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Abstract: The rupture of an iron mining tailing dam in Brumadinho, Brazil, released around
10 million cubic meters of tailings, of which 1.6 Mm3 reached the Paraopeba River. In this work, a total
of 30 samples from three bottom sediment cores were collected in the lower course of the Paraopeba
River basin and analyzed for major, trace and rare earth elements by ICP-OES and ICP-MS. The
sediments presented a range of compositions with different weathering histories, overall marked by
depleted Ca2+, Na+ and K+ compared with the average UCC, PAAS and NASC and some advanced
weathering trends. The samples presented a fractionation pattern characterized by a continuous de-
pletion of light REEs from La to Sm and a regular decreased distribution of heavy REEs from Gd to Yb,
and the Co/Th vs. La/Sc diagram indicates a predominant intermediate source. The upper samples
presented the highest contents of REEs, probably due to the higher presence of iron and aluminum
oxides and hydroxides, which can be related to more advanced weathering. The Al, Cu, Ni, V, Zn, Co,
Mn, Ti, Fe and Si concentrations and the CF, EF and Igeo index values varied across the sediment core
samples, demonstrating that there were long periods of geogenic or anthropogenic contributions.

Keywords: weathering; contamination factor; enrichment factor; geoaccumulation index

1. Introduction

Chemical weathering is an important process that leads to rock alteration, soil forma-
tion and leaching solution contribution to the flowing water throughout a drainage basin,
especially in hot and humid tropical regions like Brazil. Bedload and suspended sediments
are mainly composed by the weathering product mixture delivered along the drainage
basins and bear key information on provenance, tectonic setting and weathering mecha-
nism, so they are important objects in the study of supergene geological processes [1,2].
According to [3], geochemical elemental analysis of riverbed sediments can not only reveal
the law of element migration during epigenesis but also help to deeply analyze and deter-
mine the influence of natural and anthropogenic processes on the distribution of heavy
metals in riverbed sediments of the watershed and reduce the regional geochemical process
of heavy-metal pollution formation in sediments.

Mining is a human activity capable of generating wealth and social development but,
when not properly operated, can be a source of impacts on the landscape and riverbed
sediments, which can compromise hydrographic basins and reservoirs. Mine wastes also
play a particular role in this context because they represent a source of contamination. The
pollution of soil and water by mining deposits has negative effects on both agricultural
and tourism land uses; thus, a correct environmental characterization of the affected
area is important for any proposal of effective measures that could help to minimize
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environmental impact and concern [4–16]. In November 2015, an iron mining tailing dam
owned by Samarco Company collapsed in Brazil, releasing an estimated 52 million m3 of
tailings into the environment, affecting the public water supply, which was interrupted for
a few weeks, to approximately 400,000 people, as well as industrial activities, electricity
generation in three hydroelectric plants, fishing, tourism, and agriculture [17,18].

According to [19,20], riverbed sediments can be used for historical reconstruction of
a metal’s concentration due to land-use and land-cover change (LULCC) in watersheds.
Studies on the major, trace and rare earth elements concentrations in riverbed sediments
have been carried out based on different geochemical approaches, such as geoaccumulation
index (Igeo), enrichment factor (EF), contamination factor (CF), pollution index (PI), ecolog-
ical risk factor (Eir), pollution load index (PLI), degree of contamination (Cdeg), modified
contamination factor (mCdeg), potential ecological risk index (PERI) and others [21–33].

The geochemistry of the Paraopeba River basin, located in the Iron Quadrangle (IQ),
may be related to physiographic factors such as geology; relief; pedology; and human
activities, like steel industry, metallurgical, automotive industries, agriculture, livestock
farming and mining. Unfortunately, the rupture of the B1 dam in Brumadinho in 2019 on
January 25th released around 10 million cubic meters of tailings, which spilled into the Ferro
Carvão creek valley, reaching the Paraopeba River. According to [34], the dam reached
86 m high, and it was the main tailing impoundment from an iron ore mining complex
named Mina do Córrego do Feijão. After the dam burst, approximately 8.1 Mm3 was
deposited in the Ferro-Carvão creek valley, and 1.6 Mm3 settled into the Paraopeba River,
resulting in a direct impact on channel sediment composition and dynamics. The authors
also emphasize that because of geological complexity and historical terrain occupation and
usage, geochemical anomalies are common in the Paraopeba River sediments.

The Retiro Baixo reservoir was formed to supply a hydroelectric plant operating since
2010. It is located about 300 km downstream of the mouth of the Ferro Carvão creek,
and it is assumed to be the most distal point where the effects of the tailings’ alluvial
transporting can be measured [35]. The present work aims to evaluate major, trace and rare
earth elements of bottom sediments in the Retiro Baixo reservoir after the B1 tailings dam
rupture, to be used as a baseline for evaluating environmental impacts that historically
accumulate in the Paraopeba River basin in the Minas Gerais state.

2. Study Area

The Paraopeba River basin, with a 12,054 km2 drainage area, is in the central region of
the Minas Gerais state, which consists of 48 municipalities and is home to approximately
1,320,000 inhabitants. The Paraopeba River has its source in the extreme south of Serra do
Espinhaço, municipality of Cristiano Otoni, and covers an approximate distance of 510 km
to its mouth at the Três Marias dam on the São Francisco River, between the Felixlândia and
Pompéu municipalities, being divided in Upper Paraopeba, Medium Paraopeba and Low
Paraopeba [36]. The Retiro Baixo reservoir flooded an area of 22.58 km², with a length of
1351.67 m behind a 45 m dam height. It was built between 1973 and 1981 in the Curvelo and
Pompeu municipalities to generate hydroelectric power and provide water for agriculture
and other uses (Figure 1).

The east border of the watershed partially follows the highlands and ranges of an
important Brazilian mineral province, named Quadrilátero Ferrífero (Iron Quadrangle) [37].
According to [38], the Iron Quadrangle is one of the World’s richest mineral regions, covering
an approximately 7000 km2 area with important mining activities focused on iron ores and
vast reserves of gold, limestone, dolomite, bauxite, steatite, manganese, topaz, clay, etc.

The basin geological substrate is composed of several lithotypes generally associated
with Precambian geotectonic arrangements [39,40]. In the upper and middle Paraopeba,
the granite–gneissic rocks from the Belo Horizonte and Bonfim Complexes (Archean), the
Archean greenstone belt associated with the Rio das Velhas Supergroup and the Proterozoic
metasedimentary units from the Minas Supergroup stand out. In the lower Paraopeba,
the Neoproterozoic sedimentary covers from the Paraopeba and Três Marias formations



Minerals 2024, 14, 621 3 of 18

(Bambuí Group) are highlighted (Figure 2a). Ferralsols and Acrisols are found mainly in
the upper and lower parts, followed by Cambisols in the middle Paraopeba basin [41]
(Figure 2b). According to [34], the mineral content from the Paraopeba River sediments
reflects the weathering of the outcropping rocks from the entire catchment, in which the
predominance of quartz, kaolinite and clay minerals reflects granite–gneissic, quartz and
iron oxide complexes of the Minas Supergroup, while gibbsite and clay minerals are likely
sourced from chemical weathering.
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sampling point locations.

