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Abstract: Exposure to respirable coal mine dust (RCMD) still poses health risks to miners. Scanning
electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is a powerful tool for
RCMD characterization because it provides particle-level data, including elemental ratios (via the EDX
signals) that can enable classification by inferred mineralogy. However, if the particle loading density
(PLD) is high on the analyzed substrate (filter sample), interference between neighboring particles
could cause misclassification. To investigate this possibility, a two-part study was conducted. First,
the effect of PLD on RCMD classification was isolated by comparing dust particles recovered from
the same parent filters under both low- and high-PLD conditions, and a set of modified classification
criteria were established to correct for high PLD. Second, the modified criteria were applied to RCMD
particles on pairs of filters, with each pair having one filter that was analyzed directly (frequently
high PLD) and another filter from which particles were recovered and redeposited prior to analysis
(frequently lower PLD). It was expected that application of the modified criteria would improve
the agreement between mineralogy distributions for paired filters; however, relatively little change
was observed for most pairs. These results suggest that factors other than PLD, including particle
agglomeration, can have a substantial effect on the particle EDX data collected during direct-on-filter
analysis.
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1. Introduction

Exposure to respirable coal mine dust (RCMD) still poses health risks to miners.
Indeed, the prevalence of occupational lung disease among coal miners continues to
be reported in major coal producing countries, including China, Australia, and South
Africa [1–10]. In the United States (US), there has been a resurgence of particularly severe
disease [11–13], suggesting a better understanding of RCMD characteristics and sources is
needed [14].

To study dust at the particle level, the scanning electron microscope (SEM) is a power-
ful tool—especially when paired with energy dispersive X-ray spectroscopy (EDX) [15–17].
The SEM can be used to visualize particles, enabling descriptions of size and morphology,
and the elemental data derived from the EDX can be used to infer particle mineralogy.
For airborne dust, it is most convenient to analyze the particles directly on the sampling
substrate (typically a filter), as long as it has suitable properties. To sample respirable sized
dust for SEM-EDX analysis, track-etched polycarbonate (PC) filters are often chosen due to
their low impurities, smooth background, and uniform pore sizes [18]

SEM-EDX has been used in numerous studies of RCMD [19–22], including studies
by the authors [23–26]. One focal point of the authors’ work has been the establishment
of classification criteria for RCMD particles [23,25]. In essence, the criteria consist of a
list of elemental content limits against which the EDX data from each particle can be
compared. This approach enables binning particles into a limited number of predefined
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mineralogy classes such that RCMD samples can be described by their primary constituent
distributions [24].

Table 1 shows the classification criteria that were previously established and used to
evaluate RCMD samples from 25 US coal mines [25]. (Notably, the criteria were established
by analyzing respirable sized particles of high-purity materials, including quartz, kaolinite
and other silicates, calcite, and coal, and this analysis was conducted using the same
SEM instrument and settings as all subsequent analyses of RCMD particles to which the
criteria have been applied.) In [25], the criteria in Table 1 were applied to supramicron
particles (1–10 µm in length) to bin them into seven primary classes: carbonaceous (C),
mixed carbonaceous (MC), aluminosilicates (AS), other silicates (OS), silica (S), carbonates
(CB), and heavy minerals (HM). Of the 171 RCMD samples included in that study, a small
subset (n = 8) appeared to be dominated by AS particles (interpreted as dust sourced
mainly from rock strata being cut or drilled in the mine) with virtually no C and MC
particles (interpreted as coal dust) [25]. In a related discussion, the authors noted the
possibility of particle interference during SEM-EDX analysis (i.e., coal dust particles might
be misclassified as AS). A subsequent study looked at 93 of the same RCMD samples,
which had duplicate filters available for additional analysis [27]. That study compared
the dust composition derived from the SEM-EDX classification to that derived from an
alternative method, thermogravimetric analysis (TGA). SEM-EDX frequently indicates
less coal (C and MC) but more non-carbonate minerals (mostly AS and S) compared to
TGA [27]. These results also point to the possibility of coal dust particle misclassification in
some circumstances.

Table 1. Classification criteria for the supramicron particles analyzed in the RCMD samples on PC
filters using the SEM-EDX routine detailed in [25].

