Genesis of the Ke’eryin Two-Mica Monzogranite in the Ke’eryin Pegmatite-Type Lithium Ore Field, Songpan–Garze Orogenic Belt: Evidence from Lithium Isotopes
Abstract
:1. Introduction
2. Regional Geological Setting
3. Geology of the Ke’eryin Ore Field
4. Samples and Analytical Method
5. Results
Sample | Lithology | Li | Be | Sn | Nb | Ta | Rb | Cs | Ba | Bi | Cd | Co | Cr | Ga | Ge | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
μg/g | ||||||||||||||||
23RMS2 | Meta- sandstone | 77.99 | 9.05 | 73.45 | 15.85 | 1.26 | 201.75 | 40.08 | 711.57 | 0.18 | 3.15 | 13.42 | 68.73 | 10.45 | 4.41 | 7.68 |
23RMS3 | 50.16 | 6.49 | 22.66 | 9.79 | 0.72 | 7.27 | 9.47 | 20.62 | 0.12 | 1.40 | 20.92 | 43.05 | 17.93 | 2.50 | 3.08 | |
23RMS4 | 41.94 | 3.51 | 14.20 | 12.12 | 0.90 | 2.59 | 1.45 | 49.49 | 0.12 | 0.86 | 8.97 | 53.29 | 14.05 | 2.60 | 6.20 | |
23RMS6 | 80.47 | 4.09 | 35.12 | 13.93 | 1.02 | 63.89 | 52.98 | 181.48 | 0.13 | 1.55 | 9.25 | 71.99 | 14.26 | 3.24 | 9.70 | |
23RMS9 | 177.92 | 2.61 | 4.03 | 13.75 | 1.07 | 67.12 | 73.15 | 176.39 | 0.27 | 0.47 | 11.75 | 61.40 | 20.06 | 2.70 | 7.78 | |
23RMS10 | 77.30 | 11.25 | 36.43 | 13.35 | 1.12 | 73.81 | 35.43 | 176.04 | 0.14 | 1.60 | 10.96 | 62.11 | 18.58 | 3.30 | 16.60 | |
23RMS1 | Mica schist | 173.47 | 4.11 | 6.22 | 19.64 | 1.33 | 172.59 | 26.75 | 479.37 | 0.62 | 0.56 | 18.23 | 104.29 | 28.91 | 2.63 | 4.65 |
23RMS5 | 80.54 | 2.69 | 4.71 | 17.00 | 1.53 | 141.73 | 17.72 | 364.21 | 0.22 | 0.41 | 78.39 | 77.29 | 22.63 | 2.15 | 6.62 | |
23RMS7 | 165.24 | 2.73 | 20.45 | 16.98 | 1.13 | 67.90 | 9.63 | 245.39 | 0.13 | 1.28 | 15.81 | 77.57 | 20.25 | 2.60 | 7.24 | |
23RMS8 | 109.31 | 3.50 | 24.20 | 14.07 | 0.97 | 66.23 | 18.50 | 152.84 | 0.24 | 1.42 | 11.58 | 71.65 | 19.80 | 3.07 | 7.76 | |
23RMS11 | 140.50 | 4.56 | 13.80 | 15.07 | 0.95 | 7.75 | 11.32 | 18.34 | 0.83 | 1.19 | 16.82 | 66.10 | 20.93 | 4.84 | 7.84 | |
21FTG-1 | Two-mica monzo granite | 337 | 9.9 | - | 15.7 | 2.28 | 420 | 63.3 | 250 | 1.26 | 0.025 | 1.05 | 3.05 | 21.8 | - | 3.49 |
21FTG-2 | 178 | 6.57 | - | 15.3 | 2.1 | 337 | 19 | 416 | 1.07 | 0.098 | 1.42 | 4.67 | 22.4 | - | 3.4 | |
21FTG-3 | 110 | 2.84 | - | 14 | 1.71 | 250 | 12 | 201 | 0.325 | 0.037 | 1.3 | 2.52 | 16.3 | - | 3.58 | |
21FTG-4 | 95.3 | 3.11 | - | 16.2 | 1.27 | 339 | 11.6 | 254 | 0.243 | 0.059 | 1.32 | 4.76 | 22 | - | 4.03 | |
21FTG-5 | 93.4 | 7.82 | - | 15.7 | 2.07 | 357 | 19.5 | 208 | 0.793 | 0.178 | 0.858 | 7.14 | 22.9 | - | 2.96 | |
21FTG-6 | 115 | 3.86 | - | 18.2 | 1.81 | 312 | 14.3 | 272 | 0.488 | 0.05 | 1.34 | 3.73 | 21 | - | 3.58 | |
21MTG-1 | 256 | 8.31 | - | 19.7 | 3.2 | 377 | 35.1 | 105 | 2.26 | 0.121 | 0.705 | 4.08 | 21.7 | - | 2.42 | |
21MTG-2 | 236 | 11.8 | - | 22 | 4.16 | 414 | 51.7 | 135 | 1.62 | 0.075 | 1.09 | 3.43 | 22.3 | - | 2.56 | |
21MTG-3 | 97.7 | 3.68 | - | 18 | 1.71 | 302 | 10.2 | 127 | 4.14 | 0.064 | 0.847 | 5.66 | 22.5 | - | 2.39 | |
21MTG-4 | 117 | 3.72 | - | 20.5 | 2.01 | 328 | 16.6 | 145 | 1.22 | 0.09 | 1.1 | 8.42 | 23.2 | - | 2.61 | |
Sample | Litho- logy | Mn | Mo | Ni | Pb | Sb | Sc | Sr | Th | Ti | Tl | U | V | W | Zn | Zr |
μg/g | ||||||||||||||||
23RMS2 | Meta- sandstone | 1251.59 | 0.52 | 13.42 | 30.40 | 6.90 | 14.03 | 283.78 | 17.10 | 4187.41 | 0.90 | 3.66 | 82.13 | 2.44 | 84.38 | 276.59 |
23RMS3 | 2584.99 | 0.38 | 20.92 | 19.60 | 15.13 | 11.76 | 679.00 | 8.35 | 2653.14 | 0.03 | 2.31 | 51.02 | 77.43 | 54.76 | 110.11 | |
23RMS4 | 1808.64 | 0.19 | 8.97 | 10.67 | 12.45 | 11.83 | 538.83 | 13.13 | 3548.75 | 0.01 | 3.05 | 58.98 | 2.02 | 55.52 | 217.82 | |
23RMS6 | 809.37 | 1.21 | 9.25 | 19.39 | 10.48 | 11.96 | 372.38 | 17.94 | 4032.09 | 0.32 | 4.06 | 62.06 | 4.14 | 57.16 | 355.45 | |
23RMS9 | 2422.87 | 0.70 | 11.75 | 16.43 | 8.42 | 14.54 | 499.38 | 15.38 | 4066.77 | 0.38 | 3.94 | 69.16 | 2.14 | 73.58 | 270.88 | |
23RMS10 | 915.55 | 0.29 | 10.96 | 19.47 | 13.66 | 11.53 | 575.56 | 20.90 | 3751.11 | 0.36 | 5.19 | 57.77 | 3.79 | 69.96 | 618.95 | |
23RMS1 | Mica schist | 1739.57 | 0.31 | 18.23 | 32.42 | 11.74 | 23.99 | 435.90 | 19.81 | 5109.92 | 0.81 | 4.94 | 150.66 | 2.14 | 125.86 | 155.40 |
23RMS5 | 653.60 | 0.59 | 78.39 | 25.73 | 9.94 | 17.75 | 342.50 | 17.50 | 4964.95 | 0.68 | 3.94 | 90.52 | 251.45 | 96.45 | 240.87 | |
23RMS7 | 4432.06 | 0.44 | 15.81 | 32.03 | 14.98 | 16.26 | 797.56 | 16.94 | 4927.16 | 0.29 | 3.96 | 82.82 | 2.05 | 87.74 | 265.74 | |
23RMS8 | 1570.70 | 1.02 | 11.58 | 22.58 | 12.87 | 14.04 | 382.96 | 16.29 | 3879.00 | 0.29 | 3.98 | 66.67 | 2.61 | 93.11 | 284.86 | |
23RMS11 | 2804.22 | 1.37 | 16.82 | 10.69 | 12.15 | 14.41 | 320.46 | 14.76 | 4287.73 | 0.03 | 3.92 | 75.46 | 1.42 | 106.77 | 281.79 | |
21FTG-1 | Two-mica monzo granite | 271.06 | 0.201 | 1.27 | 39.1 | 0.04 | 1.9 | 84.2 | 20.2 | 1042.85 | 2.61 | 3.51 | 5.09 | - | 65.8 | 99.9 |
21FTG-2 | 456.93 | 0.495 | 1.47 | 37.6 | 0.06 | 1.71 | 117 | 18.7 | 1060.83 | 2.09 | 2.02 | 6.78 | - | 62.2 | 100 | |
21FTG-3 | 333.02 | 0.346 | 1.74 | 46.1 | 0.07 | 2.29 | 81.3 | 19.8 | 803.12 | 1.34 | 4.44 | 5.07 | - | 34.4 | 90 | |
21FTG-4 | 348.51 | 0.161 | 1.16 | 38.6 | 0.04 | 2.63 | 69.2 | 25.5 | 1072.82 | 1.9 | 2.57 | 5.8 | - | 58 | 111 | |
21FTG-5 | 302.04 | 0.124 | 0.981 | 41.3 | 0.03 | 1.91 | 70.4 | 13 | 815.10 | 2.06 | 2.81 | 4.14 | - | 63.7 | 78.6 | |
21FTG-6 | 402.72 | 0.275 | 0.863 | 43.9 | 0.09 | 2.33 | 91.2 | 19.8 | 1000.90 | 1.8 | 3.6 | 5.1 | - | 60.6 | 103 | |
21MTG-1 | 286.55 | 0.171 | 0.818 | 45.4 | 0.05 | 2.17 | 54.1 | 7.3 | 485.47 | 2.36 | 2.68 | 3.35 | - | 54.1 | 54.1 | |
21MTG-2 | 379.48 | 0.215 | 1.37 | 36.2 | 0.05 | 1.9 | 49.6 | 6.4 | 641.30 | 2.42 | 2.55 | 3.84 | - | 59.2 | 64.6 | |
21MTG-3 | 325.27 | 0.177 | 0.979 | 35 | 0.06 | 1.83 | 46.4 | 5.94 | 539.41 | 1.7 | 2.95 | 3.51 | - | 57.5 | 62.7 | |
21MTG-4 | 333.02 | 0.178 | 1.38 | 41.5 | 0.06 | 2.67 | 56.6 | 8.05 | 707.22 | 2 | 3.72 | 4.48 | - | 56.6 | 72.3 | |
Sample | Litho- logy | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Y |
μg/g | ||||||||||||||||