Regarding the B1 tailing dam, it is important to mention that during the lifecycle
of the Córrego do Feijão Mine, no metallurgical ore treatment was performed, except
those physical processes necessary to achieve particle comminution. According to [42],
the B1 tailing dam mineral assemblage is primarily hematite and quartz and secondarily
kaolinite and gibbsite, which lead to the mean chemical composition of iron oxides (48%),
silica (20.6%), aluminum oxides (3.2%) and manganese oxides (1.0%). Ref. [43] states that
the tailings are mostly composed of silts and the natural sediments by fine- to medium-
grained sand, with a mineralogical composition that includes hematite, magnetite and
manganese oxide, rich in iron (48.7%) and manganese (0.5%) and poor in alumina (3.1%).
The natural sediments, according to the authors, are composed of quartz, kaolinite and
hematite, meaning that they are rich in silica (59.0%) and alumina (13.1%) and contain some
iron (15.2%) and manganese (0.2%).
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3. Materials and Methods

In order to estimate major, trace and rare earth elements in bottom sediment from the
lower course of the Paraopeba River basin due to land-use and land-cover changes, the
choice of the sampling location was based on the construction of the Retiro Baixo reservoir.
Three sediments boreholes were extracted in 2021 on May 5th by using a Kajak Sediment
Core sampler at three representative points located within the reservoir (Figure 1): P1 was
close to the beginning or river zone (15 samples from 5 to 75 cm), at the water depth of
9.07 m; P2 was in the central region or intermediate zone (10 samples from 5 to 50 cm),
at the water depth of 12.17 m; and P3 was close to the spillway or lake area (5 samples
from 8 to 26 cm), at the water depth of 21.77 m. The near-surface and deeper layers of the
sediment core were discarded due to the likely mechanical mixing in the first and last few
centimeters of the core. Samples were sequentially labeled from top to bottom.

The samples were delivered to SGS Geosol laboratories, responsible for the geo-
chemical analysis. Sample preparation included drying to 105 ◦C, crushing to 3 mm,
homogenization, and quarrying and spraying from 250 to 300 g in a 95% 150 mesh steel
mill. The major oxides (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5),
trace elements and rare earths (Cu, V, Zn, Ni, Tl, Co, Sc, Rb, Ga, Ce, La, Nd, Sm, Th, W,
Yb, Gd, Eu, Er, Dy, Cs, Hf, Ho, Lu, Nb, Pr, Tb, Tm, U and Y) were determined by fusion
with lithium metaborate (LiBO2) by using inductively coupled plasma optical emission
spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS).
Quality control was performed by analyzing duplicate and blank samples to check for
precision, whereas accuracy was obtained by using Certified Reference Materials (STD
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SG_142, STD SG_241, STD SG_127, STD GRE-03 and STD-GRE-04). Detection limits for the
analyzed elements were 0.01% for major oxides; 10.0 ppm for Ba, Zr and Sr; 5.0 ppm for
Cu, V, Zn and Ni; 0.5 ppm for Tl, Co and Sc; 0.2 ppm for Rb; 0.1 ppm for Ga, Ce, La, Nd,
Sm, Th, W and Yb; and 0.05 ppm for Gd, Eu, Er, Dy, Cs, Hf, Ho, Lu, Nb, Pr, Tb, Tm, and U.

The chemical index of weathering (CIW) in molecular proportions and the index of
compositional variability (ICV) [44,45] were calculated for all the samples according to
Equations (1) and (2).

CIW =

[
Al2O3

(Al2O3 + CaO + Na2O)

]
× 100 (1)

ICV =

[
(Fe2O3 + K2O + Na2O + CaO + MgO + MnO + TiO2)

Al2O3

]
× 100 (2)

For data interpretation, the trace elements were normalized by the North American
shale composition (NASC) [46], and the REE concentrations were normalized by the CC1
chondrite composition [47,48]. To characterize the REE distribution spectrum, the cerium
europium (Eun) anomaly values and the light REE-to-heavy REE ratio (LREE/HREE) were
calculated according to Equation (3).

Eu

Eu*
=

Eun

(Smn×Gdn)
0.5 (3)

Contamination factor (CF) determination was performed according to Equation (4). The
CF corresponds to the pollution over a period for a given metal [49]. In addition, to assess the
environmental impacts or baseline for the historical major and trace elements accumulated in
Retiro Baixo reservoir bottom sediments, Equation (5) was used to calculate the enrichment
factor (EF). The EF is used as a measure of geochemical trends to compare areas and to identify
metals’ origin and contamination [19,24]. In addition, to assess the degree of pollution of the
metals studied in the Retiro Baixo reservoir, the geoaccumulation index (Igeo), introduced
by [50], was used (Equation (6)). According to [51], to consider the variations in the amount
of mineral material in the major and trace elements concentration profiles, the elements
concentrations were normalized to Sc, which is a conservative metal with no significant
anthropogenic source.

CF =
[M]sed
Mre f

(4)

EF =

(Mi/Sc
)

sample(
Mi/Sc

)
re f

(5)

Igeo = Log2
[M]sed

1.5.Mre f
(6)

where [M]sed is the metal element concentration M in the sediment and [M]ref is the same
metal element concentration M in the geochemical background reference; (Mi/Sc)sample is
the ratio between the metal concentration (Mi) and Sc in the sediment sample; (Mi/Sc)ref
corresponds to the ratio between the metal concentration (Mi) and Sc of the reference
geochemical background.

The anthropogenic contribution status was evaluated by comparing the collected data
to a background that involves regional or natural geochemical data. Thus, the major and
trace element concentrations (Si, Ti, Al, Fe, Mn, V, Co, Ni, Cu and Zn) measured by [52] in
two sediment samples from the upstream Córrego do Feijão Mine, the Paraopeba River
and Sc relative to the upper continental crust (UCC) [53,54] were used for comparison.

4. Results and Discussion
4.1. Major Elements

The major oxide element contents of sediments in the Retiro Baixo reservoir are listed
in Table 1, and the concentrations are compared with the average North American shale
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(NASC) [46,55], Average Post-Archaean Australian Shale (PAAS) and upper continental
crust (UCC) [53,54]. The SiO2 content varies from 35.8 to 72.1%, with the average value
of 41.6%, among the bottom sediments. Along with each profile (P1, P2 and P3), these
values slightly decrease from lower to upper levels. The SiO2 content in the samples is
attributed mainly to the presence of clay minerals and quartz, and it varies according to the
weathering hydrolysis reaction evolution. The smallest contents of this oxide are found in
the sample from P2–10 cm (35.8%; Table 1).

Table 1. Major oxide chemical composition of bottom sediments in Retiro Baixo reservoir (wt.%).