Class
Normalized Atomic %

Assumption for
Estimating

Particle Mass

C O Al Si Ca Mg Ti Fe S:I SG

C ≥75 <29 ≤0.30 ≤0.30 ≤0.41 ≤0.50 ≤0.06 ≤0.15 0.6 1.4

MC <0.35 <0.35 ≤0.50 ≤0.50 ≤0.60 ≤0.60 0.6 1.4

AS ≥0.35 ≥0.35 0.4 2.6

OS 1 ≥0.33 0.4 2.6

S 2 ≥0.33 0.7 2.7

CB <88 >9 >0.50 >0.50 0.7 2.7

HM >1.00 >1.00 >1.00 0.7 5.0
1 Additional limits for OS: Si/(Al + Si + Mg + Ca + Ti + Fe) < 0.5. 2 Additional limits for S: Al/Si < 1/3 and Si/(Al
+ Si + Mg + Ca + Ti + Fe) ≥ 0.5.

As shown in Table 1, mineral particle classification by SEM-EDX is based on a sufficient
abundance of key elements. For example, to classify a particle as silica (S), it should have
a sufficient abundance of silicon and a low abundance of all other elements except for
carbon and oxygen—which are abundant in the PC filter substrate itself. Similarly, to
classify a particle as an aluminosilicate (AS), it should have a sufficient abundance of both
silicon and aluminum. However, for carbonaceous particles—which, in the supramicron
range, are typically coal dust—the particle is classified by its relative absence of elements
other than carbon and oxygen. These particles can be susceptible to interference from
nearby non-carbonaceous particles. For instance, the EDX spectrum collected on a coal
dust particle might include stray aluminum and silicon signals picked up from a nearby
aluminosilicate particle. Depending on the strength of those signals, the coal dust particle
might be binned into the AS or MC class per Table 1. In fact, the MC class was originally



Minerals 2024, 14, 728 3 of 16

established by the authors to catch particles that are not clearly C, due either to interferences
or impurities [23,28].

For the RCMD samples that were direct-on-filter analyzed, Figure 1 illustrates the two
factors that are the most likely to contribute to particle misclassification: a high particle
loading density (PLD) on the sample filter, and agglomeration of particles [29–31]. PLD
refers to the number of particles observed per unit of analyzed area (#/µm2) during
SEM-EDX analysis. When the PLD is high in composite dust samples (such as RCMD),
carbonaceous particles—or other particles that are classified based on their absence of
certain elements—are more likely to be misclassified due to interference from other particles
that happen to deposit nearby on the sample filter. Using direct-on-filter RCMD analysis
and essentially the same classification criteria shown in Table 1, Keles et al. [32] observed
substantial particle interference when the PLD for supramicron particles was greater than
about 0.03–0.04 particles/µm2. That study accordingly established a high PLD threshold at
0.035 particles/µm2.
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Figure 1. Conceptual illustration of low and high particle loading density (PLD) and particle
agglomeration on RCMD sample filters. (Note that colors in this figure are arbitrary and are simply
meant to illustrate, in general, different particle types.)

In addition to PLD, the presence of agglomerated particles—meaning particles that
are clustered together but not as a result of simply depositing on the filter together—can
cause interference for direct-on-filter classification by SEM-EDX. In this case, an automated
routine will typically identify the agglomerate as a single particle and return a mixed
EDX spectrum. This means that, for instance, an agglomerate consisting of coal and
aluminosilicate particles could be classified as a single AS particle if the aluminum signal
of the mixed spectrum is sufficient. SEM images of RCMD have provided evidence of such
agglomerates in several studies [29–31,33,34].

For direct-on-filter SEM-EDX analysis, evaluating the significance of PLD versus
the agglomeration on particle classification is challenging. On the one hand, it can be
difficult to control PLD during standard RCMD sampling because real-time estimates of
particle concentrations in the environment are generally not feasible and the goal of most
sampling campaigns is to collect samples that are representative of typical exposures (which
requires relatively long sampling periods). On the other hand, wet methods that involve
the recovery, dispersion, and redeposition of the sample to control PLD evidently affect the
ability to observe inherent agglomeration (i.e., the sample preparation process will disturb
agglomerates); this may result in an oversimplified view of the types and implications of
particulates present in the exposure environment [35]. A recent study by Greth et al. [36]
grappled with this challenge. It used SEM-EDX to analyze 44 pairs of RCMD filters, with
each pair consisting of one PC filter for direct-on-filter analysis and another filter from
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which particles were recovered and redeposited for analysis. The criteria in Table 1 were
applied to determine mineralogy distributions. The results showed that the filters that
were analyzed directly and frequently appeared to have a higher abundance of AS particles
(and conversely a lower abundance of C and MC particles) than their paired filters used for
recovered dust analysis. This difference was generally correlated with differences in PLD
as the filters used for direct analysis typically had a higher PLD than their recovered dust
counterparts. However, the authors noted that effects of agglomeration could not be ruled
out since the direct filters were also more likely to contain agglomerates than the recovered
filters.