23RMS2 | Meta sandstone | 35.56 | 104.00 | 11.25 | 37.03 | 7.82 | 1.86 | 6.74 | 1.09 | 5.14 | 1.18 | 3.02 | 0.49 | 2.73 | 0.50 | 36.30 |
23RMS3 | 23.31 | 67.44 | 7.49 | 25.59 | 6.02 | 1.61 | 5.41 | 0.99 | 4.90 | 1.13 | 2.83 | 0.45 | 2.51 | 0.44 | 37.47 | |
23RMS4 | 30.65 | 86.64 | 9.45 | 30.11 | 5.94 | 1.48 | 5.28 | 0.85 | 3.91 | 0.90 | 2.34 | 0.38 | 2.16 | 0.39 | 28.19 | |
23RMS6 | 41.21 | 117.79 | 12.51 | 39.52 | 7.68 | 1.54 | 6.82 | 1.07 | 4.80 | 1.09 | 2.80 | 0.46 | 2.63 | 0.50 | 32.53 | |
23RMS9 | 34.32 | 98.27 | 10.82 | 35.23 | 7.24 | 1.81 | 6.34 | 1.02 | 4.76 | 1.09 | 2.87 | 0.49 | 2.86 | 0.52 | 33.60 | |
23RMS10 | 38.47 | 109.31 | 12.08 | 38.87 | 7.67 | 1.50 | 6.81 | 1.07 | 4.95 | 1.16 | 3.06 | 0.51 | 2.95 | 0.56 | 38.09 | |
23RMS1 | Mica schist | 42.41 | 122.86 | 13.00 | 41.39 | 8.31 | 1.86 | 7.48 | 1.22 | 5.79 | 1.37 | 3.58 | 0.60 | 3.44 | 0.61 | 42.65 |
23RMS5 | 38.83 | 113.16 | 12.07 | 38.78 | 7.77 | 1.80 | 6.96 | 1.10 | 4.99 | 1.14 | 2.93 | 0.48 | 2.71 | 0.49 | 35.18 | |
23RMS7 | 38.80 | 110.12 | 11.64 | 37.34 | 7.50 | 1.88 | 6.94 | 1.13 | 5.27 | 1.20 | 3.15 | 0.52 | 2.97 | 0.53 | 40.26 | |
23RMS8 | 37.03 | 104.34 | 11.10 | 35.09 | 7.04 | 1.66 | 6.30 | 0.99 | 4.50 | 1.01 | 2.61 | 0.42 | 2.44 | 0.43 | 32.00 | |
23RMS11 | 31.44 | 91.35 | 9.96 | 32.72 | 7.22 | 1.75 | 6.55 | 1.07 | 4.80 | 1.07 | 2.69 | 0.43 | 2.39 | 0.44 | 34.38 | |
21FTG-1 | Two-mica monzo granite | 33.60 | 63.90 | 7.03 | 25.90 | 5.16 | 0.44 | 3.40 | 0.55 | 2.22 | 0.30 | 0.78 | 0.10 | 0.59 | 0.08 | 9.95 |
21FTG-2 | 34.00 | 59.40 | 6.16 | 22.00 | 4.18 | 0.57 | 2.87 | 0.45 | 1.94 | 0.29 | 0.79 | 0.11 | 0.64 | 0.09 | 9.1 | |
21FTG-3 | 24.20 | 45.30 | 5.09 | 18.30 | 4.44 | 0.40 | 3.37 | 0.79 | 4.10 | 0.75 | 2.05 | 0.33 | 1.94 | 0.27 | 25.9 | |
21FTG-4 | 37.60 | 75.80 | 8.65 | 32.30 | 6.41 | 0.43 | 4.21 | 0.72 | 2.91 | 0.43 | 0.99 | 0.14 | 0.83 | 0.11 | 12.3 | |
21FTG-5 | 23.50 | 45.00 | 5.17 | 17.50 | 4.26 | 0.44 | 2.97 | 0.56 | 2.44 | 0.31 | 0.72 | 0.10 | 0.58 | 0.08 | 10.7 | |
21FTG-6 | 32.50 | 60.00 | 6.70 | 24.40 | 5.27 | 0.54 | 3.88 | 0.68 | 2.90 | 0.41 | 1.05 | 0.15 | 0.86 | 0.11 | 13.3 | |
21MTG-1 | 12.00 | 24.00 | 2.63 | 9.43 | 2.53 | 0.27 | 2.04 | 0.48 | 2.62 | 0.47 | 1.00 | 0.16 | 0.94 | 0.12 | 14.3 | |
21MTG-2 | 10.80 | 23.80 | 2.43 | 9.01 | 2.59 | 0.27 | 2.04 | 0.50 | 2.50 | 0.42 | 0.89 | 0.13 | 0.84 | 0.09 | 13.5 | |
21MTG-3 | 11.70 | 21.50 | 2.30 | 8.67 | 2.29 | 0.24 | 1.73 | 0.41 | 2.04 | 0.38 | 0.87 | 0.15 | 0.84 | 0.11 | 12.3 | |
21MTG-4 | 12.90 | 24.20 | 2.90 | 11.00 | 3.24 | 0.27 | 2.60 | 0.68 | 3.32 | 0.55 | 1.22 | 0.19 | 0.92 | 0.12 | 19.5 |
Lithology | Sample | Li (μg/g) | δ7Li (‰) | 2SD |
---|---|---|---|---|
Metasandstone | 23RMS2 | 77.99 | 0.1 | 0.5 |
23RMS3 | 50.16 | 6.9 | 0.5 | |
23RMS4 | 41.94 | 5.0 | 0.5 | |
23RMS6 | 80.47 | 3.7 | 0.5 | |
23RMS9 | 177.92 | 3.7 | 0.5 | |
23RMS10 | 77.30 | 3.6 | 0.5 | |
Mica schist | 23RMS1 | 173.47 | −8.2 | 0.5 |
23RMS5 | 80.54 | −8.6 | 0.5 | |
23RMS7 | 165.24 | −1.2 | 0.5 | |
23RMS8 | 109.31 | 0 | 0.5 | |
23RMS11 | 140.50 | −1.6 | 0.5 | |
GYQ07-1 * | 116 | −6.3 | 0.5 | |
KRY11-1 * | 108 | −9.1 | 0.5 | |
Two-mica monzo granite | 21FTG-1 | 337 | −1.0 | 0.5 |
21FTG-2 | 178 | −1.7 | 0.5 | |
21FTG-4 | 95.3 | −3.3 | 0.5 | |
21FTG-5 | 93.4 | −1.1 | 0.5 | |
21MTG-1 | 256 | −0.8 | 0.5 | |
21MTG-2 | 236 | −1.4 | 0.5 | |
21MTG-3 | 97.7 | −0.7 | 0.5 |
6. Discussion
6.1. Formation Conditions of the Ke’eryin Two-Mica Monzogranite
6.2. Magma Source
6.3. Implications on Lithium Mineralization
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.H.; Dai, H.Z.; Liu, S.B.; Wang, C.H.; Yu, Y.; Dai, J.J.; Liu, L.J.; Yang, Y.Q.; Ma, S.C. Research and exploration progress on lithium deposits in China. China Geol. 2020, 1, 137–152. [Google Scholar] [CrossRef]
- Wang, D.H.; Sun, Y.; Zhou, S.C.; Liang, T.; Fu, Y.; Fu, X.F.; Hao, X.F.; San, J.Z.; Liu, X.F.; Hou, K.J.; et al. Progress of the deep exploration technology demonstration project for lithium energy metal mineral base. Miner. Depos. 2021, 40, 641–654, (In Chinese with English abstract). [Google Scholar]
- Wang, D.H.; Chen, Y.C.; Jiang, B.; Huang, F.; Wang, Y.; Li, H.Q.; Hou, K.J. Preliminary study on the Triassic continental mineralization system in China. Earth Sci. Front. 2020, 27, 45–59, (In Chinese with English abstract). [Google Scholar]
- Xu, Z.Q.; Fu, X.F.; Wang, R.C.; Li, G.W.; Zheng, Y.L. Generation of lithium–bearing pegmatite deposits within the Songpan–Ganze orogenic belt, East Tibet. Lithos 2020, 354–355, 105281. [Google Scholar] [CrossRef]
- Tang, G.F.; Wu, S.X. Geological Study Report of Jiajika Granite-Pegmatite Type Lithium Deposit in Kangding, Sichuan; Sichuan Geological and Mineral Bureau (Panxi Geological Brigade): Xichang, China, 1984. (In Chinese) [Google Scholar]
- Li, J.K. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China; China University of Geosciences: Beijing, China, 2006; pp. 1–226, (In Chinese with English abstract). [Google Scholar]
- Gu, C.H. Metallogenic regularity of spodumene deposits in the closely spaced pegmatite area in the southeastern Ke’eryin pegmatite field, Sichuan province. Contrib. Geol. Miner. Resour. Res. 2014, 29, 59–65, (In Chinese with English abstract). [Google Scholar]
- Wang, D.H.; Wang, C.H.; Sun, Y.; Li, J.K.; Liu, S.B.; Rao, K.Y. New progresses and discussion on the survey and research of Li, Be, Ta ore deposits in China. Geol. Surv. China 2017, 4, 1–8, (In Chinese with English abstract). [Google Scholar]
- Li, X.J.; Li, J.K.; Liu, Y.C.; Xiong, C.L. Geochemical features of muscovite granite in the Zhawulong granitic pegmatite type rare metal deposit, Western Sichuan. Geol. Rev. 2018, 64, 1005–1016, (In Chinese with English abstract). [Google Scholar]
- Fu, X.F.; Liang, B.; Zou, F.G.; Hao, X.F.; Hou, L.W. Discussion on metallogenic geological characteristics and genesis of rare polymetallic ore fields in western Sichuan. Acta Geol. Sin. 2021, 95, 3054–3068, (In Chinese with English abstract). [Google Scholar]