SiO2 Al2O3 Fe2O3 MgO CaO K2O Na2O MnO TiO2 P2O5 LOI Sum CIW ICV

NASC 64.80 16.90 5.65 2.86 3.63 3.97 1.14 0.06 0.70 0.13 -- -- 65.96 1.06

PASS 62.80 18.90 7.22 2.20 1.30 3.70 1.20 0.11 1.00 0.16 6.00 -- 80.89 0.88

UCC 66.00 15.20 5.00 2.20 4.20 3.40 3.90 0.08 0.50 -- -- -- 51.24 1.26

P1

−5 cm 37.88 28.26 11.39 0.55 0.23 1.46 0.10 0.32 0.89 0.18 14.77 96.03 97.92 0.52
−10 cm 37.05 27.72 13.29 0.52 0.19 1.39 0.09 0.37 0.87 0.23 14.64 96.36 98.20 0.59
−15 cm 37.04 27.56 14.81 0.53 0.17 1.38 0.08 0.36 0.87 0.20 14.31 97.31 98.38 0.65
−20 cm 38.51 25.55 15.17 0.54 0.26 1.40 0.11 0.44 0.83 0.21 13.93 96.95 97.43 0.72
−25 cm 37.55 25.61 14.22 0.52 0.21 1.48 0.09 0.46 0.80 0.23 14.17 95.34 97.91 0.68
−30 cm 38.25 27.26 11.91 0.54 0.17 1.61 0.09 0.24 0.85 0.22 14.45 95.59 98.30 0.56
−35 cm 38.61 27.50 11.79 0.56 0.17 1.63 0.10 0.16 0.89 0.21 14.52 96.14 98.26 0.55
−40 cm 40.98 27.14 12.14 0.57 0.19 1.65 0.10 0.12 0.90 0.21 14.28 98.28 98.10 0.57
−45 cm 39.39 27.40 11.59 0.54 0.31 1.56 0.10 0.10 0.89 0.18 13.98 96.04 97.34 0.55
−50 cm 40.44 25.98 12.71 0.54 0.20 1.36 0.13 0.22 0.88 0.17 13.59 96.22 97.76 0.61
−55 cm 41.03 24.89 12.19 0.54 0.20 1.39 0.13 0.22 0.84 0.15 13.42 95.00 97.67 0.61
−60 cm 40.76 25.92 12.18 0.54 0.20 1.48 0.12 0.22 0.85 0.16 13.55 95.98 97.82 0.59
−65 cm 40.72 25.89 11.55 0.52 0.17 1.47 0.12 0.14 0.88 0.17 13.71 95.34 98.03 0.57
−70 cm 58.92 15.36 10.69 0.40 0.17 1.47 0.26 0.10 0.79 0.09 8.55 96.80 95.30 0.90
−75 cm 64.90 11.40 10.25 0.35 0.17 1.47 0.32 0.09 0.75 0.06 6.59 96.35 92.99 1.17

P2

−5 cm 41.21 26.89 11.12 0.42 0.13 1.13 0.09 0.21 0.75 0.20 14.91 97.06 98.55 0.51
−10 cm 35.82 28.17 13.50 0.45 0.11 1.23 0.09 0.24 0.84 0.22 15.45 96.12 98.74 0.58
−15 cm 36.77 29.05 11.73 0.43 0.10 1.21 0.07 0.11 0.80 0.22 16.03 96.52 98.96 0.49
−20 cm 36.80 28.72 11.36 0.45 0.10 1.26 0.08 0.09 0.82 0.23 16.04 95.95 98.89 0.49
−25 cm 37.83 28.80 10.77 0.46 0.10 1.33 0.08 0.07 0.83 0.23 16.27 96.77 98.89 0.47
−30 cm 37.95 28.80 10.49 0.46 0.11 1.32 0.06 0.06 0.84 0.23 16.12 96.44 98.94 0.46
−35 cm 37.92 29.32 10.78 0.47 0.10 1.29 0.08 0.11 0.87 0.18 15.86 96.98 98.91 0.46
−40 cm 37.83 28.68 10.32 0.48 0.11 1.35 0.08 0.13 0.85 0.18 15.43 95.44 98.82 0.46
−45 cm 50.50 22.66 7.99 0.41 0.09 1.17 0.07 0.07 0.80 0.15 12.74 96.65 98.75 0.46
−50 cm 72.10 11.95 4.34 0.28 0.06 0.83 0.04 0.03 0.73 0.08 7.02 97.46 98.52 0.53

P3

−8 cm 36.88 27.53 11.58 0.42 0.16 1.11 0.06 0.14 0.77 0.22 16.52 95.39 98.56 0.51
−16 cm 36.97 28.58 11.11 0.42 0.13 1.20 0.06 0.11 0.76 0.22 16.39 95.95 98.81 0.48
−24 cm 39.11 29.07 11.20 0.45 0.12 1.30 0.06 0.11 0.80 0.21 16.16 98.59 98.89 0.48
−32 cm 38.47 29.81 10.63 0.45 0.09 1.25 0.07 0.12 0.84 0.19 15.41 97.33 99.05 0.45
−36 cm 39.87 28.57 10.52 0.46 0.10 1.32 0.06 0.11 0.83 0.18 15.61 97.63 99.00 0.47

UCC: upper continental crust; PAAS: Average Post-Archaean Australian Shale; NASC: Average North American
Shale Composite. CIW: chemical index of weathering; ICV: index of compositional variability.

Al2O3 varies between 11.4 and 29.8% with an average of 26.0% among the samples; this
is a common oxide in minerals such as kaolinite (Al2Si2O5(OH)4) and gibbsite (Al(OH)3).
Among the profiles, Al2O3 content presents an opposite behavior when compared with
SiO2 because of increased Si mobility. Fe2O3, TiO2 and MnO oxides and the loss on ignition
(LOI) also increase upward and vary between 4.3 and 15.2% (11.4% average), 0.7 and
0.9% (0.8% average), 0.03 and 0.46% (0.18% average) and 6.6 and 16.5% (14.1 average),
respectively (Table 1). These elements may be related to hematite (Fe2O3), magnetite (Fe3O4)
and manganese oxide (MnO2) minerals. The B1 tailing dam presents a mean chemical
composition marked by iron oxides (48%), silica (20.6%), aluminum oxides (3.2%) and
manganese oxides (1.0%) [42]. According to [43], the tailings’ composition is rich in iron
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(48.7%) and manganese (0.5%) and poor in alumina (3.1%), and the natural sediments are
composed by silica (59.0%), alumina (13.1%), some iron (15.2%) and manganese (0.2%).

Following [2], hydrological/sedimentary processes such as sorting and recycling may
be of particular importance in modifying the relative mineral abundances and consequently
the concentrations of specific elements, and in the upper continental crust chemical weath-
ering process, a great surface fluid loss of alkali metal elements such as Na2O, K2O and
CaO occurs as ions and forming clay minerals (e.g., kaolinite, illite and smectite). MgO and
P2O5 occur in minor proportions and vary across the profiles.