The current work represents a follow-up to several of the authors’ studies described
above. Here, the aim is to isolate and explore the effect of high PLD. Using two sets of
previously collected RCMD samples, the specific objectives of this study are to achieve the
following: (1) establish a set of modified particle classification criteria to account for high
PLD during SEM-EDX analysis, and (2) test the modified criteria to assess the relative effect
of high PLD on the overall mineralogy distribution derived from SEM-EDX data.

2. Materials and Methods
2.1. Respirable Coal Mine Dust Filter Samples

Two distinct sets of RCMD filter samples were used in this work, representing a total
of 22 active coal mines and various sampling locations. Set 1 was used to establish modified
classification criteria for high PLD conditions and Set 2 was used to test the modified
criteria.

Set 1 consists of filter pairs that were prepared from nine “parent” RCMD samples,
which were collected in six mines. (See Table S1 in the Supplementary Materials for a
summary of the Set 1 data by number and Table S2 for a summary of Set 1 by mass.) The
parent samples were originally collected on 37 mm polyvinyl chloride filters (PVC, nominal
5 µm pore size) in closed cassettes using standard sampling trains for US coal mines (i.e.,
10 mm nylon cyclone, air pump operated at 2 L/min). To prepare the filters for SEM-EDX
analysis, two subsections were carefully cut from each of the parent PVC filters. One
subsection represented about half of the original filter and the other represented about one
quarter; these were used to create “recovered” filters with high and low PLD, respectively.
For this, each subsection was submerged in isopropyl alcohol (IPA) in a clean glass test tube.
The tube was sonicated for 3 min to dislodge the dust particles, and then the filter section
was removed from the tube. Then, the recovered dust suspension was pulled through a
clean 47 mm PC filter (track-etched, 0.4 µm pore size) in a vacuum filtration unit to deposit
the particles. After the PC filter was completely dry, a 9 mm subsection was carefully cut,
mounted on an aluminum stub, and sputter-coated (thin layer of Au/Pd) for SEM-EDX
analysis. Figure 2 presents a schematic flow chart for the sample preparation for Set 1.

Set 2 consisted of the same 44 RCMD filter pairs that were the subject of the recent
work by Greth et al. [36]. (See Table S3 for a summary of Set 2 by number and Table S4
for a summary of Set 2 by mass.) The original RCMD samples were collected in various
locations of 16 mines. Each pair contained two 37 mm filters collected in closed cassettes
and the same sampling trains described above were used. One filter was PC (track-etched,
0.4 µm pores) and was used for direct-on-filter analysis (Figure 3). The other filter was PVC
(nominal 5 µm pore size), and the dust from this filter was recovered and redeposited using
the same process described for Set 1 (generally with about one half of the parent filter).
Again, for the SEM-EDX work, 9 mm subsections were cut, mounted, and sputter-coated to
prepare.
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2.2. SEM-EDX Analysis

All SEM-EDX analyses was conducted using an FEI Quanta 600 FEG environmental
SEM (Hillsboro, OR, USA) equipped with secondary (SE) and backscatter electron (BSE)
detectors and a Bruker Quantax 400 EDX spectroscope (Ewing, NJ, USA). The instrument
was operated at 15 kV and a working distance of 12.5 mm. For the pairs of the recovered
dust filters in Set 1, a preliminary scan of each filter was performed to verify that the
PLD achieved during filter preparation was in the intended range—i.e., each pair had one
filter with low PLD and one filter with high PLD per the 0.035 particles/µm2 threshold
established by [11]. For context, Figure 4 shows example images from fields with varying
PLDs.
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Figure 4. Example images of SEM-EDX analysis fields (at 1000× magnification) on the recovered
RCMD filters with varying PLDs. The top row of images are SE micrographs; the bottom row shows
BSE images, with the first 50 particles color-coded according to their EDX spectra. (The legend shows
relative descriptions of the primary elemental abundance since multiple particle classification criteria
were applied in this study.)