- Hao, X.F.; Fu, X.F.; Liang, B.; Yuan, L.P.; Pan, M.; Tang, Y. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan,and their geological sighificance. Miner. Depos. 2015, 34, 1199–1208, (In Chinese with English abstract). [Google Scholar]
- Dai, H.Z.; Wang, D.H.; Liu, L.J.; Yu, Y.; Dai, J.J. Geochronology and geochemistry of Li(Be)-Bearing granitic pegmatites from the Jiajika superlarge Li-polymetallic deposit in Western Sichuan, China. J. Earth Sci. 2019, 30, 707–727. [Google Scholar] [CrossRef]
- Fei, G.C.; Menuge, J.F.; Li, Y.Q.; Yang, J.Y.; Deng, Y.; Chen, C.S.; Yang, Y.F.; Qin, L.Y.; Zheng, L.; Tang, W.C. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U–Pb geochronology and Hf isotopic compositions. Lithos 2020, 364–365, 105555. [Google Scholar] [CrossRef]
- Fei, G.C.; Yang, Z.; Yang, J.Y.; Luo, W.; Deng, Y.; Lai, Y.T.; Tao, X.X.; Zheng, L.; Tang, W.C.; Li, J. New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating. Acta Geol. Sin. 2020, 94, 836–849, (In Chinese with English abstract). [Google Scholar]
- Li, X.; Dai, H.Z.; Wang, D.H.; Liu, S.B.; Wang, G.H.; Wang, C.H.; Huang, F.; Zhu, H.Y. Geochronological and geochemical constraints on magmatic evolution and mineralization of the northeast Ke’eryin pluton and the newly discovered Jiada pegmatite-type lithium deposit, Western China. Ore Geol. Rev. 2022, 150, 105164. [Google Scholar] [CrossRef]
- Li, J.K.; Chou, I.M. Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika lithium deposit, China, under elevated external pressures in a hydrothermal diamond-anvil Cell. Geofluids 2017, 2017, 9252913. [Google Scholar] [CrossRef]
- Xiong, X.; Li, J.K.; Wang, D.H.; Liu, L.J.; Dai, H.Z. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit. Acta Petrol. Miner. 2019, 38, 241–253, (In Chinese with English abstract). [Google Scholar]
- Xiong, X.; Li, J.K.; Li, X.J.; Yan, Q.G.; Zhang, J.M. Mineralization process of Zhawulong granitic-pegmatite type lithium deposit in western Sichuan: Evidences from fluid inclusion and isotopic studies. Miner. Depos. 2021, 40, 997–1012. [Google Scholar]
- Fei, G.C.; Menuge, J.F.; Chen, C.S.; Yang, Y.L.; Deng, Y.; Li, Y.G.; Zheng, L. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze Fold Belt, southwestern Sichuan province, China. Ore Geol. Rev. 2021, 139, 104441. [Google Scholar] [CrossRef]
- Yan, Q.G.; Li, J.K.; Li, X.J.; Liu, Y.C.; Li, P.; Xiong, X. Source of the Zhawulong granitic pegmatite–type lithium deposit in the Songpan–Ganzê orogenic belt, Western Sichuan, China: Constrants from Sr–Nd–Hf isotopes and petrochemistry. Lithos 2020, 378–379, 105828. [Google Scholar] [CrossRef]
- Zhang, H.J.; Tian, S.H.; Wang, D.H.; Li, X.F.; Liu, T.; Zhang, Y.J.; Fu, X.F.; Hao, X.F.; Hou, K.J.; Zhao, Y.; et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite–pegmatite deposit, Sichuan, China. Ore Geol. Rev. 2021, 134, 104139. [Google Scholar] [CrossRef]
- Shi, Z.L.; Zhang, H.F.; Cai, H.M. Petrogenesis of strongly peraluminous granites in Markan area, Songpan Fold Belt and its tectonic implication. Earth Sci. 2009, 34, 569–584, (In Chinese with English abstract). [Google Scholar]
- de Sigoyer, J.; Vanderhaeghe, O.; Duchêne, S.; Billerot, A. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China. J. Asian Earth Sci. 2014, 88, 192–216. [Google Scholar] [CrossRef]
- Deschamps, F.; Duchêne, S.; de Sigoyer, J.; Bosse, V.; Benoit, M.; Vanderhaeghe, O. Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons inthe Songpan Garze accretionary orogenic wedge (SW China). J. Petrol. 2017, 58, 2221–2256. [Google Scholar] [CrossRef]
- Li, X.F.; Tian, S.H.; Wang, D.H.; Zhang, H.J.; Zhang, Y.J.; Fu, X.F.; Hao, X.F.; Hou, K.J.; Zhao, Y.; Qin, Y.; et al. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geochemistry. Miner. Depos. 2020, 39, 273–304, (In Chinese with English abstract). [Google Scholar]
- Bureau of Geology and Mineral Resources of Sichuan Province. Regional Geology of Sichuan Province; Geological Publishing House: Beijing, China, 1991; pp. 1–732. (In Chinese) [Google Scholar]
- Li, S.; Miller, C.F.; Wang, T.; Xiao, W.; Chew, D. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas. Geology 2021, 50, 427–431. [Google Scholar] [CrossRef]
- You, C.F.; Castillo, P.R.; Gieskes, J.M.; Chan, L.H.; Spivack, A.J. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth Planet. Sci. Lett. 1996, 140, 41–52. [Google Scholar] [CrossRef]
- Tomascak, P.B. Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. Rev. Miner. Geochem. 2004, 55, 153–195. [Google Scholar] [CrossRef]
- Penniston-Dorland, S.C.; Liu, X.M.; Rudnick, R.L. Lithium isotope geochemistry. Rev. Miner. Geochem. 2017, 82, 165–217. [Google Scholar] [CrossRef]
- Teng, F.Z.; Dauphas, N.; Watkins, J.M. Non-traditional stable isotopes: Retrospective and prospective. Rev. Miner. Geochem. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Richter, F.M.; Davis, A.M.; DePaolo, D.J.; Watson, E.B. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta 2003, 67, 3905–3923. [Google Scholar] [CrossRef]
- Teng, F.Z.; McDonough, W.F.; Rudnick, R.L.; Walker, R.J.; Sirbescu, M.L.C. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am. Miner. 2006, 91, 1488–1498. [Google Scholar] [CrossRef]
- Teng, F.Z.; McDonough, W.F.; Rudnick, R.L.; Walker, R.J. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet. Sci. Lett. 2006, 243, 701–710. [Google Scholar] [CrossRef]
- Barnes, E.M.; Weis, D.; Groat, L.A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos 2012, 132–133, 21–36. [Google Scholar] [CrossRef]
- Deveaud, S.; Millot, R.; Villaros, A. The genesis of LCT type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem. Geol. 2015, 411, 97–111. [Google Scholar] [CrossRef]
- Tomascak, P.B.; Magna, T.; Dohmen, R. Advances in Lithium Isotope Geochemistry; Springer International Publishing: New York, NY, USA, 2016; pp. 1–195. [Google Scholar]