The Al2O3-CaO+Na2O+K2O-Fe2O3+MgO (A-CNK-FM) ternary diagram [56–58] is
used to access the weathering trends. The studied sediment samples present a range of
compositions that are plotted along the A-axis (Figure 3A), suggesting different weathering
histories with depletion of Ca2+, Na+ and K+ compared with the average upper continental
crust (UCC), Average Post-Archaean Australian Shale (PAAS) and Average North American
Shale Composite (NASC). In these samples, the relative increase in Al2O3 and Fe2O3 may
be related to the iron and aluminum oxides and hydroxides. But P1 (75 and 70 cm) samples
are in a different group, closest to illite and muscovite, as shown in Figure 3A.
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The chemical index of weathering (CIW) and index of compositional variability [44,45]
are calculated for all the samples, and show similar patterns (Table 1) that correlate to
the observations made in the A-CNK-FM diagram (Figure 3A). The highest values for
the CIW, 99.0 ± 1.2, corresponds to the samples located in the advanced weathering
trend, for sediment samples from P1, P2 and P3. Immature sediments, containing a
high proportion of silicates other than clays, commonly show high values of this index
(ICV > 1), whereas mature sediments, depleted in silicates other than clays, generally
show low ICV values (ICV < 1). The ICV values vary between 0.45 and 1.17, with only
one exception >1 (P1 = 75 cm). This suggests an advanced weathering trend, like the CIW
and the A-CNK-FM diagram (Figure 3A).

The classification diagram of terrigenous sandstones and shales was used with log
(Fe2O3/K2O) vs. log (SiO2/Al2O3) (Ref. [59]—Figure 2B). According to [2], the sediment
compositional maturity is mainly used to reflect degrees of clastic material altered during
the processes of weathering and transport trend to final products. As long as sediment
maturity increases, there is an increase in quartz content at the expense of feldspar and in
lithic fragments in the sediments. All samples nearly fall into the Fe-Shale and Fe-Sand
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region, indicating that the chemical maturity of these sediments is highly weathered.
Samples with very high Fe2O3/K2O ratios (>4) are classified as iron-rich or ferruginous
and are further broken down as Fe-rich sands or Fe-rich shales [59].

4.2. Trace and Rare-earth Elements (REEs)

The samples’ trace element contents, including REEs, are listed in Table 2, and the
concentrations are compared with the average North American Shale (NASC) [46,58],
Average Post-Archaean Australian Shale (PAAS), upper continental crust (UCC) [53,54] and
CC1 chondrites [47,48]. The data normalized to NASC from [46] and to CC1 chondrites [47,48]
are plotted in distribution diagrams according to each profile (Figure 4).

The Sc, Co, Ni, Rb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th
and U concentrations increase from the deepest layers to the top ones, mainly in P1 and
P2; the values of Sr and W are practically constant, with differences between the depths of
−30 cm in P1 and −15 and in P2, and there is a decrease in Zr and Hf from the deeper
layers to the top ones. The depletion of the Rb, Sr and Ba elements in the bottom sediments
relative to UCC, PASS and NASC can be noticed. Compared with UCC, PASS and NASC,
La, Ce, Pr, Nd, Sm, Th and U are slightly enriched, particularly in the upper layers. Cs
is enriched in sampled sediments relative to the UCC, but it is depleted in most of the
sediments relative to PAAS (Figure 4 and Table 2).

Samples P1 and P2 at depths of 35 cm and 20 cm, respectively, are strongly enriched in
W relative to NASC, which may be due to the concentration of iron–manganese minerals.
The samples of P1 (70 and 75 cm) and P2 (50 cm) are strongly enriched in Zr and Hf relative
to PAAS and UCC, which may be due to the concentration of certain accessory minerals.
Although higher than UCC, NASC and PASS in most samples, Ni concentrations in sam-
ples P1 (10 cm) and P3 (24 cm) may be associated with the crystalline structure of some
ferromagnesian minerals. For Ba, Ce, Nd, Sm and Yb, sample P3 (36 cm) concentrations are
well below the reference UCC, NASC and PASS levels. All the samples present a positive
anomaly for Cs, and according to [60], because of this element’s mobility (low charge and
large ionic radius) during the weathering processes, it is more easily carried out the system
by the weathering fluids. Another important point is the contraction of Co at the depth of
−24 cm at point P3 and the increase in Th and U concentrations at all points, especially in
the deeper samples (Figure 4), which is probably associated to accessory minerals.

In Figure 5, one can notice that samples from P1, P2 and P3 show an REE element
increase from the bottom to the upper portions. The average ranking of concentrations is
as follows: Ce > La > Nd > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu,
ranging from 99.35 mg/kg for Ce to 0.38 mg/kg for Lu. The REE average concentrations in
sediments from the deepest layers of the three sampling points were normalized by using
CC1 Chondrite, and different general pattern and enrichment were observed; however, the
ranking of concentrations was similar. The highest patterns were for P2 (−30 cm), and the
lowest one was for P1 (−75 cm) according to the normalization method (Figure 4 and Table 3).

Bottom sediment samples present an average REE concentration of ∑REEn =
751.58 mg/kg ± 113.15 and a fractioning pattern characterized by a continuous depletion
in light REEs from La to Sm (La/Smcn = 4.27 ± 0.19) and a regular decreased distribution of
heavy REEs from Gd to Yb (Gd/Ybcn = 1.85 ± 0.22). However, the average concentration of
REEs in the P1 upper portions −5 to −65 cm (ΣREE = 759.86 mg/kg ± 38.17) is higher than
in the lower portions −70 to −75 cm (ΣREE = 438.01 mg/kg ± 43.53). The upper samples
present the highest contents of REEs, probably due to the higher presence of iron and
aluminum oxides and hydroxides, which can be related to the more advanced weathering
state of these samples (Figure 3).
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Table 2. Trace and rare earth elements concentrations in sediments (mg/kg).

Sc Ni Co V Zn Cu Rb Sr Zr Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf W Th U

NASC 14.90 58.00 25.70 130.00 2.70 -- 125.00 142.00 200.00 5.16 636.00 31.10 67.03 7.90 30.40 5.98 1.25 5.50 0.85 5.54 1.04 3.28 0.50 3.11 0.46 6.30 2.10 12.3 2.66

PASS 16.00 55.00 23.00 150.00 85.00 50.00 160.00 200.00 210.00 15.00 650.00 38.20 79.60 8.83 33.90 5.55 1.08 4.66 0.77 4.68 0.99 2.85 0.41 2.82 0.43 -- -- 3.10 --

UCC 11.00 20.00 10.00 60.00 71.00 25.00 110.00 350.00 240.00 3.70 700.00 30.00 64.00 7.10 26.00 4.50 0.88 3.80 0.64 3.50 0.80 2.30 0.33 2.20 0.32 5.80 -- 10.50 2.50

CC1 -- 9.90 -- -- -- -- 2.32 -- -- 0.18 2.41 0.24 0.64 0.09 0.47 0.15 0.06 0.20 0.04 0.25 0.06 0.17 0.03 0.16 0.02 -- -- 0.03 0.01