All other SEM-EDX analyses (Sets 1 and 2) were conducted with an automated data
collection routine, which was programmed in Bruker’s Esprit software (Version 1.9). The
routine was for supramicron particles (length between 1–10 µm) and was described in detail
by Sarver et al. [25]. In summary, it collects size and elemental data on about 500 particles
per filter by moving between fixed field locations. The area of each field is 14,025 µm2 at a
1000× magnification (see Figure 4), and the routine is programmed to collect no more than
50 particles per field such that data are collected from at least 10 different areas across the
filter. For each particle, the length and width are recorded, and the EDX spectra are used to
report the normalized atomic percentage of eight elements (C, O, Al, Si, Ca, Mg, Fe, and Ti).

2.3. Particle Classification

The elemental data recorded by the automated SEM-EDX routine were used to bin
each particle by its inferred mineralogy based on a given set of classification criteria (see
below), and the resultant data were used to estimate the class distribution of particles on
each filter. Notably, distributions can be computed on the basis of number percentage or
mass percentage. For the latter, the mass of each particle was estimated using the approach
described by Sarver et al. [25]. Briefly, the particle’s volume was estimated as the product of
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the measured length and width and assumed thickness (i.e., in the third dimension, not that
measured by the SEM), which is based on its assigned mineralogy class; then, the volume
was multiplied by an assumed specific gravity value, also based on the particle’s assigned
class, to estimate its mass. (The assumptions for determining thickness and specific gravity
per class are given in Table 1.)

For this study, classification criteria were used to bin the particles into the seven defined
mineralogy classes shown in Table 1 (i.e., C, MC, AS, S, CB, OS, and HM). Particles that did
not fit into one those classes were binned into an “others” class (O). Here, the classification
criteria given in Table 1 were considered as the “standard” criteria (STD) and were always
applied to the particles analyzed under low PLD conditions (i.e., <0.035 particles/µm2).
Using the Set 1 filter data, modified criteria (MOD) were established for particles analyzed
under high PLD conditions (i.e., >0.035 particles/µm2), as described below. Then, for the
Set 2 filter data, both the STD and MOD criteria were applied and the difference between the
resulting mineralogy distributions were evaluated. Notably, this exercise was completed
using both number- and mass-based data.

Particle classification and all computations were conducted in MATLAB (2023b).
The per particle data—including elemental percentages, length, width, associated PLD
condition (low or high), and filter identifiers—were input as a single table, and a code
was written to apply either the STD criteria or some modification of it based on the PLD
condition. For the work with Set 1 data, the PLD condition was considered on a “per filter”
basis since all the fields analyzed on each filter had a PLD condition that aligned with the
filter condition (i.e., all fields on low PLD filters had low PLD, and all fields on high PLD
filters had high PLD). For the work with Set 2 data, the PLD condition was considered on a
“per field” basis. This is because some of the filters contained a mix of high and low PLD
fields. The MATLAB code output a table of mineralogy distributions (both by number and
mass percentage) considering all the supramicron particles analyzed on a filter.