- Li, J.; Huang, X.L.; Wei, G.J.; Liu, Y.; Ma, J.L.; Han, L.I.; He, P.L. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare metal granites. Geochim. Cosmochim. Acta 2018, 240, 64–79. [Google Scholar] [CrossRef]
- Ballouard, C.; Elburg, M.A.; Tappe, S.; Reinke, C.; Ueckermann, H.; Doggart, S. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa). Ore Geol. Rev. 2020, 116, 103252. [Google Scholar]
- Chen, B.; Huang, C.; Zhao, H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chem. Geol. 2020, 551, 119769. [Google Scholar] [CrossRef]
- Zhou, J.S.; Wang, Q.; Xu, Y.G.; Cempírek, J.; Wang, H.; Ma, J.L.; Wei, G.J.; Huang, T.Y.; Zhu, G.H.; Zhang, L. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites. Chem. Geol. 2021, 584, 120484. [Google Scholar] [CrossRef]
- Fan, J.J.; Tang, G.J.; Wei, G.J.; Wang, H.; Xu, Y.G.; Wang, Q.; Zhou, J.S.; Zhang, Z.Y.; Huang, T.Y.; Wang, Z.L. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos 2020, 352–353, 105236. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Li, X.H.; Griffin, W.L.; Tang, Y.J.; Pearson, N.J.; Liu, Y.; Chu, M.F.; Li, Q.L.; Tang, G.Q.; O’Reilly, S.Y. Extreme lithium isotopic fractionation in three zircon standards (Plešovice, Qinghu and Temora). Sci. Rep. 2015, 5, 16878. [Google Scholar]
- Sun, H.; Gao, Y.J.; Xiao, Y.L.; Gu, H.O.; Casey, J.F. Lithium isotope fractionation during incongruent melting: Constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China. Chem. Geol. 2016, 439, 71–82. [Google Scholar] [CrossRef]
- Zhang, H.J.; Tian, S.H.; Wang, D.H.; Liu, T.; Li, X.F.; Zhang, Y.J.; Fu, X.F.; Hao, X.F.; Hou, K.J.; Zhao, Y.; et al. Lithium isotopic constraints on the petrogenesis of the Jiajika two-mica granites and associated Li mineralization. Ore Geol. Rev. 2023, 150, 105174. [Google Scholar] [CrossRef]
- Roger, F.; Malavieille, J.; Leloup, P.H.; Calassou, S.; Xu, Z. Timing of granite emplacement and cooling in the Songpan-Garze Fold Belt (eastern Tibetan Plateau) with tectonic implications. J. Asian Earth Sci. 2004, 22, 465–481. [Google Scholar] [CrossRef]
- Roger, F.; Jolivet, M.; Malavieille, J. The tectonic evolution of the Songpan-Garze (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis. J. Asian Earth Sci. 2010, 39, 254–269. [Google Scholar] [CrossRef]
- Guo, X.; Gao, R.; Randy Keller, G.; Xu, X.; Wang, H.; Li, W. Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range. Earth Planet. Sci. Lett. 2013, 379, 72–80. [Google Scholar] [CrossRef]
- Sengor, A.M.C. Tectonic subdivisions and evolution of Asia. Bull. Tech. Univ. Istanb. 1985, 46, 355–435. [Google Scholar]
- Mattauer, M.; Malavielle, J.; Calassou, S. La chane triasique de Songpan-Ganze (oust Sichun at east Tibet): Une chane de plissment-decollement sur margepassive. Translated title: A decollement-fold belt on a passive margin. ComptesRendus de I’ Acad. Sci. Paris 1992, 314, 619–626. [Google Scholar]
- Xu, Z.Q.; Hou, L.W.; Wang, Z.X.; Fu, X.F.; Huang, M.H. Orogenic Process of the Songpan-Ganzi Orogenic Belt, China; Geological Publishing House: Beijing, China, 1992; pp. 1–202. (In Chinese) [Google Scholar]
- Nie, S.; Yin, A.; Rowley, D.B.; Jin, Y. Exhumation of the Dabie Shan ultrahigh pressure rocks and accumulation of the Songpan-Ganze flysch sequence, central China. Geology 1994, 22, 999–1002. [Google Scholar] [CrossRef]
- Yin, A.; Hrrison, T.M. Geologic evolution of the Himalayane Tibetan orogen. Annu. Rev. Earth Planet Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Dong, Y.P.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production. Geol. Soc. Am. Bull. 2010, 122, 2041–2062. [Google Scholar] [CrossRef]
- Harrowfield, M.J.; Wilson, J.L. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. J. Struct. Geol. 2005, 27, 101–117. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhang, L.; Harris, N.; Jin, L.L.; Yuan, H. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in songpan-garze fold belt, eastern Tibetan plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contrib. Miner. Petrol. 2006, 152, 75–88. [Google Scholar] [CrossRef]
- Zhang, H.F.; Parrish, R.; Zhang, L.; Xu, W.C.; Yuan, H.L.; Gao, S.; Crowley, Q.G. Atype granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos 2007, 97, 323–335. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, H.F.; Clemens, J.D.; Wang, Q.W.; Kan, Z.Z.; Wang, K.M.; Ni, P.Z.; Liu, X.M. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos 2007, 96, 436–452. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, M.F.; Min, S.; Zhao, Y.J.; Wilde, S.; Long, X.P.; Yan, D.P. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet. Sci. Lett. 2010, 290, 481–492. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Du, J.X.; Liang, F.H.; Wu, C.; Liu, X.J. Structure and metamorphism of Markam gneiss dome from the eastern Tibetan plateau and its implications for crustal thickening, metamorphism, and exhumation. Geochem. Geophy. Geosy. 2019, 20, 24–45. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Fu, X.F.; Zhao, Z.B.; Li, G.W.; Zheng, Y.L.; Ma, Z.L. Discussion on relationship of gneiss dome and metallogenic regularity of pegmatite-type lithium deposits. Earth Sci. 2019, 44, 1454–1463, (In Chinese with English abstract). [Google Scholar]
- Zheng, Y.L.; Xu, Z.Q.; Li, G.W.; Lian, D.Y.; Zhao, Z.B.; Ma, Z.L.; Gao, W.Q. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau. Lithos 2020, 362–363, 105475. [Google Scholar] [CrossRef]
- Wang, H.; Gao, H.; Zhang, X.Y.; Yan, Q.H.; Xu, Y.G.; Zhou, K.L.; Dong, R.; Li, P. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos 2020, 360–361, 105449. [Google Scholar] [CrossRef]
- Hu, F.Y.; Wu, F.Y.; Chen, G.H.; Yang, L. The critical factors of lithium enrichment in the metasedimentary wall rocks of granitic pegmatite-type lithium deposit: Insights from the Ke’eryin area in the eastern Songpan-Ganzi Belt. Acta Petrol. Sin. 2022, 38, 2017–2051, (In Chinese with English abstract). [Google Scholar]