P1

−5 cm 19.20 63.00 19.60 111.00 102.00 50.00 96.10 36.00 112.00 4.82 479.00 48.10 97.10 9.72 34.90 7.20 1.52 6.05 0.84 4.83 0.91 2.58 0.38 2.40 0.36 3.38 5.00 27.00 10.52
−10 cm 21.40 82.00 36.90 114.00 100.00 55.00 87.80 26.00 114.00 4.87 479.00 49.00 103.40 10.23 35.90 7.00 1.64 6.49 0.91 5.17 1.01 2.82 0.40 2.70 0.41 3.37 2.60 26.70 11.13
−15 cm 21.10 67.00 21.90 100.00 100.00 60.00 79.90 37.00 119.00 4.51 481.00 46.10 99.60 9.80 34.90 7.10 1.66 6.02 0.88 5.14 0.99 2.85 0.41 2.70 0.39 3.29 2.30 24.10 11.15
−20 cm 19.30 65.00 20.30 92.00 108.00 61.00 82.70 39.00 159.00 4.53 483.00 47.90 106.60 10.40 37.20 7.30 1.64 6.61 0.93 5.34 1.05 3.08 0.45 2.90 0.42 4.32 2.50 23.30 10.54
−25 cm 19.90 67.00 25.20 98.00 98.00 57.00 89.60 38.00 123.00 5.12 460.00 48.10 102.00 10.59 37.50 7.50 1.69 6.85 0.98 5.67 1.11 3.23 0.47 3.10 0.44 3.69 2.60 24.50 11.11
−30 cm 21.40 67.00 23.00 103.00 85.00 54.00 100.00 34.00 118.00 5.85 467.00 49.80 99.50 10.76 38.00 7.90 1.71 6.33 0.93 5.33 1.06 2.91 0.40 2.80 0.42 3.75 3.20 25.60 10.34
−35 cm 23.40 64.00 18.50 128.00 86.00 95.00 93.80 31.00 130.00 5.21 465.00 48.70 98.90 10.19 36.50 7.10 1.52 6.10 0.84 5.10 0.99 2.69 0.38 2.60 0.38 3.80 11.30 25.50 9.06
−40 cm 23.40 59.00 16.60 123.00 88.00 66.00 92.70 32.00 150.00 5.11 470.00 50.70 106.20 10.54 37.80 7.40 1.55 6.35 0.88 4.92 0.99 2.90 0.41 2.80 0.39 4.33 3.20 26.20 9.41
−45 cm 23.10 60.00 16.90 136.00 92.00 60.00 88.30 31.00 130.00 4.74 457.00 50.40 101.90 10.43 36.90 7.10 1.56 6.26 0.88 5.11 0.98 2.77 0.41 2.60 0.39 4.04 2.40 26.60 9.91
−50 cm 22.80 68.00 23.00 116.00 91.00 51.00 80.40 31.00 180.00 4.02 445.00 49.70 107.10 10.41 36.60 7.10 1.54 6.14 0.88 5.06 0.96 2.80 0.39 2.60 0.39 5.08 2.70 25.80 9.58
−55 cm 22.00 61.00 21.90 95.00 96.00 46.00 81.90 30.00 195.00 4.15 442.00 45.50 96.70 9.57 34.20 6.40 1.46 5.83 0.79 4.72 0.88 2.51 0.36 2.50 0.36 5.24 2.10 23.00 9.05
−60 cm 22.10 61.00 20.40 93.00 89.00 44.00 84.80 30.00 176.00 4.20 454.00 45.20 95.00 9.36 33.80 6.20 1.37 5.35 0.75 4.50 0.90 2.57 0.37 2.40 0.34 4.70 2.30 24.30 9.00
−65 cm 24.80 62.00 19.10 113.00 96.00 48.00 82.00 31.00 180.00 4.02 467.00 43.40 90.90 9.04 31.90 6.20 1.40 5.44 0.77 4.35 0.87 2.60 0.35 2.50 0.33 4.85 4.60 23.10 9.09
−70 cm 14.60 38.00 12.70 61.00 59.00 28.00 65.10 39.00 366.00 2.65 419.00 27.90 59.00 6.06 21.70 4.30 0.93 3.97 0.56 3.44 0.68 2.10 0.30 2.10 0.32 8.98 1.50 15.60 6.07
−75 cm 11.50 33.00 8.30 47.00 46.00 20.00 60.10 42.00 415.00 2.12 392.00 24.90 51.00 5.23 18.60 3.70 0.76 3.26 0.48 2.95 0.60 1.79 0.27 1.90 0.28 10.06 1.60 13.60 5.35

P2

−5 cm 18.60 58.00 15.00 96.00 93.00 47.00 73.70 25.00 86.00 4.97 368.00 48.00 99.40 10.13 35.90 7.00 1.49 6.03 0.83 4.75 0.91 2.57 0.36 2.50 0.36 2.88 1.90 23.90 9.25
−10 cm 21.20 67.00 17.00 100.00 104.00 57.00 80.60 31.00 102.00 5.10 414.00 50.80 105.10 10.87 37.90 7.60 1.70 6.53 0.95 5.41 1.02 2.87 0.40 2.70 0.39 3.14 2.00 25.10 10.75
−15 cm 21.20 61.00 13.90 111.00 90.00 51.00 77.30 24.00 112.00 5.66 350.00 51.30 109.00 11.15 39.90 7.90 1.73 6.62 0.93 5.43 1.04 2.85 0.40 2.70 0.39 3.33 2.00 25.30 8.78
−20 cm 22.50 70.00 14.50 125.00 83.00 52.00 80.90 23.00 115.00 5.66 357.00 50.50 110.00 10.95 39.60 7.60 1.58 6.48 0.89 5.21 0.99 2.87 0.43 2.70 0.41 3.50 12.60 26.40 8.92
−25 cm 21.70 62.00 16.10 142.00 92.00 50.00 90.60 23.00 122.00 6.11 366.00 52.90 115.70 11.62 41.40 8.30 1.76 6.66 0.94 5.56 1.04 2.98 0.41 2.80 0.39 3.77 2.10 26.90 8.46
−30 cm 21.60 60.00 15.60 159.00 83.00 220.00 85.40 23.00 118.00 5.65 357.00 55.10 114.80 11.97 42.30 8.00 1.72 7.09 0.94 5.39 1.02 2.99 0.41 2.70 0.40 3.58 2.90 27.90 8.73
−35 cm 22.20 57.00 14.40 149.00 86.00 45.00 79.70 23.00 109.00 4.75 374.00 55.20 114.20 11.46 40.10 7.70 1.65 6.80 0.93 5.19 0.97 2.78 0.37 2.60 0.36 3.28 2.30 29.90 9.99
−40 cm 22.40 69.00 15.40 119.00 89.00 47.00 89.00 25.00 112.00 4.88 388.00 50.20 105.10 10.58 37.10 7.40 1.56 6.01 0.84 4.81 0.92 2.71 0.37 2.40 0.38 3.40 1.90 28.40 9.39
−45 cm 18.00 51.00 12.00 143.00 74.00 37.00 75.20 24.00 248.00 4.15 336.00 43.40 88.20 9.04 31.50 6.20 1.27 5.28 0.76 4.15 0.82 2.38 0.34 2.30 0.33 6.11 2.30 23.40 7.81
−50 cm 10.90 29.00 5.20 49.00 28.00 19.00 49.50 22.00 464.00 3.18 228.00 27.70 61.50 6.21 22.00 4.40 0.86 3.70 0.54 3.23 0.66 2.02 0.30 2.30 0.38 11.02 2.20 14.90 4.79