3. Results and Discussion
3.1. Modified Classification Criteria for High PLD Conditions

As mentioned, this portion of the work only used data from the Set 1 RCMD filter
pairs (n = 9). Importantly, because the filters were prepared by recovering and redepositing
the particles for analysis, they should be minimally impacted by agglomeration. The STD
criteria were used as a baseline to observe the difference between the mineralogy class
distributions for each low PLD/high PLD filter pair. Results are presented in Figure 5a.
(Note, Pair 5 is excluded because it appeared to be an outlier, see discussion below.) The plot
shows the difference in the number percentage of the particles in each major mineralogy
class observed on each high PLD filter versus its low PLD counterpart as a function of the
difference in PLD. As the difference in PLD increases (i.e., to the right side of the plot), the
high PLD filter generally appears to have an increasingly greater abundance of AS particles
relative to the low PLD filter, which is countered by an increasingly lower abundance of
C particles. This fits with the expectation for misclassification of coal dust particles when
there is significant interference from mineral particles (i.e., due to high PLD). (Mass-based
results have trended similarly and are given in Figure S1.) The trend is also generally
observable in Figure 4.
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To establish the MOD criteria, an iterative approach was taken: For each iteration, the
aluminum, or silicon, or aluminum and silicon limits were changed (relative to Table 1).
This was done to allow for a slightly higher percentage of these elements in the C and MC
classes, thereby also requiring slightly higher aluminum and/or silicon percentages for the
particles to be classified as AS or S. In other words, the C and MC classes became more
inclusive with each iteration, while the AS and S classes became more exclusive. For each
iteration, the new results were compared to those obtained by applying the STD criteria.
Figure 6 shows the difference in the number percentage of AS + S particles and C + MC
particles as the aluminum and/or silicon limits were changed (mass-based results are given
in Figure S2). The plots demonstrate that aluminum (rather than silicon) is the decisive
factor for binning particles into the AS, S, C, and MC classes, meaning that the changing
aluminum limits account for nearly all observed effects on classification. (Note that filter
Pair 5 is included in Figure 6 for comparison with the other eight pairs. This pair appears
to be an example of extreme mineral overestimation with high PLD, despite the fact that
the difference between the high PLD and low PLD values for this pair was similar to that
of the other pairs, as per Table S1. Based on the results with the STD criteria, i.e., the far
left of each plot in Figure 6, Pair 5 was considered on outlier using the “1.5× outside the
interquartile range” rule.)
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Figure 6. Difference between the number percentage of particles in each major mineralogy class
observed on the high PLD filter versus the low PLD filter in each Set 1 pair, plotted as a function of
the increase in the normalized elemental percent relative to the STD classification criteria percent.
The difference in PLD observed on the high PLD filter versus the low PLD filter.

Based on Figure 6, the final MOD criteria only include changes to the aluminum limits.
They were chosen to minimize the mean difference between the AS + S (and C + MC)
percentages observed with the MOD and STD criteria for each filter pair. These points
are indicated by the dashed vertical lines in Figure 6, which yielded the MOD criteria for
aluminum given in Table 2. (The mass-based MOD criteria are given in Table S5. Per the
above discussion of filter Pair 5, its results were excluded from the analysis to establish the
MOD criteria.)
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Table 2. Classification criteria for the supramicron particles analyzed in the RCMD samples on PC
filters using the SEM-EDX routine detailed in [25]; the STD thresholds for Al are the same as those
given in Table 1, and the MOD thresholds are those that were determined from Figure 5 for high PLD
conditions.

Class
Normalized Atomic %

Assumptions for
Estimating

Particle Mass

C O Al
(STD)

Al
(MOD) Si Ca Mg Ti Fe S:I SG

C ≥75 <29 ≤0.30 ≤0.425 ≤0.30 ≤0.41 ≤0.50 ≤0.06 ≤0.15 0.6 1.4

MC <0.35 <0.475 <0.35 ≤0.50 ≤0.50 ≤0.60 ≤0.60 0.6 1.4

AS ≥0.35 ≥0.475 ≥0.35 0.4 2.6

OS 1 ≥0.33 0.4 2.6

S 2 ≥0.33 0.7 2.7

CB <88 >9 >0.50 >0.50 0.7 2.7

HM >1.00 >1.00 >1.00 >1.00 0.7 5.0
1 Additional limits for OS: Si/(Al + Si + Mg + Ca + Ti + Fe) < 0.5. 2 Additional limits for S: Al/Si < 1/3 and Si/(Al
+ Si + Mg + Ca + Ti + Fe) ≥ 0.5.

Figure 5b shows the difference in minerology distributions for each filter pair in Set
1 after applying the MOD criteria. The results demonstrate how the MOD criteria help
correct for high PLD. Compared to using the STD criteria, the MOD criteria yield fewer
particles in the AS class. Notably, most of these particles moved to the MC class rather than
the C class. This implies that the limits between the C and MC classes could be further
investigated, but such work is considered out of the scope of the current study since, here,
all particles in the C and MC classes are interpreted as coal dust. It should also be noted
that the MOD criteria do not substantially change the percentages of particles in the S and
CB classes, which is consistent with expectations since only the aluminum limits were
changed.

