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Abstract: This study presents the development and validation of a robust semi-supervised learning
framework specifically designed for the automated segmentation and classification of sandstone
thin section images from the Yanchang Formation in the Ordos Basin. Traditional geological image
analysis methods encounter significant challenges due to the labor-intensive and error-prone nature
of manual labeling, compounded by the diversity and complexity of rock thin sections. Our approach
addresses these challenges by integrating the GL-SLIC algorithm, which combines Gabor filters and
Local Binary Patterns for effective superpixel segmentation, laying the groundwork for advanced
component identification. The primary innovation of this research is the semi-supervised learning
model that utilizes a limited set of manually labeled samples to generate high-confidence pseudo
labels, thereby significantly expanding the training dataset. This methodology effectively tackles
the critical challenge of insufficient labeled data in geological image analysis, enhancing the model’s
generalization capability from minimal initial input. Our framework improves segmentation accuracy
by closely aligning superpixels with the intricate boundaries of mineral grains and pores. Additionally,
it achieves substantial improvements in classification accuracy across various rock types, reaching up
to 96.3% in testing scenarios. This semi-supervised approach represents a significant advancement in
computational geology, providing a scalable and efficient solution for detailed petrographic analysis.
It not only enhances the accuracy and efficiency of geological interpretations but also supports
broader hydrocarbon exploration efforts.

Keywords: semi-supervised learning; GL-SLIC algorithm; petrographic analysis; sandstone thin
sections; computational geology

1. Introduction

Sandstone thin section identification plays a crucial role in geological research and the
exploration of oil and gas resources. Traditionally, experts manually observe and analyze
the composition and structure of sandstone thin sections, marking the boundaries between
mineral particles and pores to identify the mineral and pore characteristics of the target rock.
This manual process is not only time-consuming but also susceptible to subjective bias,
making the study of automated thin section analysis based on image analysis particularly
significant [1–3]. Automated analysis can enhance efficiency, reduce researchers’ work-
loads, and minimize subjective biases, making the identification results more quantitative
and reliable.

However, sandstone thin section images present numerous challenges for image
analysis due to their numerous targets, significant scale differences, complex component
shapes, crowded detection targets, and similar features among targets. Figure 1 depicts
thin section images of sandstone from the Yanchang Formation in the Ordos Basin under
plane-polarized light (LP). The main minerals visible include quartz, kaolinite, and lithic
fragments, with iron calcite cement evident in some areas. The contact between grains
varies from point contacts to long contacts, which adds to the complexity of the image
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analysis. The scale of the images is 40 µm, highlighting the fine granularity that must be
accurately identified and segmented.
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accuracy and efficiency [3]. Moreover, Shebl et al. demonstrated the application of cogni-
tive image recognition to automate the description of thin section images, providing sig-
nificant improvements in the analysis of carbonate rocks [6]. Yalamanchi et al. used ma-
chine learning algorithms and scanning electron microscope (SEM) images to predict the 
pore structure and permeability of carbonate reservoirs [7]. 

Additionally, Chen et al. developed a multiangle polarized imaging-based method 
tailored for practical production use in sandstone thin sections, integrating petrology with 
advanced image processing techniques [8]. Liu et al. explored the use of super-resolution 
techniques to enhance the resolution of thin section images, allowing for more detailed 
mineral segmentation [9]. Furthermore, Vellappally et al. presented a machine learning-
based approach for grain segmentation and mineral classification in Jurassic sandstones, 
demonstrating the potential for high-accuracy automated analysis [10]. 

Further supporting this progress, Dabek et al. proposed a superpixel-based grain seg-
mentation method specifically designed for sandstone thin sections, significantly enhanc-
ing the accuracy of grain boundary recognition [11]. Dong et al. introduced a high-accu-
racy image segmentation approach based on a hybrid attention mechanism, effectively 
addressing the complex shapes of sandstone particles [12]. Caja et al. leveraged high-res-
olution thin section scan images for digital rock physics in cuttings, providing a compre-
hensive framework for rock property analysis [13]. Additionally, Visalli et al. developed 

Figure 1. Thin section image of sandstone under plane-polarized light: the main components are
quartz, kaolinite, matrix, pores and lithic fragments.

