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Abstract: This paper reviews the phosphate phases in meteorites and those measured by landed
spacecraft, what they reveal about past igneous and aqueous conditions on Mars, and important
implications for potential prebiotic chemistry, past habitability, and potential biosignatures that could
be detected in samples returned from Mars. A review of the 378 martian meteorites as of 2023 indicate
that of the two most common phosphate minerals in Mars meteorites, merrillite and apatites, the
apatite composition is largely F- and Cl-rich, with shergottites containing more OH. The phosphate
concentrations examined across multiple missions show a relatively narrow range of phosphate, with
higher concentrations observed in the Mount Sharp Group in Gale crater and Wishstone at Gusev
crater and lower concentrations observed at Jezero crater floor and Jezero fan. Possible secondary
phosphates detected on Mars, including Fe phosphates at Jezero crater and Gusev crater and Ca-
and Al-bearing secondary phosphates, temperatures of formation of secondary phases and their
dissolution rates and solubilities are reviewed and summarized. Despite this wealth of information
about phosphates on Mars, due to their fine scale and relatively low concentrations, Mars Sample
Return is needed to better understand phosphate and its implications for the igneous, aqueous, and
astrobiological history of Mars.

Keywords: phosphate; Mars; astrobiology; habitability; biosignatures; Mars Sample Return

1. Introduction

Phosphate is an essential chemical component of life on Earth, used in ATP for energy
storage, in DNA and RNA for the structure of heredity transmission, and in phospholipid
membranes for enclosing cells and their organelles [1]. Phosphate is also suggested to
be essential in the prebiotic formation of RNA on Earth [2] and is the most common
limiting nutrient on Earth [3–6]. Phosphate can be used as an important indicator of past
life on Earth, with phosphate depletion both acting as a biosignature in paleosols [7,8]
as well as phosphate minerals encrusting microbial cells [9–11]. Phosphates have been
previously suggested as important targets for sample collection on Mars [12,13], and in the
astrobiological study of Mars, examination of phosphate is therefore critical.

Increasing the importance of phosphate to the study of Mars, Mars is approximately
8 times richer in phosphate than Earth [14,15]. Igneous phosphate-bearing minerals includ-
ing apatite [16], chlorapatite [17–19], and merrillite [18,19] are present in Mars meteorites
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and provide critical information about past volatile conditions, melt evolution, and crys-
tallization on that planet [20–29]. As an incompatible element, phosphorus is variably
enriched in martian magmas by igneous processes [30], and igneous phosphates commonly
occur among late-stage crystalline assemblages. Igneous phosphates therefore can provide
important information regarding the igneous history of Mars.

Phosphate minerals can also be indicators of previous aqueous activity on Mars [31–34].
Little phosphorus enters the gas phase at the conditions of the martian surface and atmo-
sphere [5], so its distribution near the martian surface reflects interactions between rock and
aqueous fluids. These interactions vary according to temperature, pH, oxidation state (Eh),
water chemistry, water–rock ratio, and time. Phosphate from solution can form crystalline
phosphate minerals (mostly hydrated), substitute as a trace structural component into
other minerals, be incorporated into amorphous materials, and be adsorbed onto mineral
surfaces. Each of these phosphate-containing products has the potential to preserve the
physical and chemical conditions under which they formed. Hundreds of phosphate min-
erals have been found and described on Earth [35], the vast majority of which form in
very specific geologic environments or settings, making these secondary minerals excellent
indicators of formation conditions. Thus, similar to the way in which igneous minerals
can serve as important indicators of mantle or magma volatiles and melt evolution, the
aqueous alteration of igneous phosphate minerals is a critical recorder of past aqueous
conditions on Mars.

The many spacecraft missions to Mars have now provided data allowing for the
detection and inference of multiple phosphate minerals on the martian surface (Table 1).
The Sojourner rover on Mars Pathfinder provided the first detections of phosphorus on
Mars [36,37]. The subsequent MER rovers Spirit and Opportunity detected phosphorus in
widely varying abundances in Gusev crater and Meridiani Planum, respectively [38–40]
Instruments on the Mars Science Laboratory (MSL) rover Curiosity have provided both
phosphorus abundances and X-ray diffraction detections of phosphate minerals in Gale
crater [41–45]. With the landing of the Mars 2020 Perseverance rover in Jezero crater, mi-
croscale chemical, textural, and inferred mineralogical data are available for the first time
for phosphate minerals on Mars. Perseverance’s samples, collected and cached for potential
return to Earth [46–48], will provide unprecedented new information about phosphate
phases on Mars.

Table 1. A summary of phosphate minerals that have been detected or inferred on Mars.

Name Formula Type a Basis b Ref. Bio Ref.

Anapaite Ca2Fe(PO4)2·4H2O S Met [49]

Brushite CaPO3(OH)·2H2O S Inf [50,51] [52–54]

Chlorapatite Ca5(PO4)3Cl I Met [19,50,55,56] [57]

Collinsite Ca2(Mg,Fe)(PO4)2·2H2O S Met [49]

Ferristrunzite Fe3+Fe3+
2(PO4)2(OH)3·5H2O S Inf [58]

Fluorapatite Ca5(PO4)3F I,M,S Met/
Mars [41,42,59–64] [65,66]

Giniite Fe2+Fe3+
4(PO4)3(OH)5·2H2O S Inf [58,67–69] [70]

hydroxyapatite Ca10(PO4)6(OH)2 I,M,S Met [64,71] [72,73]

Holtedahlite Mg2(PO4)(OH) S Met [49,74]

Jahnsite group
(Ca,Mn,Na)(Fe,Mn,Mg)

(Fe,Mn,Mg)2
(Fe3+)2(PO4)4(OH)3·8H2O

S Inf [75–77]
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Table 1. Cont.

Name Formula Type a Basis b Ref. Bio Ref.

Keplerite Ca9(Ca0.5□ 0.5)Mg(PO4)7 I,M-Sh Met [78,79]

Laueite Mn2+Fe3+
2(PO4)2(OH)2·8H2O S Inf [44]

Merrillite Ca9(Na,Mg)(PO4)7 I,M-Sh Met [19,39,50,55,80] [31,74,81]

Metavivianite Fe2+Fe3+
2(PO4)2(OH)2·6H2O S Inf [34]

Monetite Ca(HPO4) S Inf [50] [81,82]

Monazite REE(PO4) I Met [56]

Strengite FePO4·2H2O S Inf [58]

Strunzite Mn2+Fe3+
2(PO4)2(OH)2·6H2O S Inf [44]

Tuite γ-Ca3(PO4)2 M-Sh Met [83,84]

Variscite AlPO4·2(H2O) S Inf [85,86] [87]

Vivianite Fe3(PO4)2·8H2O S Inf [34,88,89] [90]

Whitlockite Ca9(Fe,Mg)HPO4(PO4)6 S, I Inf [50,80] [91]

Xenotime REE(PO4) I Met [92,93]
NOTE: □ = site vacancy. a. For Type, I = igneous and/or primary; S = secondary mineral; M = metamor-
phosed or metasomatic; M-Sh = shock-metamorphosed/altered mineral. b. Basis of relevance to Mars, where
Met = observed in martian meteorites, Mars = identified on Mars, Inf = inferred or theorized on the basis of direct
Mars measurement, Mars meteorites, or Mars-relevant experimental data. For a more specific basis of Mars
detection and biological occurrences, please see Table S1.

Thus, a comprehensive review of Mars’ phosphorus distribution and phosphate
mineralogy is timely in helping understand the planet’s astrobiological potential, aqueous
history, and phosphorus cycle and availability. In this review, we examine five aspects
of phosphate on Mars: (i) Igneous phosphates; (ii) summaries of phosphate observations
from the MER and MSL and (iii) Mars2020 rovers; (iv) phosphates as aqueous indicators,
including leaching, sorption, and formation of secondary phases; and (v) the astrobiological
implications of phosphate, including its implications for Mars Sample Return.

2. Meteorite Summary and Mineral Assemblages

Meteorites from Mars were first identified in the early and mid-1980s, e.g., [94]. By
the mid-1990s, nearly a dozen meteorites had been confirmed as martian [95,96]. As of the
end of 2023, over 378 martian meteorites have been identified [97]. They are principally
recognized as martian based on the identification of trapped martian atmospheric gasses
in shock-melted glasses, as well as multiple additional lines of evidence, including their
oxygen isotopic compositions, the Fe/Mn ratios in mafic minerals, REE fractionations,
and their late crystallization ages, all consistent with their origin from a large, recently
active planetary body [94,98–100]. All but one martian meteorite are mafic to ultramafic
igneous rocks and are broadly classified into five main groups, including shergottites
(basalts, gabbros, and diabases), nakhlites (clinopyroxenites), chassignites (dunites), and
orthopyroxenite Allan Hills (ALH) 84001 [99,100]. The fifth group comprises the regolith
breccia meteorite Northwest Africa (NWA) 7034 and its pairs, which are composed mostly
of basaltic fragments [99–102]. Like all meteorites, the martian meteorites have each expe-
rienced various amounts of shock and shock alteration from the impacts that eventually
delivered them to Earth. Nonetheless, at this time, these meteorites represent the only
martian samples here on Earth.