3.2. Relative Effect of High PLD on Mineralogy Distributions

Before testing the MOD classification criteria on all RCMD filters from Set 2, a pre-
liminary analysis was conducted. This was limited to a subset of the recovered filters
(n = 9), which were observed to have both high PLD and low PLD fields. Assuming that
the inherent composition of dust across the filter should be uniform and not dependent
on PLD, all fields should have similar mineralogy distributions. Thus, these filters were
selected for analysis to explore how the MOD criteria might affect the agreement between
the distributions observed in high PLD versus low PLD fields. Figure 7 shows the results;
it is similar in presentation to Figure 5, but now the axes represent the difference between
the mean values observed on high PLD versus low PLD fields on the same filter rather
than on paired high PLD and low PLD filters. (Mass-based results are given in Figure S3.)
While the results with STD criteria (Figure 7a) do generally show that high PLD fields have
slightly higher AS percentages (and conversely lower C and MC percentages) than low
PLD fields, the differences are not as great as those observed for the Set 1 results (paired
high PLD versus low PLD filters). This is likely due to the relatively smaller difference
in PLD values being compared along the x-axis. Indeed, application of the MOD criteria
(Figure 7b) appears to overcorrect for high PLD, with the MOD results indicating that high
PLD fields now have lower AS percentages (and higher MC percentages) than low PLD
fields. Nevertheless, the MOD results do trend in the expected directions.
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Figure 7. Difference between the number percentage of particles in each major mineralogy class
observed on the high PLD fields versus the low PLD fields for each filter with both high PLD and low
PLD fields in Set 2, plotted as a function of the difference in the PLD observed on the high PLD fields
versus the low PLD fields. Results show when particles were classified using (a) STD criteria (closed
points) or (b) MOD criteria (open points).

Next, the MOD criteria were tested on all filters from Set 2 (n = 44 pairs), and the
results were compared to those with the STD criteria. Figure 8 shows the results, and
now the plot axes show the difference between the direct (D) and recovered (R) filters in
each pair (Figure S4 presents the mass-based results). As noted, the results using STD
criteria were previously published by Greth et al. [36] using a similar presentation to that
shown in Figure 8a, but the data were reproduced for the current study and are presented
here to enable direct comparisons to the results with MOD criteria in Figure 8b. To recap,
the results using STD criteria show that, as the difference in PLD between the paired D
and R filters increases, the D filter appears to have a much higher AS percentage (and
conversely much lower C percentage) than the R filter. To evaluate the agreement between
the mineralogy distributions between the D and R filters in each pair, Greth et al. [36] used
the Freeman–Halton (FH) exact test of independence. The null hypothesis in this case is
that the mineralogy distribution is independent of the analysis type (i.e., direct-on-filter
or recovered), and the null hypothesis is rejected when the p-value is less than α (i.e., the
results of the paired D and R filters disagree). Using the STD criteria, Greth et al. [36] found
that 25 of the filter pairs were in disagreement (α = 0.05).



Minerals 2024, 14, 728 12 of 16

Minerals 2024, 14, x FOR PEER REVIEW 12 of 16 
 

 

of the paired D and R filters disagree). Using the STD criteria, Greth et al. [36] found that 
25 of the filter pairs were in disagreement (α = 0.05). 

 
Figure 8. Difference between the number percentage of particles in each major mineralogy class 
observed on the D filter versus the R filter in each Set 2 pair, plotted as a function of the difference 
in the PLD observed on the D filter versus the R filter. Results show when particles were classified 
using (a) STD criteria (closed points) or (b) MOD criteria (open points). 

Surprisingly, however, Figure 8b shows that the application of the MOD criteria in 
the current work appeared to have very little effect. In fact, when the FH test was applied 
to the results with MOD criteria, the total number of disagreeing filter pairs did not change 
(see Table S6 for the FH test results based on number and Table S7 for results based on 
mass). While it is acknowledged that the MOD criteria were established based on a rela-
tively small number of filter pairs (n = 8 from Set 1), the parent samples for these pairs are 
representative of a diverse group of mines and sampling locations—as is the case for the 
44 sample pairs that comprise Set 2. Moreover, when considering all the sample pairs in 
Set 2, the range of PLD differences for paired D and R filters was similar to the range for 
the paired high PLD and low PLD filters in Set 1 (i.e., compare the x-axes in Figure 8 to 
Figure 5). 