Thin section image analysis can be divided into two-phase segmentation-recognition
processing and end-to-end recognition methods. In the two-phase segmentation-recognition
processing, traditional segmentation methods such as superpixel segmentation are used to
preprocess images into monolithic rock images, followed by recognition using deep learn-
ing models. This process requires high-quality segmentation to be effective. End-to-end
recognition methods have proven effective in semantic segmentation and enhancing pixel
classification accuracy using deep learning models like U-Net and SegNet. However, these
models, which integrate segmentation and classification tasks and depend on high-quality
data, sometimes overlook the detailed geological understanding essential for accurate
image analysis. Notably, deep learning systems face challenges in handling more detailed
and complex geological images [4].

Recent advancements in the field have addressed some of these challenges. For in-
stance, Ren et al. introduced a multi-channel attention transformer model that significantly
improves instance segmentation in sandstone images, surpassing previous methods in
mean average precision (mAP) [5]. Similarly, Liu et al. applied artificial intelligence tech-
niques for the automated identification of sandstone thin sections, enhancing both accuracy
and efficiency [3]. Moreover, Shebl et al. demonstrated the application of cognitive image
recognition to automate the description of thin section images, providing significant im-
provements in the analysis of carbonate rocks [6]. Yalamanchi et al. used machine learning
algorithms and scanning electron microscope (SEM) images to predict the pore structure
and permeability of carbonate reservoirs [7].

Additionally, Chen et al. developed a multiangle polarized imaging-based method
tailored for practical production use in sandstone thin sections, integrating petrology with
advanced image processing techniques [8]. Liu et al. explored the use of super-resolution
techniques to enhance the resolution of thin section images, allowing for more detailed
mineral segmentation [9]. Furthermore, Vellappally et al. presented a machine learning-
based approach for grain segmentation and mineral classification in Jurassic sandstones,
demonstrating the potential for high-accuracy automated analysis [10].

Further supporting this progress, Dabek et al. proposed a superpixel-based grain seg-
mentation method specifically designed for sandstone thin sections, significantly enhancing
the accuracy of grain boundary recognition [11]. Dong et al. introduced a high-accuracy
image segmentation approach based on a hybrid attention mechanism, effectively address-
ing the complex shapes of sandstone particles [12]. Caja et al. leveraged high-resolution
thin section scan images for digital rock physics in cuttings, providing a comprehensive
framework for rock property analysis [13]. Additionally, Visalli et al. developed a semi-
automated edge detector using ArcGIS for quantitative microstructural analysis of rock
thin sections, offering a robust tool for detailed geological analysis [14].

These advancements highlight the ongoing evolution of automated image analysis
in geological studies. The integration of sophisticated algorithms and AI techniques has
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significantly improved the accuracy and efficiency of thin section analysis, addressing
the critical challenge of insufficient labeled data and enhancing the model’s ability to
generalize from minimal initial input. This progress marks a significant advancement in
computational geology, providing a scalable and efficient solution for detailed petrographic
analysis and aiding in the broader efforts of hydrocarbon exploration.

Object and Novelty

A fundamental challenge in machine learning-based methods for geological image
analysis is the labor-intensive and error-prone process of data annotation. This issue is
particularly pronounced in geological image analysis, where the diversity and complexity
of rock thin sections exacerbate the difficulties of manual labeling. Accurate data labels are
crucial for training effective machine learning models; however, traditional fully supervised
methods are hindered by substantial time and resource commitments, as well as potential
human error.

This study addresses these issues through two key innovations:
Semi-Supervised Learning Framework: This novel framework integrates a limited

amount of labeled data with a larger volume of unlabeled data. Utilizing a discriminator
model to refine predictions based on limited ground truth significantly enhances the
training process. By reducing reliance on extensive labeled datasets, this approach mitigates
the challenges associated with manual annotation and improves the model’s ability to
generalize from minimal initial input. This method effectively tackles the challenge of
insufficient labeled data, a common limitation in geological studies, thereby enabling more
robust and scalable model training.