Phosphate minerals are described as minor minerals (<10% vol.) in martian meteorites
but are ubiquitous across all known samples [25,27,29,64]. Merrillite and apatite are by
far the most common phosphates; they are igneous in origin and typically occur as mi-
nor, late-stage phases included in, or interstitial to, mesostasis, feldspar, or maskelynite
(shock-produced feldspar glass) (Figure 1) [25,27,29]. In rare occurrences, the high-pressure
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phosphate mineral tuite (γ-Ca3(PO4)2) has been identified in highly shocked martian mete-
orites associated with impact-produced melt pockets and veins (i.e., [83,84]. Finally, rare
grains of monazite and several other REE phosphates have been discovered as inclusions
in apatite in the basaltic regolith breccia meteorites [92].
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Figure 1. Backscattered electron images of apatite and merrillite in martian meteorites. (A) Inter-
grown merrillite (Merr) and apatite (Ap) associated with maskelynite (Msk) and late-stage minerals,
including ilmenite (Ilm), titanomagnetite (Tmt), and pyrrhotite (Po) in shergottite RBT 04261 (adapted
from [25]). (B) Subhedral apatite (Ap) associated with clinopyroxene (Cpx), maskelynite (Msk), and
late-stage pyroxferroite breakdown products (Pb) in shergottite Los Angeles (adapted from [25]).
(C) Apatite (Ap) inclusions in Ca-rich clinopyroxene rims in shergottite Shergotty (adapted from [25]).
(D) Anhedral apatite (Ap) associated with alkali-rich maskelynite (Ak-msk) and olivine (Ol) in
chassignite NWA 2737 (adapted from [27]). (E) Apatite (Ap) rimming merrillite (Merr) in the matrix
of regolith breccia NWA 7034 (adapted from [29]). (F) Anhedral merrillite (Merr) intergrown with
carbonate (Carb) and apatite (Ap) in orthopyroxenite ALH 84001 (Opx = orthopyroxene) (adapted
from [20]).

2.1. Merrillite

Merrillite is the most common phosphate mineral in martian meteorites and is 2–3×
more abundant than apatite in depleted shergottites [19,25,29,31,80]. Merrillite is a volatile-
free phosphate (Ca9Na[Fe,Mg][PO4]7), technically classified as ferromerrillite when Fe > Mg
(ideal end-member formula Ca9NaFe[PO4]7; [103]), and forms a solid solution with the
H-bearing phosphate mineral whitlockite on Earth (Ca9[Fe,Mg][HPO4][PO4]6) [104]. Whit-
lockite has not yet been identified on Mars, in martian meteorites, or in any extraterrestrial
material to date (although in the past, merrillite was commonly incorrectly identified
as whitlockite in meteorites, before differences in the H contents and crystal structures
between the two minerals were discovered [104–107]). While merrillite is the dominant
phosphate phase in depleted shergottites and the orthopyroxenite ALH 84001, it is gener-
ally considered an extraterrestrial mineral, and it has only been identified on Earth within
mantle xenoliths from Siberia, Russia [108], potentially as inclusions in lower-mantle di-
amond [109], or as a minor solid solution with whitlockite [104,110]. In contrast to the
primary nature of merrillite and its prevalence in extraterrestrial and martian materials,
whitlockite is rare on Earth and is generally found as a hydrothermal phase in association
with pegmatites or as a biomineral in bones [104,111].
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While merrillite is generally abundant across the shergottite martian meteorites and
in ALH 84001, it is absent in nakhlites and chassignites (which only contain apatite) and
is only rarely observed in the polymict breccias when intergrown with or rimmed by
apatite [25,27,29]. Where present in shergottites and ALH 84001, merrillite can be observed
in a variety of textural occurrences and is typically associated with late-stage minerals and
mesostasis [18,25,26,29]. It is also commonly intergrown with apatite, rimmed by apatite, or
contains apatite inclusions. In orthopyroxenite ALH 84001, igneous merrillites are observed
in close association with secondary carbonates [18]. Merrillite in martian meteorites ranges
in size from 10 µm up to several hundreds of µm, occurring in a variety of forms, from
euhedral pseudo-hexagonal crystals to irregular anhedral shapes [18,25,26,29].

2.2. Apatite

Apatite (Ca5(PO4)3(Cl, F, OH)) is a minor phase in the majority of martian meteorites
and can be observed in a variety of textural occurrences. Martian apatites are generally
enriched in Cl in comparison to igneous apatites on Earth [22]. Their volatile compositions
can vary significantly within a single meteorite, but some broad compositional trends in
OH, F, and Cl can be used to distinguish between apatites within various martian meteorite
groups (Figure 2). Apatites within shergottites show the most variability in OH, F, and Cl;
apatites in the polymict breccias are notably rich in Cl; and apatites within the nakhlites
and chassignites contain little OH and variable F:Cl compositions [18,20,25,27,28,112]. The
apatite in orthopyroxenite ALH 84001 exhibits substantial variability in its F, Cl, and OH
abundances on a grain–grain basis in the sample [20].

In shergottites, apatite commonly occurs as discrete grains and/or intergrowths, with
merrillite associated with typical late-stage phases like Fe-oxides, sulfides, K-rich feldspar,
etc., located within mesostasis material [25,29]. More rarely, subhedral to euhedral apatites
are present as inclusions within Ca-rich pyroxene rims (in the Shergotty meteorite) or as
small (<10 µm) patchy anhedral growths on the rims of merrillite and pyroxenes (possibly
formed through rock–fluid interactions) [25]. While precise modal abundance estimates
for apatite minerals in shergottites are not widely available, it is generally known that
apatite typically occurs in higher abundances in incompatible trace element (ITE)-enriched
shergottites relative to ITE-depleted shergottites [25]. In the chassignites, apatite is present
in their intercumulus mesostases and within olivine-hosted melt inclusions [16,27,28]. The
apatite grain sizes and shapes vary significantly within the chassignites (<1 to 40 µm in the
shortest dimensions and grain shapes from euhedral to anhedral [16,27,28]).

In the nakhlites, three main populations of apatite have been identified based on
their textural associations and chemical compositions, including (i) apatites associated
with maskelynite and titanomagnetite (sometimes as discrete inclusions within titano-
magnetites), with high Cl concentrations and limited F:Cl ratio variability; (ii) apatites
associated with late-stage mesostasis material, as equant grains with highly variable F:Cl
ratios; and (iii) highly acicular F-rich apatites occurring within mesostasis with limited F:Cl
ratios [21,27]. These three apatite populations in the nakhlites are thought to have resulted
from the crystallization of Cl-rich magmas that reached saturation in a Cl-rich fluid that
was lost during ascent and/or eruption [21,27].

In the polymict regolith breccia meteorites, apatite is found within the majority of the
polymineralic clasts and as discrete grains throughout the matrix [113,114]. The largest
apatite grains (~100 s of µm) occur as anhedral grains in the coarser-grained igneous clasts
associated with orthoclase, plagioclase, and ilmenite (known as monzonite or Fe-Ti-P-rich
(FTP) clasts; [102,114]). Although apatite exists in multiple textural domains within the
polymict regolith breccia, they are all rich in Cl and exhibit somewhat limited variability
in their F:Cl:OH ratios (Figure 2). Moreover, the ages of the apatite grains are all within
uncertainty of ~1.5 Ga [113,115]. In fact, apatite yielding an age of 1.5 Ga coexists in an
igneous lithic clast that hosts zircons that exhibit an age of ~4.4 Ga [113]. These three
observations all support the hypothesis that the polymict regolith breccia underwent
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hydrothermal alteration by Cl-rich crustal fluids at ~1.5 Ga that reset some of the mineral
chronometers and altered the volatile abundances of apatite [20,92,113,115].

2.3. Tuite

The high-pressure phosphate mineral tuite is found in highly shocked martian mete-
orites [83,84]. It typically occurs as minute grains (~1–3 µm in size) associated with impact
melt glasses and shock veins [83,84]. Tuite can form after either apatite or merrillite is
subjected to high-pressure and temperature impact events and has been synthesized at
12–15 GPa and 1100–2300 ◦C [116,117]. As such, the presence of tuite in meteorites can be
used to constrain the pressure and temperature conditions the sample has experienced
during impact events.