To further explore the unexpected finding that the MOD criteria had little effect on 
mineralogy distributions for the Set 2 filters, the results shown in Figure 8 were replotted 
in Figure 9, where the D and R filter pairs were split into four groups: the D and R filters 
both have high PLD (DHRH); the D filter has a high PLD and the R filter has a low PLD 
(DHRL); the D filter has a low PLD and the R filter has a high PLD (DLRH); and the D and 
R filters both have low PLD (DLRL). (Figure S5 presents the mass-based results.) A total 

Figure 8. Difference between the number percentage of particles in each major mineralogy class
observed on the D filter versus the R filter in each Set 2 pair, plotted as a function of the difference
in the PLD observed on the D filter versus the R filter. Results show when particles were classified
using (a) STD criteria (closed points) or (b) MOD criteria (open points).

Surprisingly, however, Figure 8b shows that the application of the MOD criteria in the
current work appeared to have very little effect. In fact, when the FH test was applied to the
results with MOD criteria, the total number of disagreeing filter pairs did not change (see
Table S6 for the FH test results based on number and Table S7 for results based on mass).
While it is acknowledged that the MOD criteria were established based on a relatively small
number of filter pairs (n = 8 from Set 1), the parent samples for these pairs are representative
of a diverse group of mines and sampling locations—as is the case for the 44 sample pairs
that comprise Set 2. Moreover, when considering all the sample pairs in Set 2, the range of
PLD differences for paired D and R filters was similar to the range for the paired high PLD
and low PLD filters in Set 1 (i.e., compare the x-axes in Figure 8 to Figure 5).

To further explore the unexpected finding that the MOD criteria had little effect on
mineralogy distributions for the Set 2 filters, the results shown in Figure 8 were replotted
in Figure 9, where the D and R filter pairs were split into four groups: the D and R filters
both have high PLD (DHRH); the D filter has a high PLD and the R filter has a low PLD
(DHRL); the D filter has a low PLD and the R filter has a high PLD (DLRH); and the D and
R filters both have low PLD (DLRL). (Figure S5 presents the mass-based results.) A total
of 39 out of the 44 filter pairs fell into two groups (DLRL, n = 28; and DHRL, n = 11). (To
reiterate, the MOD criteria were only applied to fields with high PLD.)
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Figure 9. Difference between the number percentage of particles in each major mineralogy class
observed on the D filter versus the R filter in each Set 2 pair, plotted against filter pair number. Again,
results with STD criteria are shown with closed points, and those with MOD criteria are shown with
open points.

For the DLRL group, Figure 9 shows that many of the datapoints were near the zero-
difference line (i.e., y = 0), meaning they agree fairly well—and, in fact, the Freeman-Halton
test indicated that just 11 of the 28 pairs in this group were in disagreement using the STD
criteria. This is consistent with expectations. For the pairs in this group that do not agree
well (i.e., substantial positive or negative values along the y-axis), the D filters generally
had lower C percentages than their R counterparts. Coal dust misclassification due to
high PLD is probably not having a strong effect on these filters; filters in this group are
dominated by low PLD fields, and application of the MOD criteria yields little change
(as is visualized in Figure 9 and confirmed by the FH test results in Table S6). However,
agglomeration on the D filter could be a factor.

For the 11 filter pairs in the DHRL group, Figure 9 indicates the disagreement between
the D and R filter results with the STD criteria is more pronounced, and the FH test showed
statistical disagreement between all pairs (Table S6). While the application of the MOD
criteria yielded visible improvement for some pairs in this group (i.e., the open circles move
toward the y = 0 line), it is insufficient to change the statistical interpretation. Again, this
suggests that particle agglomeration on the D filter may be a factor.
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4. Conclusions

SEM-EDX is a powerful tool for dust particle analysis, and it has been used to improve
the understanding of respirable coal mine dust characteristics including particle size and
mineralogy constituents. Direct analysis on sample filters is convenient and, more impor-
tantly, enables characterization of particles that are minimally disturbed (i.e., as opposed to
dust particles that have been dispersed and redeposited for analysis). This approach may
be preferred for the investigation of particulates as they occur in the exposure atmosphere.
However, both a high particle loading density (PLD) and agglomeration can cause interfer-
ence between particles during analysis, which might affect particle classification by EDX
data. Notably, PLD is a sampling artifact that can—perhaps with substantial effort—be
controlled. On the other hand, agglomeration of particles might be due to the specific
dust-generating processes and environment.