- Dai, H.Z.; Wang, D.H.; Liu, S.B.; Wang, C.H.; Ma, S.C.; Ding, X.P.; Zhu, H.Y. Newly discovered euxenite and polycrase in the Jiada pegmatite type lithium deposit, Ke’eryin lithium ore field, and its geological significance. Acta Geol. Sin.-Engl. Ed. 2021, 95, 1782–1783. [Google Scholar] [CrossRef]
- Fei, G.C.; Tian, J.J.; Yang, J.Y.; Gao, J.G.; Tang, W.C.; Li, J.; Gu, C.H. New zircon U-Pb age of the super-large Lijiagou spodumene deposit in Songpan-Ganzê Fold Belt, Eastern Tibet: Implications for early Jurassic rare-metal polymetallic event. Acta Geol. Sin. 2018, 92, 1274–1275, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Gu, C.H.; Huang, W.J.; Zhou, J.R.; Li, J.; Luo, W.; Jiang, J. The Reserve Estimation and Detailed Investigation Report of the Dangba Spodumene Pegmatite in Markam Country, Sichuan; Geochemistry Exploration Team of the Sichuan Bureau of Geology and Mineral Resources Exploration: Deyang, China, 2013; (Unpublished reports, in Chinese). [Google Scholar]
- Yang, Y.Q.; Liu, S.B.; Wang, D.H.; Dai, H.Z.; Liu, L.J.; Li, X. Discussion on the difference of metallogenic characteristics and genesis of Jiajika and Keeryin rare metals ore fields in Western Sichuan. Acta Geosci. Sin. 2023, 44, 419–433, (In Chinese with English abstract). [Google Scholar]
- Qi, L.; Hu, J.; Gregoire, D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51, 507–513. [Google Scholar]
- Tian, S.H.; Hou, Z.Q.; Su, A.N.; Qiu, L.; Mo, X.X.; Hou, K.J.; Zhao, Y.; Hu, W.J.; Yang, Z.S. The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China: Enriched mantle source and petrogenesis. Geochim. Cosmochim. Acta 2015, 159, 42–60. [Google Scholar] [CrossRef]
- Moriguti, T.; Nakamura, E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chem. Geol. 1998, 145, 91–104. [Google Scholar] [CrossRef]
- Penniston-Dorland, S.C.; Bebout, G.E.; Pogge von Strandmann, P.A.E.; Elliott, T.; Sorensen, S.S. Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: Evidence from the Catalina Schist, California, USA. Geochim. Cosmochim. Acta 2012, 77, 530–545. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier Science: Oxford, UK, 2014; Volume 4, pp. 1–51. [Google Scholar]
- Li, X.; Dai, H.Z.; Huang, F.; Wang, D.H.; Liu, S.B.; Zhu, H.Y.; Wang, G.H.; Qin, J.H. Genesis of the Jiada pegmatite lithium deposit in the Ke’eryin ore field, Western Sichuan, China: Evidence from whole-rock trace element and Li isotope. Ore Geol. Rev. 2024, 170, 106106. [Google Scholar] [CrossRef]
- Ma, S.C. The Mineralization and Tectonic Significance of the Pegmatite Type Rare Metal Ore Field in Markang Area, Western Sichuan; Chinese Academy of Geological Science: Beijing, China, 2020; pp. 1–219, (In Chinese with English abstract). [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geo. Soc. Lond. Spec. Pub. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Seitz, H.M.; Brey, G.P.; Lahaye, Y.; Durali, S.; Weyer, S. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem. Geol. 2004, 212, 163–177. [Google Scholar] [CrossRef]
- Magna, T.; Wiechert, U.; Halliday, A.N. New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet. Sci. Lett. 2006, 243, 336–353. [Google Scholar] [CrossRef]
- Jeffcoate, A.B.; Elliott, T.; Kasemann, S.A.; Ionov, D.; Cooper, K.; Brooker, R. Li isotope fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta 2007, 71, 202–218. [Google Scholar] [CrossRef]
- Lai, Y.J.; von Strandmann, P.; Dohmen, R.; Takazawa, E.; Elliott, T. The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim. Cosmochim. Acta 2015, 164, 318–332. [Google Scholar] [CrossRef]
- Teng, F.Z.; Rudnick, R.L.; McDonough, W.F.; Gao, S.; Tomascak, P.B.; Liu, Y.S. Lithium isotopic composition and concentration of the deep continental crust. Chem. Geol. 2008, 255, 47–59. [Google Scholar] [CrossRef]
- Teng, F.Z.; McDonough, W.F.; Rudnick, R.L.; Dalpe, C.; Tomascak, P.B.; Chappell, B.W.; Gao, S. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta 2004, 68, 4167–4178. [Google Scholar] [CrossRef]
- Sauzéat, L.; Rudnick, R.L.; Chauvel, C.; Garcon, M.; Tang, M. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth Planet. Sci. Lett. 2015, 428, 181–192. [Google Scholar] [CrossRef]
- Rubatto, D.; Chakraborty, S.; Dasgupta, S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib. Miner. Petrol. 2013, 165, 349–372. [Google Scholar] [CrossRef]
- Iaccarino, S.; Montomoli, C.; Carosi, R.; Massonne, H.J.; Langone, A.; Visonà, D. Pressure–temperature–time–deformation path of kyanite-bearing migmatitic paragneiss in the kali gandaki valley (central nepal): Investigation of late eocene–early oligocene melting processes. Lithos 2015, 231, 103–121. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Xiang, H.; Ding, X.; Ding, H.X.; He, Z.Y. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos 2015, 212–215, 1–15. [Google Scholar]
- Wang, J.M.; Wu, F.Y.; Rubatto, D.; Liu, S.R.; Zhang, J.J.; Liu, X.C.; Yang, L. Monazite behaviour during isothermal decompression in pelitic granulites: A case study from Dinggye, Tibetan Himalaya. J. Petrol. 2017, 56, 1677–1702. [Google Scholar] [CrossRef]
- Henry, D.G.; Guidotti, C.V.; Thomson, J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Miner. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Kang, D.Y.; Ding, H.X.; Tian, Z.L.; Dong, X.; Qin, S.K.; Mu, H.C.; Li, M.M. Partial melting of Himalayan Orogen and formation mechanism of leucogranites. Earth Sci. 2018, 43, 82–98, (In Chinese with English abstract). [Google Scholar]
- Uchida, E.; Endo, S.; Makino, M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Res. Geol. 2007, 57, 47–56. [Google Scholar] [CrossRef]
- Patiňo-Douce, A.E.; Harris, N. Experimental constraints on Himalayan antexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Huang, T.; Buick, I.S.; Hou, L. Tectonometamorphic evolution of the eastern Tibet Plateau: Evidence from the central Songpan-Garzê orogenic belt, western China. J. Petrol. 2003, 44, 255–278. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B. Progress relating to calculation of partial melting equilibria for metapelites. J. Metamorph. Geol. 2007, 25, 511–527. [Google Scholar] [CrossRef]