REE Phosphates

Rare REE-rich phosphate phases, including monazite ([LREE]PO4) and xenotime
(YPO4), have been observed in the martian regolith breccia meteorites (NWA 7034 and
pairs; [92]). Monazite has been observed in the breccias as clusters of minute inclu-
sions within isolated apatite grains (Ce-monazite) and as sub-micrometer crystals (Ce,Nd-
monazite) intergrown with REE-rich silicates in a trachyandesite clast [92]. Xenotime has
been reported in a unique occurrence, associated with alteration materials in a unique
pyrite–ilmenite–zircon-bearing clast [92]. The zircon in this clast is hydrothermally altered,
and as such, alteration is inferred to be the most likely source of Y and HREE to form
xenotime [92].

Minerals 2024, 14, 591 6 of 34 
 

 

apatite grains (~100 s of µm) occur as anhedral grains in the coarser-grained igneous clasts 
associated with orthoclase, plagioclase, and ilmenite (known as monzonite or Fe-Ti-P-rich 
(FTP) clasts; [102,114]). Although apatite exists in multiple textural domains within the 
polymict regolith breccia, they are all rich in Cl and exhibit somewhat limited variability 
in their F:Cl:OH ratios (Figure 2). Moreover, the ages of the apatite grains are all within 
uncertainty of ~1.5 Ga [113,115]. In fact, apatite yielding an age of 1.5 Ga coexists in an 
igneous lithic clast that hosts zircons that exhibit an age of ~4.4 Ga [113]. These three ob-
servations all support the hypothesis that the polymict regolith breccia underwent hydro-
thermal alteration by Cl-rich crustal fluids at ~1.5 Ga that reset some of the mineral chro-
nometers and altered the volatile abundances of apatite [20,92,113,115]. 

2.3. Tuite 
The high-pressure phosphate mineral tuite is found in highly shocked martian mete-

orites [83,84]. It typically occurs as minute grains (~1–3 µm in size) associated with impact 
melt glasses and shock veins [83,84]. Tuite can form after either apatite or merrillite is 
subjected to high-pressure and temperature impact events and has been synthesized at 
12–15 GPa and 1100–2300 °C [116,117]. As such, the presence of tuite in meteorites can be 
used to constrain the pressure and temperature conditions the sample has experienced 
during impact events. 

REE Phosphates 
Rare REE-rich phosphate phases, including monazite ([LREE]PO4) and xenotime 

(YPO4), have been observed in the martian regolith breccia meteorites (NWA 7034 and 
pairs; [92]). Monazite has been observed in the breccias as clusters of minute inclusions 
within isolated apatite grains (Ce-monazite) and as sub-micrometer crystals (Ce,Nd-mon-
azite) intergrown with REE-rich silicates in a trachyandesite clast [92]. Xenotime has been 
reported in a unique occurrence, associated with alteration materials in a unique pyrite–
ilmenite–zircon-bearing clast [92]. The zircon in this clast is hydrothermally altered, and 
as such, alteration is inferred to be the most likely source of Y and HREE to form xenotime 
[92]. 

 
Figure 2. Ternary plot of apatite X-site components (mol%) from all martian meteorite types from 
the literature, including shergottites [24,25,112,118–125], chassignites [16,27,28,126], nakhlites 

Figure 2. Ternary plot of apatite X-site components (mol%) from all martian meteorite types from the
literature, including shergottites [24,25,112,118–125], chassignites [16,27,28,126], nakhlites [21,27,127],
regolith breccia [25,92,113–115,128], and cumulate orthopyroxenite [20,129]. The OH component was
calculated based on 1 – F – Cl = OH. All data plotted in the ternary are tabulated in Table S2.

3. Phosphate Detections and Analyses from Spacecraft Missions
3.1. Early Missions

Viking: The Viking lander reported chemical compositions but did not report P con-
centrations because they were not detectable by the XRF instrument [130–133]. Pathfinder:
The first chemical results from Pathfinder [37] did not report phosphorus concentrations.
Recalibrated data using a laboratory spare instrument in a Mars-like chamber gave P con-
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centrations that ranged from 0.4 to 0.7 weight percent for rocks and from 0.3 to 1.2 weight
percent for soils [134,135]. Phoenix: Chemical analysis capabilities of the Phoenix mission
were dominantly in its Wet Chemistry Laboratory (WCL), which was designed to detect
common water-soluble cations and anions, including the cations K+, Na+, NH4

+, Ca2+, and
Mg2+ and the anions Cl−, Br−, I−, NO3

−/ClO4
−, and SO4

2− [136]. The WCL could not
detect phosphate.

3.2. Spirit

The Mars Exploration Rover (MER) Alpha Particle X-ray Spectrometer (APXS) gen-
erated the first P concentrations for martian rocks and soils in situ during the mission
timeline. In Gusev crater, the rover Spirit’s APXS found high concentrations of P (~5 wt.%
P2O5) with low Cr (below detection) in Wishstone-class rocks (i.e., Wishstone and Cham-
pagne) [38,39,51]. Watchtower rock has been suggested to be related to the Wishstone-class
rocks, perhaps as a product of aqueous alteration [51,137]. Post-grind analyses of both
Watchtower and Wishstone resulted in an increase in both P2O5 and CaO compared to
pre-grind [50,51,137,138]. To explain this observation, it has been proposed that a phos-
phate mineral might have been lost from the surface due to dissolution [50,55]. Lacking
direct mineralogical data, several phases are possible. Hurowitz et al. [137] suggested
merrillite, monetite, or brushite; Ming et al. [51] proposed apatite, brushite, or strengite,
an Fe phosphate phase; Adcock and Hausrath’s [55] reactive transport modeling results
are consistent with the presence of multiple Ca phosphate minerals in Wishstone-class
rocks (i.e., merrillite and apatite); and Ruff et al. [139] suggested wavellite, an Al phosphate
phase, for Watchtower.

Ferric iron phosphate minerals have been proposed for several Spirit targets. For the
extensively hydrothermally altered, sulfate-rich soil of the Paso Robles target, the suggested
phosphate minerals include strengite, ferristrunzite, and ferrian giniite [58,140].

3.3. Opportunity

Rocks at Meridiani Planum contain abundant P [141], which has been attributed to
the presence of soluble phosphates [40]. Localized phosphate enrichment of up to 2.44%
is also associated with high Mn and S levels at Endeavor crater, suggesting mobility in
sulfate-rich fluids [142]. More recently, examination of the P levels and P:Ti ratios indicate
that they are similar to the levels and ratios in martian basalts, which has been interpreted
as immobilization of the phosphate in secondary Fe and Al phosphate phases, such as the
Fe phosphate ferrian giniite [69]. Additionally, Pinnacle Island exhibited high Mn and P
contents in the APXS target “Jelly Donut”, associated with alteration coatings [142].

3.4. Curiosity

Since landing on 5 August 2012, the Mars Science Laboratory (MSL) rover Curiosity
has been exploring rocks in Gale crater, including the layered sedimentary units making up
Aeolis Mons (informally known as Mount Sharp) at its center. The Chemistry and Miner-
alogy Instrument (CheMin) X-ray diffractometer provides direct detections of phosphate
minerals, and chemical analyses by both APXS and ChemCam LIBS provide evidence for
phosphate-containing minerals and amorphous material.

Fluorapatite is present in many Gale crater rocks, directly detected by CheMin and
indirectly by chemical analyses. At the time of writing this paper, Curiosity has drilled and
analyzed a total of 40 samples. As previously reported, 36 of the samples were analyzed by
CheMin, and 10 contained fluorapatite at >~2% weight [42,143]. Several chemical analyses
by ChemCam LIBS show detections and levels of F and Ca consistent with fluorapatite [144],
and a few APXS analysis targets (Nova, Rucker, and Waternish) are sufficiently enriched
in Ca and P to suggest the presence of apatite [143]. The preservation of fluorapatite
through erosion, deposition, and diagenesis in Gale crater suggests that the local chemical
environments were not highly acidic, nor moderately acidic for long durations [145,146].
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The rocks in Gale crater contain significant proportions of X-ray-amorphous materi-
als [147–150], which likely contain phosphorus. The samples analyzed by CheMin and
APXS contain ~0.5–2.1 wt.% P2O5, even those with no detectable fluorapatite [151]. That
phosphorus is likely contained in phases (including fluorapatite) at abundances below
CheMin’s detection limit and in amorphous materials [42,62,146].

