly differentiated
magma and that, subsequently, wolframite precipitation decreased the W content.

In summary, the Weilasituo Li–polymetallic deposit was formed in an Early Cretaceous
extensional environment and is closely related to the highly differentiated Li-F granite.
During magma differentiation, rare metal elements such as Li and Rb are enriched in
residual melts. The decrease in temperature and acidic environment led to the precipitation
of Li, Rb, and W, and the increased F content in the late stage led to Sn enrichment and
mineralisation. Fluid metasomatism caused Zn, Mg, and Fe from the surrounding rocks to
enter the fluid, and Zn was enriched and mineralised in the later period.
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7. Conclusions

1. As the ore-bearing mineral of the deposit, the plateau age of zinnwaldite indicates the
cooling age when the zinnwaldite was formed at 132.45 ± 1.3 Ma.

2. The Al-Ti and Ge-Ti values of quartz and the Nb/Ta ratio of mica illustrate that the
degree of magmatic evolution gradually increased and that there was continuous crys-
tallisation differentiation for the initial magma. The high Sc, V, and W characteristics
of mica indicate that it is in a high-fO2 environment, and the lower content in zin-
nwaldite indicates a slight decrease in fO2. Magmatic evolution and an increase in the
F content promoted the enrichment of W and Sn during the late hydrothermal period.

3. The continuous crystallisation differentiation of magma leads to the enrichment of ore-
forming elements such as Li and Rb in the residual magma. Fluid exsolution further
enriches the Li, Rb, and other elements in the fluid. Variations in physicochemical
conditions (T, fO2, pH, etc.), accompanied by crypto-explosions, cause the instability
of metal complexes in the fluid, leading to precipitation and mineralisation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min14060575/s1, Table S1. Ar-Ar age analysis results of zinnwaldite
in the Weilasituo lithium deposit.xlsx.; Table S2. Trace element concentration of quartz determined
by LA ICP-MS (wt.%, trace elements in ppm).xlsx.; Table S3. Trace element concentration of mica
determined by LA ICP-MS (means and standard deviations in ppm).xlsx.
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68. Breiter, K.; Ďurišová, J.; Dosbaba, M. Quartz chemistry—A step to understanding magmatic-hydrothermal processes in ore-
bearing granites: Cínovec/Zinnwald Sn-WLi deposit, Central Europe. Ore Geol. Rev. 2017, 90, 25–35. [CrossRef]

69. Lehmann, K.; Berger, A.; Götte, T.; Ramseyer, K.; Wiedenbeck, M. Growth related zonations in authigenic and hydrothermal
quartz characterized by SIMS-, EPMA-, SEM-CL- and SEM-CC-imaging. Mineral. Mag. 2009, 73, 633–643. [CrossRef]

70. Götte, T.; Pettke, T.; Ramseyer, K.; Koch-Müller, M.; Mullis, J. Cathodoluminescence properties and trace element signature of
hydrothermal quartz: A fingerprint of growth dynamics. Am. Mineral. 2011, 96, 802–813. [CrossRef]

71. Jacamon, F.; Larsen, R.B. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of
quartz as an index of igneous differentiation. Lithos 2009, 107, 281–291. [CrossRef]

72. Götze, J.; Plötze, M.; Graupner, T.; Hallbauer, D.K.; Bray, C.J. Trace element incorporation into quartz: A combined study by
ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochim. Cosmochim.
Acta. 2004, 68, 3741–3759. [CrossRef]

73. Müller, A.; Herklotzc, G.; Gieglingc, H. Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit,
Eastern Erzgebirge, Germany. J. Geochem. Explor. 2018, 190, 357–373. [CrossRef]

74. Mao, W.; Rusk, B.; Yang, F.C.; Zhang, M.J. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China:
Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz. Econ. Geol. 2017, 112, 889–918. [CrossRef]

75. Götze, J. Chemistry, textures and physical properties of quartz-geological interpretation and technical application. Mineral. Mag.
2009, 73, 645–671. [CrossRef]

76. Götze, J.; Plötze, M.; Trautmann, T. Structure and luminescence characteristics of quartz from pegmatites. Am. Mineral. 2005,
90, 13–21. [CrossRef]

77. Czamanske, G.K.; Roedder, E.; Burns, F.C. Neutron activation analysis of fluid inclusions for copper, manganese, and zinc. Science
1963, 140, 401–403. [CrossRef]

78. Bian, Y.B.; Zou, S.H.; Xu, D.L.; Chen, X.L.; Deng, T.; Wan, T.A.; Li, B. Research Progress on Textural and Trace Element
Characteristics of Quartz and its Application in Magmatic-Hydrothermal Deposits. Geotecton. Metallog. 2023, 47, 407–427.
(In Chinese with English abstract)

79. Rottier, B.; Casanova, V. Trace element composition of quartz from porphyry systems: A tracer of the mineralizing fluid evolution.
Miner. Depos. 2021, 56, 843–862. [CrossRef]

80. Naumov, G.B.; Mironova, O.F.; Saveleva, N.I.; Danilova, T.V. Concentration of uranium in hydrothermal solutions obtained from
investigations of fluid inclusions. Dokl. Akad. Nauk SSSR 1984, 279, 1486–1488.