This study demonstrated a methodology for establishing modified classification crite-
ria that can be used to account for high PLD conditions during SEM-EDX analysis. For this,
the effect of PLD on RCMD classification was isolated by comparing the dust particles re-
covered from the same parent filter samples under both low PLD and high PLD conditions.
Notably, while the modified criteria established here are specific to the RCMD samples
collected and analyzed using the same methods outlined in this work, the methodology for
evaluating the effect of PLD could be broadly applied.

In the current work, when the modified criteria were applied to RCMD particles
that were direct-on-filter analyzed, relatively little change in the apparent mineralogy
distributions were observed for most samples. These results are somewhat surprising, and
they suggest that particle agglomeration may indeed have a substantial effect on EDX data
collected during direct-on-filter analysis. Given that agglomerates may have important
implications for exposure monitoring and health effects, this issue is deserving of further
study. Such work could include strategies like image analysis (e.g., manually or through
automated techniques capable of “grain” analysis) [31,37], or the sequential direct-on-filter
analysis of samples, followed by the dispersion of agglomerates (e.g., as promoted by dust
recovery and redeposition) [30].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min14070728/s1, Table S1. Summary of Set 1 classification results by
number percentage using for STD and MOD criteria; Table S2. Summary of Set 1 classification results
by mass percentage using for STD and MOD criteria. Table S3. Summary of Set 2 classification results
by number percentage using for STD and MOD criteria. Table S4. Summary of Set 2 classification
results by mass percentage using for STD and MOD criteria. Table S5. Classification criteria for
supramicron particles analyzed in RCMD samples on PC fil-ters using the SEM-EDX routine detailed
in [25]; the STD thresholds for Al are the same as those given in Table 1, and the MOD thresholds are
those determined from Figure S2 for high PLD con-ditions. Table S6. Summary of Freeman-Halton test
P-values (at α=0.05) when comparing mean number percentage in the AS+S, C+MC, and CB classes
between the direct and recovered filters in each Set 2 pair. Table S6. Summary of Freeman-Halton test
P-values (at α=0.05) when comparing mean number percentage in the AS+S, C+MC, and CB classes
between the direct and recovered filters in each Set 2 pair. Table S7. Summary of Freeman-Halton test
P-values (at α=0.05) when comparing mean mass percentage in the AS+S, C+MC, and CB classes
between the direct and recovered filters in each Set 2 pair. Figure S1. Difference between the mass
percentage of particles in each major mineralogy class ob-served on the high PLD filter versus the
low PLD filter in each Set 1 pair (excluding Pair 5), plotted as a function of the difference in the PLD
observed on the high PLD filter versus the low PLD filter. Results show when particles were classified
using (a) STD criteria (closed points) or (b) MOD criteria (open points). Figure S2. Difference between
the mass percentage of particles in each major mineralogy class ob-served on the high PLD filter
versus the low PLD filter in each Set 1 pair, plotted as a function of the increase in the normalized
elemental percent relative to the STD classification criteria percent. The difference in PLD observed
on the high PLD filter versus the low PLD filter. Figure S3. Difference between the mass percentage of
particles in each major mineralogy class ob-served on the high PLD fields versus the low PLD fields
for each filter with both high PLD and low PLD fields in Set 2, plotted as a function of the difference
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in the PLD observed on the high PLD fields versus the low PLD fields. Results show when particles
were classified using (a) STD criteria (closed points) or (b) MOD criteria (open points). Figure S4.
Difference between the mass percentage of particles in each major mineralogy class ob-served on
the D filter versus the R filter in each Set 2 pair, plotted as a function of the difference in the PLD
observed on the D filter versus the R filter. Results show when particles were classified using (a) STD
criteria (closed points) or (b) MOD criteria (open points). Figure S5. Difference between the mass
percentage of particles in each major mineralogy class ob-served on the D filter versus the R filter in
each Set 2 pair, plotted against filter pair number. Again, results with STD criteria are shown with
closed points, and those with MOD criteria are shown with open points.
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