The rocks of Gale crater experienced a wide range of diagenetic processes [152], and
some of these involved significant mobility of phosphorus with iron, manganese, and/or
magnesium [151,153]. Veinlets and coatings rich in P and Fe-Mn-Mg are present across
much of Gale’s sediments, including mostly mudstones and siltstones [41,153,154]. A
unique example of Mn-Fe-Mg phosphate diagenesis is the Groken rock in the Knockfarril
Hill member of the Murray Formation [44]. There, centimeter-scale dark diagenetic nodules
are calculated to contain more than 18 wt.% P2O5, presumably as phosphate, charge-
balanced by Mn, Fe, and Mg. No X-ray diffraction data on the nodules were acquired, but
Treiman et al. [44] proposed that the nodules were originally manganoan vivianite, a ferrous
phosphate, and their current bulk compositions reflect its alteration into laueite or strunzite,
which are ferric manganous phosphates. Thermodynamic modeling suggests that the
nodules now might be more oxidized still, as with a manganic oxide mineral (e.g., MnO2)
and strengite, a ferric phosphate [44,155]. Other secondary phosphate minerals proposed
for martian rocks include Al phosphate sulfate minerals, based on field analog work and
phosphate enrichment in sulfate minerals in Gale crater [156,157]. Berger et al. [151] also
document relatively consistent P2O5 concentrations (0.88 ± 0.22 wt.%), as measured by
Curiosity’s APXS, in the basaltic Sheepbed member the Stimson formation (not including
the altered haloes) and alkali-rich sedimentary units. The fluvio-lacustrine mudstone and
sandstone of the Mt. Sharp group, a volatile-rich, altered basalt sedimentary sequence, is
enriched in P2O5 (0.99 ± 0.28 wt.%) relative to martian basalt (~0.8 wt.%); the enrichment
mechanism(s) is (are) not well constrained. Among the Gale bedrock targets, localized
diagenetic features in the Murray and Carolyn Shoemaker formations, Stimson fracture
haloes, and the Amboy and Kern Peak targets in the remarkable Garden City vein complex
contain elevated phosphate [41,151,158,159]. Phosphate enrichment in the veins of the
Stimson formation’s sandstone is attributed to a potential Fe phosphate mineral [41] and/or
sorption [160].

3.5. Mars 2020 PIXL

The Mars 2020 rover “Perseverance” landed on the floor of Jezero crater (an ancient
impact crater with a ~45 km diameter that once contained a lake [161]) on 18 February
2021 and has since traversed over 20 km across the crater’s floor and western fan. Through-
out this mission, phosphate minerals in Jezero crater have been detected using several
instruments, including SuperCam [162,163], SHERLOC [164] and PIXL [34,165–167]. The
high-resolution chemical and textural data provided by PIXL are particularly useful in
identifying and characterizing phosphate minerals, which typically form small, rare grains
(i.e., Figure 1; [18,25,26,29]).

The Planetary Instrument for X-ray Lithochemistry (PIXL) is a scanning X-ray fluo-
rescence (XRF) spectrometer which collects the elemental compositions of spots ~120 µm
in diameter and typically is used to produce element abundance maps at that spatial res-
olution [168]. At the time of writing, Perseverance has analyzed over 25 outcrops with
PIXL [167,169,170]. Phosphate minerals (defined as PIXL XRF analysis points with P2O5
>5 wt.%; [34,165,166]) have been identified in almost all targets to date.

In most rocks in which phosphates have been identified, the PIXL analyses show a
positive correlation between the abundance of P2O5 and CaO, indicating that Ca phosphate
minerals dominate the rocks’ P budgets [167]. However, Fe phosphate grains were found
in the Onahu conglomerate in Jezero crater’s western fan [34]. The grains of phosphate
minerals are typically smaller than PIXL’s spot size (~120 µm), so phosphate mineral
stoichiometry (e.g., Ca:P and Fe:P ratios) must be inferred from the chemical mixing trends
between phosphates and the surrounding silicates [34,165–167].
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Using the chemical and textural information collected by PIXL, the phosphate minerals
across Jezero crater can be grouped into four main occurrences (Figure 3):

1. Igneous phosphate minerals observed within or interstitial to mesostasis/feldspar
and adjacent to other late-stage phases such as Fe-Ti oxides [165,167]. The Ca:P (molar)
ratios and mixing trends in the igneous rocks on the Jezero crater floor are consistent
with apatite and merrillite. Merrillite is dominant in the olivine cumulate rocks of
the Séítah formation [167], while the highly evolved basalts of the Maaz formation
contain apatite and merrillite [165]. However, it should also be noted that merrillite
and apatite are commonly intergrown in igneous martian meteorites at length scales
below PIXL’s spot size (i.e., [25,29]; Figure 1).

2. A phosphate phase with Ca:P (molar) = ~1 was detected in the igneous rocks of the
crater floor, associated with altered olivine, Cl-rich alteration, and mesostasis [165].
Sediments of the Jezero fan also contain rare grains of this mineral. It is likely a
secondary phase, possibly brushite [165,166].

3. Detrital phosphate minerals in the sedimentary rocks of the Jezero fan. Stoichiome-
try (e.g., Ca:P ratios) from mixing trends are consistent with apatite and merrillite,
suggesting that the grains might be from igneous source rocks [166].

4. Blue/green Fe phosphates have been identified in the conglomerate outcrop (Onahu)
within the western fan of Jezero crater. These Fe phosphates have an Fe:P ratio
and color consistent with those of vivianite (Fe3[PO4]·2H2O; although the exact Fe
phosphate phase is not certain at this time) and occur in the matrix surrounding clasts
of Fe-Mg silicate minerals [34].
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Figure 3. PIXL Red/Green/Blue (RGB) maps of P2O5, FeO, and CaO, respectively, highlighting
occurrences of Ca phosphates in pink and Fe phosphates in yellow. White bars represent ~2 mm
scale bars for each image. (A) Igneous merrillite in the Séítah abrasion patch Dourbes located within
the mesostasis (meso) between cumulus olivine (Ol) and pyroxene (Px). (B) Detrital monomineralic
apatite (Mono-Ap) in the Thornton Gap abrasion patch within the delta. (C) Fe phosphates in the
Ouzel Falls abrasion patch within the Onahu conglomerate outcrop within the delta, and a close-up
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of a WATSON image showing the blue/green color of the Fe phosphates (WATSON im-
age: SI1_0789_0736995354_613FDR_N0390926SRLC000 36_000095J01.IMG, enhanced with 1% con-
trast stretch).

3.6. Global Observations from Mars Missions

Across multiple missions, the concentrations of phosphate are largely consistent
(Figure 4). The highest concentrations plotted are in the Wishstone rocks of Gusev crater
and the Mt. Sharp group rocks of Gale crater, although the Groken nodules have higher
concentrations at 18%, which do not fill the APXS’s field of view [44,45], and the lowest
are from the Jezero fan and crater floor samples, but in general, the samples are confined
within one order of magnitude of the martian crust (0.83 wt.%) [171] (Figure 4).
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collected on the Mars Exploration Rover magnets indicate enrichment in P relative to the 
soil [179]. This is consistent with a number of measurements from Pathfinder and the Mars 
Exploration Rovers suggesting that soil on Mars is enriched in P relative to rock 
[40,134,138]. Positive correlations of P with S, Cl, and Zn in sand and soil, greater in soil 
than in sand, have been similarly interpreted as enhanced P concentrations in dust in Gale 
crater [157,180]. Measurements of the dust collected on the PIXL calibration target indicate 
that the dust is enriched in P relative to previous measurements of the soil from Gusev 
crater and dust and soil from Gale crater [181]. 
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4.1. Dissolution of Phosphate Minerals 

In terrestrial igneous rocks, fluorapatite is by far the most common primary phos-
phate mineral [182]. Phosphate minerals can reach substantial concentrations in some ter-
restrial igneous rocks like nelsonites and other associated FTP (Fe-Ti-P-rich) rocks [39,183–
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Figure 4. Comparison of in situ phosphorus measurements by four Mars rovers, normalized by the
average P2O5 of the martian crust (0.83 wt.%) [171]. Mars dust P2O5 is estimated from MER measure-
ments of bright soils [172]. Selected APXS results are shown from Spirit (Gusev basalt-Adirondack, Ad,
and Columbia Hills alkali basalts, Col, Wishstone) [173], Opportunity (Burns formation) [69,174,175],
and Curiosity (Siccar Point group, Jake, and Mt. Sharp group) [151,154,176–178]. Results from the
PIXL instrument on Perseverance show phosphorus concentrations in Jezero crater (regolith, abraded
rock of the Máaz and Séítah formations and the siliciclastic [Si] and sulfate [S] delta facies). Ca sulfate
veins and nodules are omitted.