81. Rusk, B.G.; Lowers, H.A.; Reed, M.H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and
insights into vein formation. Geology 2008, 36, 547–550. [CrossRef]

82. Lehmann, K.; Pettke, T.; Ramseyer, K. Significance of trace elements in syntaxial quartz cement, Haushi Group sandstones,
Sultanate of Oman. Chem. Geol. 2011, 280, 47–57. [CrossRef]

83. Breiter, K.; Müller, A. Evolution of rare-metal granitic magmas documented by quartz chemistry. Eur. J. Mineral. 2009, 21, 335–346.
[CrossRef]

84. Monnier, L.; Lach, P.; Salvi, S.; Melleton, J.; Bailly, L.; Béziat, D.; Monnier, Y.; Gouy, S. Quartz trace-element composition by
LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite
(Echassières district), France. Lithos 2018, 320, 355–377. [CrossRef]

85. Müller, A.; Herrington, R.; Armstrong, R.; Seltmann, R.; Kirwin, D.J.; Stenina, N.G.; Kronz, A. Trace elements and cathodolumi-
nescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Miner. Depos. 2010, 45, 707–727. [CrossRef]

86. Fu, S.L.; Lan, Q.; Yan, J. Trace element chemistry of hydrothermal quartz and its genetic significance: A case study from the
Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geol. Rev. 2020, 126, 103732. [CrossRef]

https://doi.org/10.1016/S0098-3004(01)00095-4
https://doi.org/10.1016/j.gca.2011.06.021
https://doi.org/10.1016/j.gca.2010.06.017
https://doi.org/10.1016/j.chemgeo.2008.08.004
https://doi.org/10.1111/j.1751-908X.2014.00309.x
https://doi.org/10.1016/j.oregeorev.2017.10.013
https://doi.org/10.1180/minmag.2009.073.4.633
https://doi.org/10.2138/am.2011.3639
https://doi.org/10.1016/j.lithos.2008.10.016
https://doi.org/10.1016/j.gca.2004.01.003
https://doi.org/10.1016/j.gexplo.2018.04.009
https://doi.org/10.2113/econgeo.112.4.889
https://doi.org/10.1180/minmag.2009.073.4.645
https://doi.org/10.2138/am.2005.1582
https://doi.org/10.1126/science.140.3565.401
https://doi.org/10.1007/s00126-020-01009-0
https://doi.org/10.1130/G24580A.1
https://doi.org/10.1016/j.chemgeo.2010.10.013
https://doi.org/10.1127/0935-1221/2009/0021-1907
https://doi.org/10.1016/j.lithos.2018.09.024
https://doi.org/10.1007/s00126-010-0302-y
https://doi.org/10.1016/j.oregeorev.2020.103732


Minerals 2024, 14, 575 21 of 22

87. Breiter, K.; Ackerman, L.; Svojtka, M.; Mueller, A. Behavior of trace elements in quartz from plutons of different geochemical
signature; a case study from the bohemian massif, czech republic. Lithos 2013, 175–176, 54–67. [CrossRef]

88. Hayden, L.A.; Watson, E.B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon.
Earth Planet. Sci. Lett. 2007, 258, 561–568. [CrossRef]

89. Drivenes, K.; Larsen, R.B.; Müller, A.; Sørensen, B.E. Crystallization and uplift path of late Variscan granites evidenced by quartz
chemistry and fluid inclusions: Example from the Land’s End granite, SW England. Lithos 2016, 252–253, 57–75. [CrossRef]

90. Beurlen, H.; Müller, A.; Silva, D.; Silva, M.R.R.D. Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the
Borborema pegmatite province, northeast Brazil. Mineral. Mag. 2011, 75, 2703–2719. [CrossRef]

91. Müller, A.; Ihlen, P.M.; Snook, B.; Larsen, R.B.; Flem, B.; Bingen, B.; Williamson, B.J. The chemistry of quartz in granitic pegmatites
of southern Norway: Petrogenetic and economic implications. Econ. Geol. 2015, 110, 1737–1757. [CrossRef]

92. Müller, A.; Koch-Müller, M. Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz
from Norway. Mineral. Mag. 2009, 73, 569–583. [CrossRef]

93. Larsen, R.B.; Henderson, I.; Ihlen, P.M.; Jacamon, F. Distribution and petrogenetic behaviour of trace elements in granitic
pegmatite quartz from South Norway. Contrib. Mineral. Petrol. 2004, 147, 615–628. [CrossRef]

94. Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.;
Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–65.

95. Han, J.Z.; Gao, S.X.; Wang, Q.; Meng, Y.; Bi, S.D. Application of Mica Chemical Composition in the Study of Metallogenic
Mechanism. Nonferrous Met. Des. 2023, 50, 122–126. (In Chinese with English abstract)

96. Alfonso, P.; Melgarejo, J.C.; Yusta, I.; Velasco, F. Geochemistry offeldspars and muscovite in granitic pegmatite from the Cap de
Creusfield, Catalonia, Spain. Can. Mineral. 2003, 41, 103–116. [CrossRef]
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