P3

−8 cm 20.30 65.00 15.90 126.00 92.00 56.00 79.30 27.00 110.00 5.25 360.00 51.00 105.70 10.79 39.20 7.70 1.69 6.67 0.96 5.42 1.04 2.92 0.41 2.70 0.40 3.26 2.80 27.00 10.08
−16 cm 21.00 71.00 17.90 134.00 102.00 55.00 84.50 23.00 111.00 5.87 356.00 51.00 108.40 10.95 39.80 7.80 1.57 6.73 0.95 5.57 1.07 3.14 0.41 2.80 0.42 3.42 2.20 26.60 9.36
−24 cm 20.10 135.00 130.90 122.00 79.00 50.00 82.30 22.00 116.00 5.83 367.00 51.70 110.10 11.4 40.20 7.90 1.58 6.62 0.91 5.09 1.02 2.97 0.39 2.80 0.38 3.47 2.30 27.60 8.42
−32 cm 20.80 62.00 19.90 153.00 94.00 46.00 85.00 21.00 103.00 5.16 375.00 54.80 111.50 11.34 40.60 7.50 1.57 6.38 0.87 5.02 0.98 2.72 0.39 2.50 0.37 3.10 2.10 29.90 9.87
−36 cm 19.70 70.00 32.20 145.00 93.00 46.00 88.80 23.00 5.55 5.55 54.20 54.20 41.00 11.25 7.50 1.63 0.90 6.66 0.90 5.21 1.00 2.82 0.39 0.39 0.39 1.44 2.50 8.70 8.70

UCC: upper continental crust; PAAS: Average Post-Archaean Australian Shale; NASC: Average North American Shale Composite; CC1 Chondrite.
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The Eu anomaly (Eu/Eu*) observed in all bottom sediments ranges from 0.78 to
0.65 with an average value of 0.71 (Figure 5 and Table 3), indicating that the Retiro Baixo
sediments have a moderate anomaly that may result from a complex influence of plagioclase
and heavy minerals and is usually interpreted as being inherited from igneous source
rocks [1,2,61]. The bottom sediments present light rare-earth element (LREE) enrichment
with a high La/Smcn ratio, a negative Eu anomaly and an almost flat heavy rare-earth
element (HREE) pattern with a low Gd/Ybcn ratio (Table 3).

As the REEs are concentrated in the more weathered strata, the sum of the REEs in
each sample, as seen in Figure 6A (ΣREE vs. samples), shows the weathering degree in
each profile and how they correlate among the riverbed sediment samples. Overall, all
the upper samples present the highest REE concentrations, with the upper samples from
P1 presenting an REE sum in the same magnitude order; in P2, there is an increase in the
middle portion, and P3 presents corresponding values of REE sum in all profiles, thus
indicating in each case their similarity in terms of weathering evolution.
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Table 3. Bottom sediments trace element ratios in this study and international patterns for comparison.

(ΣREE)cn (ΣREEL)cn (ΣREEH)cn (La/Sm)cn Eu/Eu* (Gd/Yb)cn Co/Th La/Sc

NASC 163.94 143.67 20.27 5.20 0.22 1.77 2.09 2.09

PASS 184.77 167.16 17.61 6.88 0.21 1.65 7.42 2.39

UCC 146.37 132.13 13.89 6.67 0.21 1.73 0.95 3.00

P1

−5 cm 742.53 596.59 146.20 4.21 0.70 1.24 0.73 2.51
−10 cm 777.40 618.61 159.33 4.41 0.74 2.04 1.38 2.29
−15 cm 750.22 594.59 155.55 4.09 0.78 1.94 0.91 2.18
−20 cm 791.99 625.62 166.95 4.13 0.72 1.80 0.87 2.48
−25 cm 798.92 623.62 175.50 4.04 0.72 1.84 1.03 2.42
−30 cm 794.34 632.63 162.14 3.97 0.74 1.79 0.90 2.33
−35 cm 760.79 609.60 151.58 4.32 0.71 1.83 0.73 2.08
−40 cm 794.88 637.63 157.20 4.31 0.69 1.90 0.63 2.17
−45 cm 780.23 624.62 155.34 4.47 0.72 1.83 0.64 2.18
−50 cm 782.60 629.62 153.60 4.41 0.71 1.95 0.89 2.18
−55 cm 718.04 575.57 142.23 4.48 0.73 1.91 0.95 2.07
−60 cm 703.71 566.56 137.65 4.59 0.73 1.88 0.84 2.05
−65 cm 682.57 545.54 137.12 4.41 0.74 1.80 0.83 1.75
−70 cm 468.79 359.35 109.60 4.09 0.69 1.76 0.81 1.91
−75 cm 407.23 312.31 94.83 4.24 0.67 1.53 0.61 2.17

P2

−5 cm 749.37 604.60 145.28 4.32 0.70 1.39 0.63 2.58
−10 cm 805.11 643.64 161.23 4.21 0.74 1.95 0.68 2.40
−15 cm 823.08 661.66 161.45 4.09 0.73 1.95 0.55 2.42
−20 cm 812.72 652.65 160.03 4.18 0.69 1.98 0.55 2.24
−25 cm 854.04 689.68 164.20 4.01 0.72 1.94 0.60 2.44
−30 cm 865.45 700.70 165.13 4.34 0.70 1.92 0.56 2.55
−35 cm 843.46 686.68 156.77 4.51 0.70 2.12 0.48 2.49
−40 cm 780.30 633.63 147.28 4.27 0.72 2.11 0.54 2.24
−45 cm 669.61 538.53 131.47 4.41 0.68 2.02 0.51 2.41
−50 cm 473.58 363.36 109.66 3.96 0.65 1.86 0.35 2.54

P3

−8 cm 811.69 648.64 163.66 4.17 0.72 1.30 0.59 2.51
−16 cm 821.30 653.65 167.53 4.12 0.66 2.00 0.67 2.43
−24 cm 825.40 665.66 159.77 4.12 0.67 1.94 4.74 2.57
−32 cm 830.78 677.67 152.83 4.60 0.69 1.91 0.67 2.63
−36 cm 827.33 669.66 158.10 4.55 0.71 2.06 3.70 2.75

UCC: upper continental crust; PAAS: Average Post-Archaean Australian Shale; NASC: Average North American
Shale Composite.
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The REEs and high-field-strength elements (HFSEs) are elements suitable for prove-
nance analysis due to their relative sharp immobility during weathering, transport, dia-
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genesis and metamorphism [60]. Refs. [2,53] suggested that REEs, Th, Sc and HFSEs are
especially useful tools for plots of different compatible–incompatible element pairs, such as
Co/Th vs. La/Sc, and have been used to differentiate felsic from mafic provenance. La and
Th are immobile elements and are more abundant in felsic than basic rocks, whereas Sc
and Co are more concentrated in basic rocks than in felsic rocks [53]. The Co/Th vs. La/Sc
diagram for the bottom sediments is displayed in Figure 6B, where most of the samples fall
in a region indicating a predominant intermediate source, which does not discard a felsic
source or a mix of felsic and mafic sources (Figure 6B).