Observations across multiple missions also support the observation that dust is en-
riched in phosphate relative to soil [40,134,138,157,179–181]. The composition of the dust
collected on the Mars Exploration Rover magnets indicate enrichment in P relative to
the soil [179]. This is consistent with a number of measurements from Pathfinder and
the Mars Exploration Rovers suggesting that soil on Mars is enriched in P relative to
rock [40,134,138]. Positive correlations of P with S, Cl, and Zn in sand and soil, greater in
soil than in sand, have been similarly interpreted as enhanced P concentrations in dust in
Gale crater [157,180]. Measurements of the dust collected on the PIXL calibration target
indicate that the dust is enriched in P relative to previous measurements of the soil from
Gusev crater and dust and soil from Gale crater [181].
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4. Phosphates as Aqueous Indicators
4.1. Dissolution of Phosphate Minerals

In terrestrial igneous rocks, fluorapatite is by far the most common primary phosphate
mineral [182]. Phosphate minerals can reach substantial concentrations in some terrestrial
igneous rocks like nelsonites and other associated FTP (Fe-Ti-P-rich) rocks [39,183–186],
and in rare plutonic ultramafic rocks (i.e., phoscorites), they are essential rock-forming
minerals [187]. However, most commonly, fluorapatite occurs as a minor accessory phase
(<1% vol.).

Thermodynamic data indicate that calcium phosphate minerals (e.g., fluorapatite)
are more soluble than iron, aluminum, and manganese phosphate minerals under acidic
conditions (e.g., Figure 5). Similarly, their dissolution rates indicate that the dissolution
of fluorapatite, chlorapatite, merrillite, and whitlockite is generally rapid relative to other
phosphate minerals (Figure 6). Predictions from these laboratory data therefore suggest
that Ca-bearing phosphate minerals would largely be dissolved and replaced by other
pools of phosphate in water-containing environments. The behavior of phosphate in soils,
described by the Walker and Syers model [6], is largely consistent with these predictions in
humid environments [6,188–190]. Quantification in terrestrial chronosequences shows that
Ca phosphate minerals persist in terrestrial tropical soils at the scale of <20,000 years [4].
Upon dissolution of the primary Ca-bearing phosphate minerals, the released phosphate
is generally less mobile than the Ca [4], sorbing onto surfaces [191] or precipitating as
secondary Al, Fe, or Mn phosphates [192].

However, in addition to the importance of time indicated in the Walker and Syers
model, changes in phosphate behavior with lithology and climate are also important [193].
Examination of arid environments that may be more relevant to Mars indicate a much
greater extent of apatite in arid soils versus humid soils [191], including the persistence of
apatite in arid soils formed on basalts for millions of years [194] (Figure 7).
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Figure 6. Dissolution rates of different phosphate-containing minerals plotted as a function of pH 
showing that Ca-bearing phosphates such as fluorapatite, whitlockite,merrillite and chlorapatite 
generally dissolve rapidly relative to other phosphates. Few data are available for Mn and ferric 
phosphates. Data compiled from [31,85,192,197–200] and presented in Table S3. 
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generally dissolve rapidly relative to other phosphates. Few data are available for Mn and ferric
phosphates. Data compiled from [31,85,192,197–200] and presented in Table S3.

Minerals 2024, 14, 591 14 of 34 
 

 

 
Figure 7. (a) Persistence of apatite in the classic Walker and Syers model [6] and (b) persistence of 
phosphate pools in a 3-million-year-old chronosequence formed on volcanic substrate under arid 
conditions [194]. Results show the persistence of phosphate in apatite for long periods of time in 
arid environments. Figure reproduced with permission from Selmants and Hart [194]. 

In general, under higher water:rock ratios, phosphate adsorbs, rather than precipitat-
ing as individual phosphate-containing phases (Figure 8) [201]. Phosphate anions chemi-
sorbing onto nanophase Fe and Si/Al oxides in terrestrial soils affects the surface structure 
of the oxide particles [202] and may preclude mobility. Chemisorbed phases are detectable 
by the Sample Analysis at Mars (SAM) instrument, as well as infrared spectrometers on 
landed missions [203].  

Figure 7. (a) Persistence of apatite in the classic Walker and Syers model [6] and (b) persistence of
phosphate pools in a 3-million-year-old chronosequence formed on volcanic substrate under arid
conditions [194]. Results show the persistence of phosphate in apatite for long periods of time in arid
environments. Figure reproduced with permission from Selmants and Hart [194].

In general, under higher water:rock ratios, phosphate adsorbs, rather than precip-
itating as individual phosphate-containing phases (Figure 8) [201]. Phosphate anions
chemisorbing onto nanophase Fe and Si/Al oxides in terrestrial soils affects the surface
structure of the oxide particles [202] and may preclude mobility. Chemisorbed phases
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are detectable by the Sample Analysis at Mars (SAM) instrument, as well as infrared
spectrometers on landed missions [203].
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Under lower water:rock ratios than the higher water:rock ratios under which phos-
phate adsorbs onto mineral surfaces, distinct amorphous P-containing phases may pre-
cipitate [205]. Experiments indicate that these amorphous phases can then form crys-
talline phases, and that under even lower water:rock ratios, crystalline phases may pre-
cipitate [206,207]. Therefore, some have proposed that phases such as amorphous Al
phosphates and variscite control the phosphate concentrations in natural environments
on Earth [192]. Many phosphate minerals form solid solutions between ferric and Al phos-
phates [208], and Mars analog experiments have also generated Fe phosphate under acidic
conditions [209], including ferrian giniite [140].

Under extremely low-water and acidic conditions, secondary calcium phosphate min-
erals such as monocalcium phosphate (MCP) and brushite form. In Mars analog acid vapor
experiments, fluorapatite reacted with sulfuric acid vapor to form monocalcium phosphate
monohydrate (Ca(H2PO4)2·H2O) (MCP) [140]. Monocalcium phosphate monohydrate is
a common constituent of fertilizers used on Earth, and it forms brushite under common
terrestrial soil conditions [210]. MCP would therefore, if found on Mars, be an indicator of
low-water rock ratios. Brushite has also been reported to dissolve 3–4 orders of magnitude
more rapidly than fluorapatite [211], and the presence of brushite would therefore also
indicate extremely low-water rock conditions. Similar to secondary calcium phosphates
such as MCP and brushite, Mg phosphates such as newberyite are very soluble, with their
presence in meteorites [212] similarly indicating low-water conditions.

In addition, the oxidation state of the environment can impact the mobility of phos-
phate within aqueous environments when the phosphates contain redox-sensitive elements
such as Fe or Mn (Figure 5). Previous studies have shown that manganese phosphates may
be important in terrestrial soils [213]. Studies of multiple terrestrial soils have shown that so-
lutions in many of the soils studied were oversaturated with respect to MnPO4

.1.5H2O [213],
and all of the Mn phosphates studied were more stable than the Fe and Al phosphates
strengite and variscite under acidic conditions, with hureaulite and MnPO4

.1.5H2O being
the most stable [213]. Therefore, particularly due to the higher concentrations of Mn in
martian basalts [214] than in terrestrial basalts [215], Mn-containing phosphates may be
important indicators of past conditions on Mars.

4.2. Hydrothermal Phosphates as Temperature Indicators

Hydrothermal phosphates have been extensively studied in multiple settings on
Earth [216–219], and it is known that different minerals form under different conditions,
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including at different temperatures [218] (Figure 9) and depending on the pH, chemistry,
and oxidation state of the reacting fluids [217,219]. This type of extremely valuable in-
formation about past hydrothermal environments may therefore be available for Mars if
hydrothermal phosphates can be identified on Mars (e.g., [58]) or in returned samples.

Minerals 2024, 14, 591 16 of 34 
 

 

including at different temperatures [218] (Figure 9) and depending on the pH, chemistry, 
and oxidation state of the reacting fluids [217,219]. This type of extremely valuable infor-
mation about past hydrothermal environments may therefore be available for Mars if hy-
drothermal phosphates can be identified on Mars (e.g., [58]) or in returned samples. 

 
Figure 9. Approximate temperature ranges of formation/stability of different hydrothermal phos-
phates, modified after [218]. Lower-temperature phosphate minerals can also be biologically medi-
ated (see Table 1). High P and T phases (e.g., holtedahlite, xenotime, tuite, merrillite) not included 
on diagram. Ranges are based on experimental work with both natural and synthetic phases, as well 
as paragenetic sequences. 

4.3. Phosphates as Astrobiological Indicators 
4.3.1. Habitability 

Habitability has classically been defined as the intersection of sufficient liquid water; 
sufficient resources such as phosphorus, carbon, hydrogen, nitrogen, oxygen, and sulfur; 
sufficient energy; and sufficiently clement conditions, including factors such as tempera-
ture, salinity, and pH (Figure 10; [220,221]). Phosphate minerals can help interpret aspects 
of habitability (Figure 10). In long-term ecosystems, phosphate is the most common lim-
iting nutrient [3,6], and therefore the presence of phosphate minerals indicates the pres-
ence of this critical, often limiting, nutrient. Igneous phosphate minerals dissolve rapidly 
in liquid water (e.g., Figure 6 [31], and the formation of secondary phosphate minerals can 
preserve evidence of the presence of liquid water, giving a record of this component that 
is essential to life as we know it. Finally, the characteristics of that liquid water that impact 
habitability, such as temperature and pH, can also be preserved in phosphate minerals 
(Figures 5 and 9 and Table 1). 