- Sawyer, E.W.; Cesare, B.; Brown, M. When the continental crust melts. Elements 2011, 7, 229–234. [Google Scholar] [CrossRef]
- Li, J.K.; Li, P.; Yan, Q.G.; Wang, D.H.; Ren, G.L.; Ding, X. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: An overview and synthesis. Sci. China Earth Sci. 2023, 66, 1702–1724, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Wang, C.L.; Qi, L.; Kennedy, A. Subduction–related origin of the 750 Ma Xuelongbao adakitic complex(Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth Planet. Sci. Lett. 2006, 248, 286–300. [Google Scholar] [CrossRef]
- Roger, F.; Calassou, S. Géochronologie U-Pb sur zircons et géochimie (Pb, Sr et Nd) du socle de la chaîne de Songpan-Garze (Chine). Comptes Rendus De L’académie Des Sci.-Ser. IIA-Earth Planet. Sci. 1997, 324, 819–826. [Google Scholar] [CrossRef]
- Ling, H.F.; Xu, S.J.; Shen, W.Z.; Wang, R.C.; Lin, Y.P. Nd, Sr, Pb, O isotopic compositions of Late Proterozoic Gezong and Donggu granites in the west margin of Yangtze plate and comparison with other coeval granitoids. Acta Petrol. Sin. 1998, 14, 269–277, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.L.; Luo, Z.H.; Liu, C. Re-recognition on the western margin of the Yangtze craton based on Nd and Pb isotopic compositions. Eos Trans West. Pac. Geophys. Meet 2000, 81, 32B-03. [Google Scholar]
- Zhao, H.; Chen, B.; Huang, C.; Bao, C.; Yang, Q.; Cao, R. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contrib. Miner. Petrol. 2021, 177, 1–16. [Google Scholar] [CrossRef]
- Dai, J.G.; Li, Y.L.; Ge, Y.K. Detrital zircon U-Pb age and Hf isotopic composition, and detrital apatite (U-Th)/He age from the Paleogene sediments of Changsha-Gongma Basin, the Songpan-Ganzi block and their geological significance. Acta Petrol. Sin. 2013, 29, 1003–1016, (In Chinese with English abstract). [Google Scholar]
- Liu, X.; Zhan, Q.Y.; Zhu, D.C.; Wang, Q.; Xie, J.C.; Zhang, L.L. Provenance and tectonic uplift of the Upper Triassic strata in the southern Songpan-Ganzi fold belt, SW China: Evidence from detrital zircon geochronology and Hf isotope. Acta Petrol. Sin. 2021, 37, 3513–3526, (In Chinese with English abstract). [Google Scholar]
- Yuan, Y.W.; Fei, G.C.; Zheng, G.; Jiang, J.P.; Ma, Z.P.; Jiang, X.M.; Zhang, G. U-Pb age and Lu-Hf isotope of detrital zircons, geochemical characteristics and geological significance for Zhuwo Formation metasedimentary rocks in Ke’eryin region, western Sichuan. Earth Sci. 2022, 47, 2902–2924, (In Chinese with English abstract). [Google Scholar]
- Tomascak, P.B.; Tera, F.; Helz, R.T.; Walker, R.J. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS. Geochim. Cosmochim. Acta 1999, 63, 907–910. [Google Scholar] [CrossRef]
- Bryant, C.J.; Chappell, B.W.; Bennett, V.C.; McCulloch, M.T. Lithium isotopic compositions of the New England Batholith: Correlations with inferred source rock compositions. Earth Environ. Sci. Trans. R. Soc. Edinb. 2004, 95, 199–214. [Google Scholar]
- Magna, T.; Janoušek, V.; Kohút, M.; Oberli, F.; Wiechert, U. Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem. Geol. 2010, 274, 94–107. [Google Scholar] [CrossRef]
- Marks, M.A.; Rudnick, R.L.; McCammon, C.; Vennemann, T.; Markl, G. Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: Evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem. Geol. 2007, 246, 207–230. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.M.; Godfrey, L.V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC-ICP-MS. Geostand. Geoanal. Res. 2019, 43, 261–276. [Google Scholar] [CrossRef]
- Wolf, M.; Romer, R.L.; Glodny, J. Isotope disequilibrium during partial melting of metasedimentary rocks. Geochim. Cosmochim. Acta 2019, 257, 163–183. [Google Scholar] [CrossRef]
- Stevens, G.; Clemens, J.D.; Droop, G.T.R. Melt production during granulite-facies anatexis: Experimental data from “primitive” metasedimentary protoliths. Contrib. Miner. Petrol. 1997, 128, 352–370. [Google Scholar] [CrossRef]
- Brenan, J.M.; Neroda, E.; Lundstrom, C.C.; Shaw, H.F.; Ryerson, F.J.; Phinney, D.L. Behaviour of boron, beryllium, and lithiumduring melting and crystallization: Constraints from mineral-meltpartitioning experiments. Geochim. Cosmochim. Acta 1998, 62, 2129–2141. [Google Scholar] [CrossRef]
- Marschall, H.R.; Altherr, R.; Rüpke, L. Squeezing out the slab—modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chem. Geol. 2007, 239, 323–335. [Google Scholar] [CrossRef]
- Vanwestrenen, W.; Blundy, J.; Wood, B. Crystal chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Miner. 1999, 84, 838–847. [Google Scholar] [CrossRef]
- Halama, R.; John, T.; Herms, P.; Hauff, F.; Schenk, V. A stable (Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab. Chem. Geol. 2011, 281, 151–166. [Google Scholar] [CrossRef]
- Cahalan, R.C.; Kelly, E.D.; Carlso, W.D. Rates of Li diffusion in garnet: Coupled transport of Li and Y+ REEs. Am. Miner. 2014, 99, 1676–1682. [Google Scholar] [CrossRef]
- Wunder, B.; Meixner, A.; Romer, R.L.; Feenstra, A.; Schettler, G.; Heinrich, W. Lithium isotope fractionation between Li bearing staurolite, Li-mica and aqueous fuids: An experimental study. Chem. Geol. 2007, 238, 277–290. [Google Scholar] [CrossRef]
- Wunder, B.; Meixner, A.; Romer, R.L.; Jahn, S. Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment. Eur. J. Miner. 2011, 23, 333–342. [Google Scholar] [CrossRef]
- Magna, T.; Novak, M.; Cempirek, J.; Janousek, V.; Ullmann, C.V.; Wiechert, U. Crystallographic control on lithium isotope fractionation in Archean to Cenozoic lithium-cesium-tantalum pegmatites. Geology 2016, 44, 655–658. [Google Scholar] [CrossRef]