4.3. Environmental Impacts or Historical Accumulation

According to [26], extensive environmental monitoring is required to develop geo-
chemical classification and a database. In this work, Figure 7 shows the vertical distribution
for Si, Ti, Al, Fe, Mn, V, Co, Ni, Cu and Zn in bottom sediments, and Table 4 shows values
from reference studies carried out for the upstream Córrego do Feijão Mine, Paraopeba
River [52], average element concentrations of the 208 sediment samples from the Up-
per Velhas River in the Iron Quadrangle [12], the average for the 541 sediment samples
from the whole Iron Quadrangle [38] and the intervention limits values established by
Brazilian legislation [62].
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Table 4. Chemical composition of major and trace elements (mg/kg) in reference studies and Probable
Effect Level established by Brazilian legislation CONAMA 454/2012 [62].

Si Ti Al Fe Mn V Co Ni Cu Zn

[52] 335,200 4800 25,932 127,300 775 30 7 15 12 36
[52] 420,000 1800 11,700 40,600 775 13 11 11 8 27
[12] -- -- 13,230 90,230 1320 -- -- 36 28 54
[38] -- 360 12,200 97,200 1600 -- 15 38 23 51
[62] -- -- -- -- -- -- -- 35.90 197 315

The vertical distribution trends of the major and trace element concentrations were also
investigated according to depth (Figure 7). The major and total trace element concentrations
in the sediment core showed a greater abundance of Si, followed by Al, Fe, Ti, Mn, V, Zn, Ni,
Cu and Co. The average concentrations of Al (P1 = 131,800 mg/kg, P2 = 139,210 mg/kg and
P3 = 152,000 mg/kg), Ti (P1 = 5110 mg/kg and P2 = 4900 mg/kg), Mn (P1 = 1840 mg/kg)
and Zn (P1 = 89 mg/kg, P2 = 82 mg/kg and P3 = 92 mg/kg) are higher than those obtained
by authors who previously worked in the study region (Table 4). In addition, unlike the
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behavior observed for Si, the Ti, Al, Fe, Mn and Zn concentrations increased from the
deepest to the shallowest samples (Figure 7).

The total concentrations of Co, Ni and Cu are practically constant in the sedi-
ment core, with the following ranges: P1 = 37–8 mg/kg, 82–33 mg/kg and 95–20 mg/kg;
P2 = 17–5 mg/kg, 70–29 mg/kg and 220–19 mg/kg; P3 = 131–16 mg/kg, 135–62 mg/kg
and 56–46 mg/kg. However, Co (P3 = 131 mg/kg), Ni (P3 = 135 mg/kg), Cu (P2 = 220 mg/kg),
Ti (P1 = 5400 mg/kg), Mn (P1 = 3600 mg/kg) and V (P2 = 160 mg/kg) presented temporal
effects marked by higher total concentrations at the −35 cm and −25 cm depths compared
with other samples, increasing their concentrations as observed for ∑REEs (Figures 5 and 6).
In addition, most of the Ni samples showed values above those assigned by the current
Brazilian legislation [62] (35.90 mg/kg—Table 4). According to [19], despite the elevated
concentration of Ni, it does not mean that it has the potential to be released into water
under river flow conditions; consequently, this reduces their accessibility to the food chain.

Table 5 shows minimum, maximum and mean values for contamination factor (CF),
enrichment factor (EF) and geoaccumulation index (Igeo) obtained for the major and trace
elements present in the sediment core. The CF was classified into four different classes [49]:
low degree (CF ≤ 1), moderate degree (1 < CF ≤ 3), considerable degree (3 < CF < 6) and
very high degree (CF ≤ 6). In addition, it was assumed that for EF ≤ 1.0, the contributions
of the studied metals are natural and, for EF > 1.0, the contributions can be related to
anthropogenic sources [19,24]. The Igeo was calculated by using the same background
reference, indicating, according to [50], uncontaminated for Igeo < 1, moderate pollution
for 1 < Igeo < 3, heavy pollution for 3 < Igeo < 5 and extreme pollution for Igeo > 5. The CF,
EF and Igeo values for Si, Ti and Fe are < 1.0 along the sediment core, indicating a natural
source for the contributions (Table 5).

Table 5. CF, EF and Igeo obtained for the major and trace elements for segments from the sampled
sediment core (minimum, maximum and mean values) evaluated by comparing the collected data to a
background in two sediment samples from the upstream Córrego do Feijão Mine, the Paraopeba River.

CF EF Igeo

Min Max Mean Min Max Mean Min Max Mean

Si 0.5 0.4 1.0 0.8 0.6 0.5 0.3 0.2 1.0 0.8 0.3 0.3 −1.6 −1.9 −0.6 −0.9 −1.4 −1.7
Ti 0.9 2.4 1.1 3.0 1.0 2.8 0.5 1.3 0.9 2.5 0.6 1.5 −0.7 0.7 −0.4 1.0 −0.5 0.9
Al 2.3 5.2 6.1 13.6 5.3 11.8 2.2 5.0 3.3 7.4 2.9 6.3 0.6 1.8 2.0 3.2 1.8 2.9
Fe 0.2 0.7 0.8 2.6 0.6 2.0 0.2 0.8 0.5 1.7 0.3 1.1 −2.7 −1.0 −0.8 0.8 −1.3 0.4

Mn 0.3 0.3 4.6 4.6 1.8 1.8 0.3 0.3 2.5 2.5 0.9 0.9 −2.3 −2.3 1.6 1.6 0.0 0.0
V 1.6 3.5 5.4 12.0 3.8 8.5 1.5 3.4 2.9 6.6 2.0 4.6 0.1 1.2 1.8 3.0 1.3 2.5

Co 0.7 0.5 18.7 12.3 3.1 2.1 0.7 0.5 10.2 6.8 1.7 1.1 −1.0 −1.6 3.6 3.0 0.8 0.2
Ni 1.9 2.6 8.8 11.9 4.1 5.6 1.8 2.4 4.8 6.5 2.2 3.0 0.3 0.8 2.5 3.0 1.4 1.9
Cu 1.5 2.5 17.9 28.6 4.5 7.2 1.6 2.5 9.1 14.6 2.4 3.8 0.0 0.7 3.6 4.3 1.5 2.1
Zn 0.8 1.1 3.0 4.1 2.4 3.3 0.8 1.1 1.7 2.3 1.3 1.8 −0.9 −0.5 1.0 1.4 0.65 1.1