Figure 9. Approximate temperature ranges of formation/stability of different hydrothermal phos-
phates, modified after [218]. Lower-temperature phosphate minerals can also be biologically mediated
(see Table 1). High P and T phases (e.g., holtedahlite, xenotime, tuite, merrillite) not included on
diagram. Ranges are based on experimental work with both natural and synthetic phases, as well as
paragenetic sequences.

4.3. Phosphates as Astrobiological Indicators
4.3.1. Habitability

Habitability has classically been defined as the intersection of sufficient liquid water;
sufficient resources such as phosphorus, carbon, hydrogen, nitrogen, oxygen, and sulfur;
sufficient energy; and sufficiently clement conditions, including factors such as temperature,
salinity, and pH (Figure 10; [220,221]). Phosphate minerals can help interpret aspects of
habitability (Figure 10). In long-term ecosystems, phosphate is the most common limiting
nutrient [3,6], and therefore the presence of phosphate minerals indicates the presence of
this critical, often limiting, nutrient. Igneous phosphate minerals dissolve rapidly in liquid
water (e.g., Figure 6 [31], and the formation of secondary phosphate minerals can preserve
evidence of the presence of liquid water, giving a record of this component that is essential
to life as we know it. Finally, the characteristics of that liquid water that impact habitability,
such as temperature and pH, can also be preserved in phosphate minerals (Figures 5 and 9
and Table 1).
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4.3.2. Prebiotic Chemistry

Phosphorus is also believed to be crucial to prebiotic chemistry. Phosphorus is present
in phospholipids and has been found to form lipid bilayers in water similar in structure
to cell membranes under prebiotic conditions [222–224]. Phosphate is present in RNA,
which may have been both an early informational molecule for life, as well as a catalytic
molecule in the proposed RNA world. Unlike other bioessential elements (C, H, N, O, and
S), phosphorus does not have an abundant, naturally occurring gaseous phase [5]. The fun-
damental source of P for prebiotic chemistry must therefore arise from mineral weathering.
Indeed, the difficulty of obtaining phosphorus has been considered to be so important to
prebiotic chemistry that it might constrain prebiotic evolution. The “Phosphate Problem”
has referred to the difficulty that low concentrations of phosphate in natural environments
might pose for prebiotic chemical reactions [225]. Low concentrations of phosphate in
natural environments on Earth result both from the relatively low solubilities of most
phosphate-bearing minerals and the low concentrations of phosphate-bearing minerals in
most rocks. To solve the “Phosphate Problem”, some have suggested the importance of
reduced phosphorus species released from iron-phosphide-bearing meteorites [226], as well
as fulgurites [227], due to their enhanced solubility relative to phosphates. Studies have
shown that reduced phosphides are fully oxidized into phosphates with the interaction
of ultraviolet light [228]. Others have found that abiotic synthesis of RNA can occur with
phosphate, which is used as general acid/base, and nucleophilic catalysts and a pH and
chemical buffer [2]. Phosphate can become very concentrated in lakes with a high carbonate
alkalinity [229].

4.3.3. Biological Mobilization of Phosphorus (P)

Soil microorganisms have a crucial role in the mobilization of phosphorus (P), both by
mineralizing P from organic sources and solubilizing P from inorganic P pools. A specific
subset of microorganisms, phosphate-solubilizing microorganisms (PSMs), can hydrolyze
both organic and inorganic phosphate, including the production of phosphatase, an enzyme
that releases bioavailable inorganic P from organic matter [230]).

Microorganisms can employ several mechanisms to access and solubilize P in soil,
both from P-containing minerals (e.g., apatite) and to release P that is sorbed onto mineral
surfaces. Key mechanisms are listed below:

(i) Microorganisms can acidify their environment by releasing protons. Acidification
is important because the dissolution of P-bearing minerals and processes such as
desorption depend upon pH [231–233].
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(ii) Microorganisms can release the anions of organic acids including citric, malic, malonic,
oxalic, succinic, lactic, tartaric, gluconic, 2-ketogluconic, and glycolic acid [234,235].
Organic acids can increase the dissolution of P-bearing minerals by ligand-promoted
dissolution and also cause the desorption of P from mineral surfaces by ligand ex-
change [232,236].

(iii) Microorganisms can release chelators such as exopolysaccharides and siderop-
hores [232,237].

(iv) Microorganisms can physically attach to phosphate-containing minerals. In laboratory
cultures, phosphate-limited cyanobacteria have been shown to preferentially attach to
fluorapatite surfaces [238].

Laboratory experiments have demonstrated the effect of organic acids on phosphate-
bearing whole rocks [7,239–241] as well as individual minerals in the presence of organic
compounds [242–247] including the Mars-relevant Ca-phosphate-bearing minerals fluo-
rapatite, merrillite, and whitlockite [248]. The dissolution of apatite-bearing rocks in the
presence of organic compounds has shown enhancement of phosphate release in the pres-
ence of acetate, benzoate, citrate, formate, fumarate, gallate, glutarate, lactate, malonate,
oxalate, phthalate, salicylate, and succinate [7,239–241]. The dissolution of fluorapatite
in experiments containing organic compounds has indicated enhanced dissolution in the
presence of acetate, citrate, oxalate, phthalate, and salicylate [243,246], and the dissolution
of multiple Ca phosphate minerals relevant to Mars in experiments containing organic
compounds relevant to Mars has indicated that the enhancement of dissolution by the
organic compounds is likely due to the ligand denticity, the strength of the complex formed
between the organic compound and calcium, and the saturation state of the solution [248].
The dissolution of hydroxyapatite in the presence of amino acids has indicated enhanced
release of phosphate in the presence of aspartic acid but not alanine or lysine, which is
attributed to the charge on the amino acids [244].

This preferential dissolution of phosphate-bearing minerals in the presence of organic
compounds has been utilized as a signature of past life on Earth. Phosphate and Fe deple-
tion, combined with Al immobility, has been used as an indicator of early terrestrial life in
two very old basalt-derived paleosols, the Mount Roe (2.76 Ga) and the Hekpoort (2.25 Ga)
paleosols [7]. P and Fe release and Y retention have been similarly interpreted in a 2.69 Ga
tonalite paleosol [249]. Similarly, the mobilization of phosphate in the zone of intense
formation of clay minerals (the top 30 cm of the paleosol) in a >503 Ma paleosol has been
interpreted as a biosignature of mycorrhizal fungi [8]; similar mobilization of phosphate at
the top of a weathering profile has also been observed in modern soils [250]. In contrast, the
concentration of phosphorus in the top 150 cm of an Early Cambrian paleosol resembles the
modern addition of phosphate [251]; this complex behavior has been described in terrestrial
weathering profiles [252].

4.3.4. Microbially Mediated Biomineralization

Microbially mediated biomineralization occurs when microorganisms (bacteria, ar-
chaea, and algae) actively contribute to the formation of minerals. The morphology, texture,
atomic structure, and chemical composition of minerals are influenced by their formation
process, and as a result, minerals whose formation mechanism was impacted by life may
contain information regarding their biological origin e.g., [11]. Therefore, minerals hold
significant potential as valuable targets when searching for ancient signs of life in astrobi-
ology [253,254]. Extracellular mineralization is defined as mineral formation that occurs
outside or around a cell, and intracellular mineralization occurs when mineral formation
occurs inside the cell. Biologically induced mineralization (BIM) is caused by passive
microbial processes, and biologically controlled mineralization (BCM) is caused by active
microbial processes.
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4.3.5. Biologically Induced Mineralization (BIM)

Microbial cells contain significant phosphate, as much as 6% dry weight, e.g., [9], and
many microorganisms have the ability to store phosphate in times of nutrient deprivation,
e.g., [255]. This phosphate can serve as a valuable source of phosphorus for mineral
formation in natural environments. For example, in laboratory experiments, Fe phosphate
minerals can be formed on microbial surfaces [9–11], including with no source of phosphate
other than the microbial cells themselves [9]. In addition, phosphate reserves in microbial
cells have recently been postulated to contribute to the formation of apatite-rich phosphorite
rocks on Earth [256–258].