- Robert, J.L.; Volfinger, M.; Barrandon, J.N.; Basutçu, M. Lithium in the interlayer space of synthetic trioctahedral micas. Chem. Geol. 1983, 40, 337–351. [Google Scholar] [CrossRef]
- Bertoldi, C.; Proyer, A.; Garbe-Schonberg, D.; Behrens, H.; Dachs, E. Comprehensive chemical analyses of natural cordierites: Implications for exchange mechanisms. Lithos 2004, 78, 389–409. [Google Scholar] [CrossRef]
- Soltay, L.G.; Henderson, G.S. Structural differences between lithium silicate and lithium germanate glasses by Raman spectroscopy. Phys. Chem. Glasses 2005, 46, 381–384. [Google Scholar]
- Kowalski, P.M.; Jahn, S. Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: An efficient ab initio approach. Geochim. Cosmochim. Acta 2011, 75, 6112–6123. [Google Scholar] [CrossRef]
- Zack, T.; Tomascak, P.B.; Rudnick, R.L.; Dalpe, C.; McDonough, W.F. Extremely light Li in orogenic eclogites: The role of isotopic fractionation during dehydration in subducted oceanic crust. Earth Planet. Sci. Lett. 2003, 208, 279–290. [Google Scholar] [CrossRef]
- Wunder, B.; Meixner, A.; Romer, R.; Heinrich, W. Temperaturedependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fuids. Contrib. Miner. Petrol. 2006, 151, 112–120. [Google Scholar] [CrossRef]
- London, D. Pegmatites. Canadian Mineralogist, Special Publication 10; Mineralogical Association of Canada: Quebec, QC, Canada, 2008; p. 368. [Google Scholar]
- Černý, P. Rare-element granite pegmatites. Part II: Regional to global environments and petrogenesis. Geosci. Can. 1991, 18, 68–81. [Google Scholar]
- Stepanov, A.A.; Mavrogenes, J.; Meffre, S.; Davidson, P. The key role of mica during igneous concentration of tantalum. Contrib. Miner. Petrol. 2014, 167, 1–8. [Google Scholar] [CrossRef]
- Kunz, B.E.; Warren, C.J.; Jenner, F.E.; Harris, N.B.W.; Argles, T.W. Critical metal enrichment in crustal melts: The role of metamorphic mica. Geology 2022, 50, 1219–1223. [Google Scholar] [CrossRef]
- Shaw, R.A.; Goodenough, K.M.; Roberts, N.M.W.; Horstwood, M.S.A.; Chenery, S.R.; Gunn, A.G. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: A case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Res. 2016, 281, 338–362. [Google Scholar] [CrossRef]
- Ma, S.C.; Wang, D.H.; Liu, S.B.; Sun, Y.; Guo, W.M.; Dai, H.Z.; Liu, L.J.; Li, C. Mineral chemistry of micas from Ke’eryin pegmatite type lithium orefield in western Sichuan and its indication for rare metal mineralization and prospecting. Miner. Depos. 2019, 38, 877–897, (In Chinese with English abstract). [Google Scholar]
- Chen, G.N.; Rodney, G. Granite Genesis: In-Situ Melting and Crustal Evolution; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Chen, G.N.; Chen, Z.; Chen, X.; Ding, R.X.; Peng, Z.L.; Grapes, R.; Zhang, K.; Wang, Y.J.; Lou, F.; Shen, W.J.; et al. Crustal melting and its relationship with continental orogeny. Geotecton. Metallog. 2015, 39, 383–390, (In Chinese with English abstract). [Google Scholar]
- Dingwell, D.B.; Romano, C.; Hess, K.U. The effect of water on the viscosity of a haplogranitic melt under P–T–X conditions relevant to silicic volcanism. Contrib. Miner. Petrol. 1996, 124, 19–28. [Google Scholar] [CrossRef]
- Thomas, R.; Webster, J.D. Strong tin enrichment in a pegmatite-forming melt. Miner. Depos. 2000, 35, 570–582. [Google Scholar] [CrossRef]
- Sirbescu, M.L.C.; Nabelek, P.I. Crustal melts below 400 °C. Geology 2003, 31, 685–688. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Liu, Z.C.; Wang, R.C.; Xie, L.; Wang, J.M.; Ji, W.Q.; Yang, L.; Liu, C.; Khanal, G.P.; et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 2020, 352–353, 105319. [Google Scholar] [CrossRef]
- He, L.; Gao, J.G.; Wang, D.H.; Liang, T.; Feng, Y.G.; Huang, F.; Tan, X.J.; Cen, J.B. Discussion on genetic relationship between granite and pegmatite in Dahongliutan rare metal ore field, Xinjiang. Miner. Depos. 2023, 42, 693–712, (In Chinese with English abstract). [Google Scholar]
- Ma, Z.L.; Xu, Y.S.; Tang, Y.; Zhang, H.; Lv, Z.H. Geochemical characteristics of metamorphic rocks and metallogenic potential of rare metals in the Habahe Group of the Qinghe area in the Altai Orogenic Belt. Bull. Miner. Petrol. Geochem. 2022, 41, 1224–1240, (In Chinese with English abstract). [Google Scholar]
- Wang, D.H.; Dai, H.Z.; Liu, S.B.; Wang, C.H.; Li, J.K.; Li, P.; Chen, Z.H.; Yu, Y.; Qin, J.H.; Sun, Y.; et al. The “multi-cycle, deep circulation, integration of internal and external” theory of lithium deposits and its prospecting applications in China. Acta Geol. Sin. 2024, 97, 889–897, (In Chinese with English abstract). [Google Scholar]
- Gou, S.L.; Yu, J.H.; Cai, Y.F.; Jiang, W.; Mao, Z.Q. Distribution and enrichment mechanism of lithium in meta-sedimentary rocks in the Jiangnan orogen and implications for lithium mineralization. Acta Geol. Sin. 2023, 97, 3696–3714, (In Chinese with English abstract). [Google Scholar]
- Tkachev, A.V. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time. Geo. Soc. Lond. Spec. Pub. 2011, 350, 7–23. [Google Scholar] [CrossRef]
- Dai, H.Z.; Li, X.; Wang, D.H.; Gu, P.Y.; Liu, S.B.; Wang, G.H. Geochemical and Geochronological Constraints on Petrogenesis of Granitoids from the Ke’eryin Area: Implications on Rare-Metal Mineralization. 2024; unpublished. [Google Scholar]
- Hessler, A.M.; Lowe, D.R. Weathering and sediment generation in the Archaean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt South Africa. Precambrian Res. 2006, 151, 185–210. [Google Scholar] [CrossRef]
- Li, J.K.; Yan, Q.G.; Li, P.; Jacobson, M.I. Formation of granitic pegmatites during orogenies: Indications from a case study of the pegmatites in China. Ore Geol. Rev. 2023, 156, 105391. [Google Scholar] [CrossRef]
- Huh, Y.; Chan, L.H.; Edmond, J.M. Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet. Sci. Lett. 2001, 194, 189–199. [Google Scholar] [CrossRef]