Based on the contamination factor average values (CF—Equation (4)) and index
(Table 5), the individual contamination levels in this reservoir are shown in the following
sequence: Al > V > Cu > Ni > Zn > Ti > Co > Fe > Mn and Si. The CF values vary
between 0.2 and 28.6, characterizing sediment with low to very high contamination degrees.
Among the thirty samples of the sediment cores and considering these ten elements,
the intermediate samples from the sediment cores presented moderate to considerable
contamination degrees, marked by CF values of 28.6 for Cu at P2 (−30 cm), 18.7 for Co
at P3 (−24 cm), 13.5 for Al at P3 (−32 cm), 12.0 for Ni at P3 (−24 cm), 12.0 for V at
P2 (−30 cm), 4.6 for Mn at P1 (−25 cm), 4.1 for Zn at P1 (−20 cm) and 2.6 for Fe at P1
(−20 cm), thus characterizing the presence of the specified elements in the sediments
probably due to anthropogenic activity sources.

The mean EF (Equation (5)) values in the sediment cores samples follow the same
sequence presented for the CF values (Table 5). Al, V, Cu, Ni, Zn, Ti, Co, Fe and Mn EF
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values in the segments are greater than 1 (>1.0), indicating that contributions can be related
to anthropogenic sources. No enrichment is found for the Si element, which suggests their
lithogenic origin as the predominant source for this element. For Mn, Zn and Fe the highest
values are observed in the middle and deeper samples: 2.5 for P1 (−25 and −20 cm); 1.7 for
P1 (−20 cm); and 1.7 for P1 (−75 cm). Compared with other sampling sites and depths, Cu,
Al, Co and V reach extreme EF values (14.6, 7.4, 6.8 and 6.6, respectively) and maximum
enrichment levels at P2 (−30 cm), P1 (−5 cm), P3 (−24 cm) and P2 (−45 cm), located in
the central region or intermediate zone and close to the spillway or lake area, showing
severe sediment enrichment, except for Al located close to the beginning or river zone
in near-surface.

The geoaccumulation indexes (Equation (6)) obtained in the core samples are summa-
rized in Table 5 and show a decreasing trend in the same order of that obtained for the CF
and the EF. The calculated values range from −2.7 to 4.3, indicating uncontaminated to
heavy pollution. According to the mean Igeo values of Si, Ti and Fe (Table 5), the sediments
were considered uncontaminated by these elements. The mean geoaccumulation indexes of
the remaining elements, such as Al, V, Cu, Ni and Zn, classify the sediments as moderately
polluted (1 < Igeo < 2). Based on the maximum Igeo values, the sediments are considered
heavily polluted with Cu (4.3) at P2 (−30 cm), Co and Cu (3.6) at P3 (−24 cm) and P2
(−30 cm), Al (3.2) at P3 (−32 cm), Ni and V (3.0) at P3 (−24 and −32 cm). Thus, the CF, EF
and Igeo values of Al, Cu, Ni, V, Zn, Co and Mn suggest an anthropogenic influence on
these elements’ concentrations, but the sources or the human activities contributing to this
concentrations remain to be assessed.

Reservoirs on a river system decrease flow velocity and turbulence and accumulate
the sediment transported by runoff from upstream watersheds. The historical accumula-
tion of major and trace elements in the Retiro Baixo reservoir reflects land-use land-cover
changes, which could be due to mining, agricultural exploration, pastures, urban occu-
pation, industrial and urban wastes, exposed soil and forestry. In addition, there is a
complex geological framework, with mafic, ultramafic, gneissic, granitic, quartzite, phyllite,
dolomite and itabirite rocks and sedimentary coverings, that is reflected in the main soil
types—Ferralsols, Acrisols, Cambisols and others—which can contribute to transport from
the upper region through streams, tributaries, etc.

In a study carried out after the collapse of the Fundão iron ore tailing dam in Quadri-
latero Ferrífero [63], it was determined by using the Igeo that Ni and Zn were in the range
between unpolluted and moderately polluted. After the failure of the Fundão tailing dam in
seafloor sediments from the Espírito Santo Continental Shelf, [64] revealed a contamination
of shelf sediments with Zn, Pb, Ni, Cr, Cu and Fe before the disaster, and a noticeable
increase in Zn and Fe concentrations after the dam failure. According to [65], the concen-
trations of Al, Fe and Mn in bauxite mine-impacted water were slightly higher, while the
concentrations of Cu and Zn in sediments were high at some sampling locations; however,
apart from the mining activities, the contribution of Zn in agricultural soils might have
promoted the concentration of Cu in sediment.

In the Três Marias reservoir, according to [66], Ti, Zn and Cu are related to the
lithotypes from ultramafic rocks and sedimentary covers from the Bambuí Group and
anthropogenic sources correlated with forestry and agriculture associated with the use
of pesticides. Also, anthropogenic inputs of Co and Ni can be associated to agricultural
practices (fertilizers and pesticides), and Zn can be charged by domestic/urban sewage
and industrial effluents [6,61,65,67,68].

The Al, Cu, Ni, V, Zn, Co, Mn, Ti, Fe and Si concentrations and the CF, EF and Igeo
index values vary across the sediment core samples, demonstrating that there are geogenic or
anthropogenic contributions. The urban agglomerations (domestic sewage and the dumping
of untreated solid waste), agricultural exploitation (application of fertilizers and pesticides),
geochemical background (relief, lithology and soil) and mining activities, as well as metallurgi-
cal, automobile and petrochemical industries, in the Paraopeba River basin can all contribute
to the concentration of these elements in the bottom sediments. Thus, no major anomalies
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were observed in the surface layers of bottom sediments in the Retiro Baixo reservoir, built
between 1973 and 1981, despite the recent rupture of the B1 dam in Brumadinho, even after
comparing our data to those of other studies prior to the rupture.

5. Conclusions

The study area is inserted in a complex geological and thus geochemical background
that has been historically intervened upon by human activities such as the steel industry,
metallurgical and automotive industries, agriculture, livestock farming and mining, so any
considerations must be analyzed with caution. The rupture of the B1 dam at Brumadinho
on 01/25/2019 released around 10 million cubic meters of waste, which eventually reached
the Paraopeba River (our object of study), had worldwide repercussions and encouraged
the need for studies on possible impacts derived from this major event.

After analyzing a total of 30 samples at three different locations at various depths
in the riverbed sediments from the lower course of the Paraopeba River basin, by using
several methods and by comparing our data to previous studies, our analysis did not
show significant anomalies in the composition of sediments at various depths indicating
multifactorial inputs. Thus, our study will serve as a basis for future analyses that are
being and will be carried out in the study area, including the geochronology dating of the
sediment core at various depths, which will bring forth more considerations regarding
the variation in the major, rare-earth and trace elements’ concentrations over time and the
possible external factors associated.
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