Microorganisms in natural environments can become encrusted in phosphates, in-
cluding iron phosphates, e.g., [259,260], potentially becoming entombed in such phos-
phates [261], which has been proposed as a mechanism for preservation in phosphorites on
Earth [262]. Phosphate-rich molecules on microbial surfaces, such as teichoic acid, can bind
to metals, as demonstrated by experiments that removed the phosphate-rich teichoic acid
and resulted in less adsorption of metals onto the microbial surfaces [255]. Further exper-
iments that tested the effects of diagenetic conditions on metal-adsorbed microbial cells
showed the formation of phosphate-containing minerals, including Fe phosphates [9–11]
(Figure 11). Phosphate-entombed evidence of microbial life has similarly been detected
deep in the terrestrial rock record, e.g., [263,264], and Ca phosphates have also been shown
to be formed in association with mineral surfaces and organic compounds [265], including
the new mineral hazenite [266,267]. Phosphates are therefore important targets for sample
collection on Mars [12,13].

4.3.6. Biologically Controlled Mineralization (BCM)

Because Ca- and phosphate-bearing minerals are important biominerals in higher
organisms on Earth, multiple studies have examined the precipitation of Ca- and phosphate-
containing minerals in the presence of organic compounds [268–283]. These studies have
focused on larger, biotic molecules found in higher organisms rather than smaller, abiotic
molecules, with previous studies showing molecules such as acid phospholipids, amel-
oginins, enamelin, and bone sialoprotein promoting the precipitation of hydroxyapatite;
aggrecan, dentin matrix proteins, and osteopontin inhibiting hydroxyapatite precipitation;
and many molecules, such as albumin, showing no effect [268–284]. Some studies have
examined the effect of more environmentally relevant organic molecules such as phytic,
mellitic, humic, and citric acids on the precipitation of dicalcium phosphate dihydrate [285];
fulvic, citric, tannic, and humic acids on octacalcium phosphate growth [286]; and the effect
of acetate and citrate on hydroxyapatite precipitation [287]. All the molecules used in these
three studies inhibited the precipitation of Ca and phosphate-containing compounds except
acetate [285–287].

4.3.7. Oxygen Isotope Composition of Phosphate

Measurement of the mineralogy and chemistry of phosphate-containing phases in
samples returned to Earth will provide unprecedented new information about the history
of Mars. For example, previous work has shown the importance of the oxygen isotope
composition of phosphate in elucidating different phosphate inputs and reaction path-
ways [18,288–300], P cycling processes [301–306], and its potential as a biosignature for
Mars [301] in returned samples from Mars [307]. This critical tool will therefore be available
for the analysis of phosphate upon sample return.



Minerals 2024, 14, 591 18 of 31Minerals 2024, 14, 591 20 of 34 
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immersed in 2 mL of milliQ water at 150 °C for 1 day, L = cells encrusted for 24 hours cells immersed 

Figure 11. Images of non-encrusted and encrusted S. acidocaldarius cells A = non-encrusted cells
starting materials, E = cells encrusted for 6 h starting materials, I = cells encrusted for 24 h starting
materials, B and C = non-encrusted cells immersed in 2 mL of milliQ water at 150 ◦C for 1 day,
D = non-encrusted cells immersed in 2 mL of milliQ water at 150 ◦C for 5 days, F, G = cells encrusted
for 6 h immersed in 2 mL of milliQ water at 150 ◦C for 1 day, H = cells encrusted for 6 h immersed in
2 mL of milliQ water at 150 ◦C for 5 days, J, K = cells encrusted for 24 h immersed in 2 mL of milliQ
water at 150 ◦C for 1 day, L = cells encrusted for 24 h cells immersed in 2 mL of milliQ water at 150 ◦C
for 5 days. Thin arrows in G indicate non-mineralized vesicles and in K organic matter. Thick arrows
in G and H point out pores in the surfaces of the framboids. Reproduced with permission from [11].
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5. Conclusions and Future Work

In conclusion, phosphate minerals play a uniquely important role in the interpretation
of Mars. They are crucial igneous indicators, preserving the volatile contents of magmas
and their source regions. They are sensitive aqueous indicators, dissolving rapidly and
forming different minerals under different conditions of temperature, pH, and composition.
Finally, they are also very important as biological indicators. Phosphate is required by
all known terrestrial life and has been used as biosignatures in ancient environments
on Earth. The examination of phosphate on Mars and in samples returned from Mars is
therefore critical in the interpretation of the igneous, aqueous, and potential biological past
of that planet.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/min14060591/s1. Table S1: Phosphate minerals relevant and
potentially relevant to Mars; Table S2: X-site composition of previously published apatite from
martian meteorites included in this study; Table S3: Kinetic data presented in Figure 6.
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79. Slabić, A. Shock-Induced Geochemical Variations in the Keplerite-Bearing Assemblages of Tissint and Intergrown Apatite-
Merrillite Assemblages of ALH 84001, 146. PhD Thesis, University of Houston-Clear Lake, Houston, TX, USA, 2022.

80. Adcock, C.T.; Tschauner, O.; Hausrath, E.M.; Udry, A.; Luo, S.N.; Cai, Y.; Ren, M.; Lanzirotti, A.; Newville, M.; Kunz, M.; et al.
Shock-Transformation of Whitlockite to Merrillite and the Implications for Meteoritic Phosphate. Nat. Commun. 2017, 8, 14667.
[CrossRef]

81. Dorozhkin, S.V.; Epple, M. Biological and Medical Significance of Calcium Phosphates. Angew. Chem. Int. Ed. 2002, 41, 3130–3146.
[CrossRef]

82. Weiner, S.; Wagner, H.D. THE MATERIAL BONE: Structure-Mechanical Function Relations. Annu. Rev. Mater. Sci. 1998,
28, 271–298. [CrossRef]

83. Gu, L.; Hu, S.; Anand, M.; Tang, X.; Ji, J.; Zhang, B.; Wang, N.; Lin, Y. Occurrence of Tuite and Ahrensite in Zagami and Their
Significance for Shock-Histories Recorded in Martian Meteorites. Am. Mineral. 2022, 107, 1018–1029. [CrossRef]

84. Baziotis, I.P.; Liu, Y.; DeCarli, P.S.; Jay Melosh, H.; McSween, H.Y.; Bodnar, R.J.; Taylor, L.A. The Tissint Martian Meteorite as
Evidence for the Largest Impact Excavation. Nat. Commun. 2013, 4, 1404. [CrossRef]

85. Tu, V.M.; Hausrath, E.M.; Tschauner, O.; Iota, V.; Egeland, G.W. Dissolution Rates of Amorphous Al- and Fe-Phosphates and
Their Relevance to Phosphate Mobility on Mars†. Am. Mineral. 2014, 99, 1206–1215. [CrossRef]

86. Ruff, S.W.; Hamilton, V.E. Wishstone to Watchtower: Amorphous Alteration of Plagioclase-Rich Rocks in Gusev Crater, Mars. Am.
Mineral. 2017, 102, 235–251. [CrossRef]

87. Ehrlich, H.L. Microbes as Geologic Agents: Their Role in Mineral Formation. Geomicrobiol. J. 1999, 16, 135–153. [CrossRef]
88. Hazen, R.M.; Downs, R.T.; Morrison, S.M.; Tutolo, B.M.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; McSween, H.Y.; Ming, D.;

Morris, R.V.; et al. On the Diversity and Formation Modes of Martian Minerals. J. Geophys. Res. Planets 2023, 128, e2023JE007865.
[CrossRef]

89. Brady, M.P.; Tostevin, R.; Tosca, N.J. Marine Phosphate Availability and the Chemical Origins of Life on Earth. Nat. Commun.
2022, 13, 5162. [CrossRef]

90. Rothe, M.; Kleeberg, A.; Hupfer, M. The Occurrence, Identification and Environmental Relevance of Vivianite in Waterlogged
Soils and Aquatic Sediments. Earth-Sci. Rev. 2016, 158, 516–564. [CrossRef]

91. Jang, H.L.; Jin, K.; Lee, J.; Kim, Y.; Nahm, S.H.; Hong, K.S.; Nam, K.T. Revisiting Whitlockite, the Second Most Abundant
Biomineral in Bone: Nanocrystal Synthesis in Physiologically Relevant Conditions and Biocompatibility Evaluation. ACS Nano
2014, 8, 634–641. [CrossRef]

92. Liu, Y.; Ma, C.; Beckett, J.R.; Chen, Y.; Guan, Y. Rare-Earth-Element Minerals in Martian Breccia Meteorites NWA 7034 and 7533:
Implications for Fluid–Rock Interaction in the Martian Crust. Earth Planet. Sci. Lett. 2016, 451, 251–262. [CrossRef]

https://doi.org/10.1093/biolinnean/blac133
https://doi.org/10.2138/am-2022-8138
https://doi.org/10.1089/ast.2013.0985
https://doi.org/10.1029/2017JE005493
https://doi.org/10.1016/j.scitotenv.2017.08.166
https://doi.org/10.1016/0019-1035(81)90041-5
https://doi.org/10.1098/rsif.2010.0151.focus
https://doi.org/10.2138/am.2014.4688
https://doi.org/10.2138/am-2022-8174
https://doi.org/10.2138/am-2021-7834
https://doi.org/10.1038/ncomms14667
https://doi.org/10.1002/1521-3773(20020902)41:17%3C3130::AID-ANIE3130%3E3.0.CO;2-1
https://doi.org/10.1146/annurev.matsci.28.1.271
https://doi.org/10.2138/am-2022-8020
https://doi.org/10.1038/ncomms2414
https://doi.org/10.2138/am.2014.4613
https://doi.org/10.2138/am-2017-5618
https://doi.org/10.1080/014904599270659
https://doi.org/10.1029/2023JE007865
https://doi.org/10.1038/s41467-022-32815-x
https://doi.org/10.1016/j.earscirev.2016.04.008
https://doi.org/10.1021/nn405246h
https://doi.org/10.1016/j.epsl.2016.06.041