- Jiang, J.J.; Liang, G.M.; Jin, J.J.; Zhang, F.W. Theoretical study of lithium diffusion and fractionation in the lattice of clinoenstatite, pyrope and spinel. Acta Petrol. Sin. 2018, 34, 2811–2818, (In Chinese with English abstract). [Google Scholar]
- Wimpenny, J.; Colla, C.; Yu, P.; Yin, Q.Z.; Rustad, J.R.; Casey, W.H. Lithium isotope fractionation during uptake by gibbsite. Geochim. Cosmochim. Acta 2015, 168, 133–150. [Google Scholar] [CrossRef]
- Lei, X.F.; Romer, R.L.; Glodny, J.; Jiang, S.Y. Geochemical significance of lithium and boron isotopic heterogeneity evolving during the crystallization of granitic melts. Geology 2023, 51, 581–585. [Google Scholar] [CrossRef]
- Misra, S.; Froelich, P.N. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering. Science 2012, 335, 818–823. [Google Scholar] [CrossRef]
- Chan, L.H.; Alt, J.C.; Teagle, D.A.H. Lithium and lithium isotope profiles through the upper oceanic crust: A study of seawater-basalt exchange at ODP Site 504B and 896A. Earth Planet. Sci. Lett. 2002, 201, 187–201. [Google Scholar] [CrossRef]
- Seyedali, M.; Coogan, L.A.; Gillis, K.M. Li-isotope exchange during low-temperature alteration of the upper oceanic crust at DSDP Sites417 and 418. Geochim. Cosmochim. Acta 2021, 294, 160–173. [Google Scholar] [CrossRef]
- Mo, H.C.; Yang, R.D.; Gao, J.B.; Luo, C.K.; Ni, X.R.; Li, X.Z.; Zhou, D.F.; Xue, Z.X. Marine lithium isotope evolution during geological history. Geol. Rev. 2023, 69, 929–942, (In Chinese with English abstract). [Google Scholar]
- Chen, C.; Lee, C.T.A.; Tang, M.; Biddle, K.; Sun, W.D. Lithium systematics in global are magmas and the importance of crustal thickening for lithium enrichment. Nat. Commun. 2020, 11, 5313. [Google Scholar] [CrossRef] [PubMed]
- Benton, L.D.; Ryan, J.G.; Savov, I.P. Lithium abundance and systematics of forearc serpentinites, Conical Seamount, isotope Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction. Geochem. Geophy. Geosy. 2004, 5, Q08J12. [Google Scholar] [CrossRef]
- Helper, J.P.; Bares, J.D.; de Moor, J.M.; Rodríguez, A.; Bary, P.H.; Ramos, E.J.; Lassiter, J.C. Li isotope ratios of spring fluids as an effective tracer of slab-derived subducted sources across the Costa Rica forearc. Geology 2023, 5l, 855–859. [Google Scholar] [CrossRef]
- Tomascak, P.B.; Widom, E.; Benton, L.D.; Goldstein, S.L.; Ryan, J.G. The control of lithium budgets in island ares. Earth Planet. Sci. Lett. 2002, 196, 227–238. [Google Scholar] [CrossRef]
- Liu, H.Y.; Xiao, Y.L.; Sun, H.; Tong, F.T.; Heuser, A.; Churikova, T.; Wörner, G. Trace elements and Li isotope compositions across the Kamchatka arc: Constraints on slab-derived fluid sources. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019237. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.M.; Liu, X.C.; Hu, F.Y.; Hou, K.S.; Fu, J.G.; Li, G.M.; Tian, Y.L.; Wu, F.Y. Petrogenetic link between leucogranite and spodumene pegmatite in Lhozhag, eastern Himalaya: Constraints from U–(Th)–Pb geochronology and Li-Nd-Hf isotopes. Lithos 2024, 470–471, 107530. [Google Scholar] [CrossRef]
- Bradley, D.C. Secular trends in the geologic record and the supercontinent cycle. Earth-Sci. Rev. 2011, 108, 16–33. [Google Scholar] [CrossRef]
- McCauley, A.; Bradley, D.C. The global age distribution of granitic pegmatites. Can. Miner. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Zhai, M.G. The main old lands in China and assembly of Chinese Unified Continent. Sci. China Earth Sci. 2013, 56, 1829–1852. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wang, Y.J.; Huang, B.C.; Dong, Y.P.; Li, S.Z.; Zhang, G.W.; Yu, S. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth Sci. Rev. 2018, 186, 262–286. [Google Scholar] [CrossRef]
Lithology | Metasandstone | Mica Schist | Two-Mica Monzogranite | |||
---|---|---|---|---|---|---|
Major minerals | Quartz | 60–80 vol% | Quartz | 50–70 vol% | Quartz | 30–40 vol% |
Biotite | 10–15 vol% | Biotite | 25–35 vol% | K-feldspar | 20–25 vol% | |
Plagioclase | 3–5 vol% | Muscovite | 3–5 vol% | Plagioclase | 25–30 vol% | |
Muscovite | 1–3 vol% | Plagioclase | 3–5 vol% | Biotite | 5–8 vol% | |
Staurolite | 1–3 vol% | Staurolite | 1–3 vol% | Muscovite | 5–8 vol% | |
Amphibole | 1–2 vol% | Cordierite | 1–3 vol% | Tourmaline | 1–2 vol% | |
Diopside | 1–2 vol% | Andalusite | 1–3 vol% | |||
Amphibole | 1–2 vol% | |||||
Diopside | 1–2 vol% | |||||
Accessory minerals | Zircon, apatite, tremolite, wollastonite, sillimanite, chlorite, epidote | Zircon, apatite, tremolite, wollastonite, scapolite, idocrase, sillimanite, chlorite, epidote | Zircon, apatite, cassiterite, ilmenite, topaz | |||
Texture | Granoblastic texture | Granoblastic texture | Inequigranular seriate hypidiomorphic texture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Dai, H.; Liu, S.; Wang, D.; Huang, F.; Qin, J.; Sun, Y.; Zhu, H. Genesis of the Ke’eryin Two-Mica Monzogranite in the Ke’eryin Pegmatite-Type Lithium Ore Field, Songpan–Garze Orogenic Belt: Evidence from Lithium Isotopes. Minerals 2024, 14, 687. https://doi.org/10.3390/min14070687
Li X, Dai H, Liu S, Wang D, Huang F, Qin J, Sun Y, Zhu H. Genesis of the Ke’eryin Two-Mica Monzogranite in the Ke’eryin Pegmatite-Type Lithium Ore Field, Songpan–Garze Orogenic Belt: Evidence from Lithium Isotopes. Minerals. 2024; 14(7):687. https://doi.org/10.3390/min14070687
Chicago/Turabian StyleLi, Xin, Hongzhang Dai, Shanbao Liu, Denghong Wang, Fan Huang, Jinhua Qin, Yan Sun, and Haiyang Zhu. 2024. "Genesis of the Ke’eryin Two-Mica Monzogranite in the Ke’eryin Pegmatite-Type Lithium Ore Field, Songpan–Garze Orogenic Belt: Evidence from Lithium Isotopes" Minerals 14, no. 7: 687. https://doi.org/10.3390/min14070687
APA StyleLi, X., Dai, H., Liu, S., Wang, D., Huang, F., Qin, J., Sun, Y., & Zhu, H. (2024). Genesis of the Ke’eryin Two-Mica Monzogranite in the Ke’eryin Pegmatite-Type Lithium Ore Field, Songpan–Garze Orogenic Belt: Evidence from Lithium Isotopes. Minerals, 14(7), 687. https://doi.org/10.3390/min14070687