Minerals 2024, 14, 591 23 of 31

93. do Nascimento-Dias, B.L. Combination between Ca, P and Y in the Martian Meteorite NWA 6963 Could Be Used as a Strategy to
Indicate Liquid Water Reservoirs on Ancient Mars? Int. J. Astrobiol. 2019, 18, 151–156. [CrossRef]

94. McSween, H.Y., Jr. SNC Meteorites: Are They Martian Rocks? Geology 1984, 12, 3–6. [CrossRef]
95. McSween, H.Y. What We Have Learned about Mars from SNC Meteorites. Meteoritics 1994, 29, 757–779. [CrossRef]
96. Warren, P.H. Lunar and Martian Meteorite Delivery Services. Icarus 1994, 111, 338–363. [CrossRef]
97. Gattacceca, J.; McCubbin, F.M.; Grossman, J.N.; Schrader, D.L.; Chabot, N.L.; D’Orazio, M.; Goodrich, C.; Greshake, A.; Gross, J.;

Joy, K.H.; et al. The Meteoritical Bulletin, No. 111. Meteorit. Planet. Sci. 2023, 58, 901–904. [CrossRef]
98. Bogard, D.D.; Johnson, P. Martian Gases in an Antartic Meteorite? Science 1983, 221, 651–654. [CrossRef]
99. McSween, H.Y. Petrology on Mars. Am. Mineral. 2015, 100, 2380–2395. [CrossRef]
100. Udry, A.; Howarth, G.H.; Herd, C.D.K.; Day, J.M.D.; Lapen, T.J.; Filiberto, J. What Martian Meteorites Reveal About the Interior

and Surface of Mars. J. Geophys. Res. Planets 2020, 125, 1–34. [CrossRef]
101. Agee, C.B.; Wilson, N.V.; McCubbin, F.M.; Ziegler, K.; Polyak, V.J.; Sharp, Z.D.; Asmerom, Y.; Nunn, M.H.; Shaheen, R.;

Thiemens, M.H.; et al. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science
2013, 339, 780–785. [CrossRef]

102. Humayun, M.; Nemchin, A.; Zanda, B.; Hewins, R.H.; Grange, M.; Kennedy, A.; Lorand, J.P.; Göpel, C.; Fieni, C.; Pont, S.; et al.
Origin and Age of the Earliest Martian Crust from Meteorite NWA 7533. Nature 2013, 503, 513–516. [CrossRef]

103. Britvin, S.N.; Krivovichev, S.V.; Armbruster, T. Ferromerrillite, Ca9NaFe2+(PO4)7, a New Mineral from the Martian Meteorites,
and Some Insights into Merrillite–Tuite Transformation in Shergottites. Eur. J. Mineral. 2016, 28, 125–136. [CrossRef]

104. Hughes, J.M.; Jolliff, B.L.; Rakovan, J. The Crystal Chemistry of Whitlockite and Merrillite and the Dehydrogenation of Whitlockite
to Merrillite. Am. Mineral. 2008, 93, 1300–1305. [CrossRef]

105. Hughes, J.M.; Jolliff, B.L.; Gunter, M.E. The Atomic Arrangement of Merrillite from the Fra Mauro Formation, Apollo 14 Lunar
Mission: The First Structure of Merrillite from the Moon. Am. Mineral. 2006, 91, 1547–1552. [CrossRef]

106. Jolliff, B.L.; Hughes, J.M.; Freeman, J.J.; Zeigler, R.A. Crystal Chemistry of Lunar Merrillite and Comparison to Other Meteoritic
and Planetary Suites of Whitlockite and Merrillite. Am. Mineral. 2006, 91, 1583–1595. [CrossRef]

107. Dowty, E. Phosphate in Angra Dos Reis: Structure and Composition of the Ca3 (PO4)2 Minerals. Earth Planet. Sci. Lett. 1977,
35, 347–351. [CrossRef]

108. Ionov, D.; Hofmann, A.; Merlet, C.; Gurenko, A.; Hellebrand, E.; Montagnac, G.; Gillet, P.; Prikhodko, V. Discovery of Whitlockite
in Mantle Xenoliths: Inferences for Water- and Halogen-Poor Fluids and Trace Element Residence in the Terrestrial Upper Mantle.
Earth Planet. Sci. Lett. 2006, 244, 201–217. [CrossRef]

109. Kaminsky, F.V.; Zedgenizov, D.A. First Find of Merrillite, Ca3(PO4)2, in a Terrestrial Environment as an Inclusion in Lower-Mantle
Diamond. Am. Mineral. 2022, 107, 1652–1655. [CrossRef]

110. McCubbin, F.M.; Phillips, B.L.; Adcock, C.T.; Tait, K.T.; Steele, A.; Vaughn, J.S.; Fries, M.D.; Atudorei, V.; Vander Kaaden, K.E.;
Hausrath, E.M. Discreditation of Bobdownsite and the Establishment of Criteria for the Identification of Minerals with Essential
Monofluorophosphate (PO3F2–). Am. Mineral. 2018, 103, 1319–1328. [CrossRef]

111. Frondel, C. Whitlockite: A New Calcium Phosphate, Ca3(PO4)2. Am. Mineral. 1941, 26, 145–152.
112. Howarth, G.H.; Liu, Y.; Chen, Y.; Pernet-Fisher, J.F.; Taylor, L.A. Postcrystallization Metasomatism in Shergottites: Evidence from

the Paired Meteorites LAR 06319 and LAR 12011. Meteorit. Planet. Sci. 2016, 51, 2061–2072. [CrossRef]
113. McCubbin, F.M.; Boyce, J.W.; Novák-Szabó, T.; Santos, A.R.; Tartèse, R.; Muttik, N.; Domokos, G.; Vazquez, J.; Keller, L.P.;

Moser, D.E.; et al. Geologic History of Martian Regolith Breccia Northwest Africa 7034: Evidence for Hydrothermal Activity and
Lithologic Diversity in the Martian Crust: Geologic History of NWA 7034. J. Geophys. Res. Planets 2016, 121, 2120–2149. [CrossRef]

114. Santos, A.R.; Agee, C.B.; McCubbin, F.M.; Shearer, C.K.; Burger, P.V.; Tartèse, R.; Anand, M. Petrology of Igneous Clasts in
Northwest Africa 7034: Implications for the Petrologic Diversity of the Martian Crust. Geochim. Cosmochim. Acta 2015, 157, 56–85.
[CrossRef]

115. Hu, S.; Lin, Y.; Zhang, J.; Hao, J.; Xing, W.; Zhang, T.; Yang, W.; Changela, H. Ancient Geologic Events on Mars Revealed by
Zircons and Apatites from the Martian Regolith Breccia NWA 7034. Meteorit. Planet. Sci. 2019, 54, 850–879. [CrossRef]

116. Xie, X.; Zhai, S.; Chen, M.; Yang, H. Tuite, γ-Ca3(PO4)2, Formed by Chlorapatite Decomposition in a Shock Vein of the Suizhou
L6 Chondrite. Meteorit. Planet. Sci. 2013, 48, 1515–1523. [CrossRef]

117. Xie, X.; Minitti, M.E.; Chen, M.; Mao, H.-K.; Wang, D.; Shu, J.; Fei, Y. Tuite, γ-Ca3(PO4)2: A New Mineral from the Suizhou L6
Chondrite. Eur. J. Mineral. 2003, 15, 1001–1005. [CrossRef]

118. Balta, J.B.; Sanborn, M.E.; McSween, H.Y.; Wadhwa, M. Magmatic History and Parental Melt Composition of Olivine-Phyric
Shergottite LAR 06319. Meteorit Planet Sci 2013, 48, 1359–1382. [CrossRef]

119. Chowdhury, P.; Brounce, M.; Boyce, J.W.; McCubbin, F.M. The Oxidation State of Sulfur in Apatite of Martian Meteorite—Shergotty.
J. Geophys. Res. Planets 2023, 128, e2022JE007634. [CrossRef]
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