GL-SLIC Algorithm: An advanced pre-segmentation technique combining Gabor
filters and Local Binary Patterns (LBP) is introduced to improve feature extraction. This
enhancement allows the algorithm to capture unique textural patterns and structural com-
plexities of sandstone more accurately. The GL-SLIC algorithm ensures better adherence
to natural boundaries within rock sections, significantly reducing misalignment issues
commonly observed with other algorithms and enhancing the precision of subsequent
segmentation processes. Precise segmentation is crucial for accurate mineral and pore
identification, directly impacting the reliability of petrographic analyses.

2. Methodology
2.1. Data Preparation

The dataset incorporated in this study is derived from the Yanchang Formation within
the Ordos Basin. This dataset is instrumental in understanding the porosity and perme-
ability challenges of the tight sandstone reservoir. The formation’s reservoir quality is
quantified by a porosity average of 9.66% and permeability of 0.05 millidarcies among the
collected samples. The samples were taken perpendicular to the bedding. They comprise
mainly quartz, kaolinite, and clay minerals, with carbonates, silica, and iron oxides as
cements. Grain sizes range from fine to medium with point and long-grain contacts. The
depositional environment includes fluvial channels, floodplains, and lacustrine settings.
Diagenesis involves early compaction and cementation, followed by mineral dissolution
and secondary porosity formation, and late-stage deep burial processes.

A total of 1000 original thin section images of sandstone were used. These images
were captured at a magnification of 200× under single-polarized light to accurately capture
the textural details. The segmentation of these original images resulted in 7920 minerals
and pores fragments, which were categorized into six distinct classes. A deliberate effort
was made to label 100 samples from each class to provide a basis for the semi-supervised
learning model. This strategic labeling allows the model to recognize and categorize the
diverse pore structures present within the formation.
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2.2. Methodology Sequence

The methodological sequence, as depicted in the Figure 2, begins with the preprocess-
ing of original rock thin section images through our novel GL-SLIC algorithm. This initial
phase involves an over-segmentation step, where the GL-SLIC algorithm decomposes the
image into superpixel clusters. Subsequently, a region fusion process is employed. This
process combines nearby superpixel fragments that have similar features to achieve a more
coherent segmentation of mineral and pore fragments.
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The next pivotal step involves manual annotation. Approximately 6% of the samples
are selected randomly and labeled to represent categories such as quartz, pores, kaolinite,
etc. These annotated samples are instrumental in training both the classifier, utilizing a
VGG16 architecture, and the discriminator, based on a ResNet18 model.

Under the semi-supervised learning framework we propose, these models process
the unlabeled data fragments. Through iterative adversarial training, the models learn to
accurately classify the remaining unlabeled data. This semi-supervised approach allows
for comprehensive labeling of all fragments. As a result, the segmented output accurately
identifies mineral constituents in the original thin section images.

2.3. GL-SLIC Algorithm

This section introduces the GL-SLIC algorithm, a novel approach designed to enhance
the segmentation and classification of sandstone thin section images. This is achieved
through the methodical integration of textural and color features into superpixel segmen-
tation. The GL-SLIC algorithm is structured into three primary stages: GLBP Feature
Construction, GL-SLIC Superpixel Segmentation, and Region Merging.

GLBP Feature Construction: The foundation of this algorithm lies in GLBP (Gabor-
Local Binary Pattern) features, which synergistically combine texture and color information.

GL-SLIC Superpixel Segmentation: Building upon the GLBP features, this step em-
ploys the SLIC (simple linear iterative clustering) algorithm for superpixel segmenta-
tion. This method effectively partitions the image into numerous coherent superpixels,
each closely corresponding to natural divisions within the image based on the enhanced
GLBP features.

Region Merging: Following segmentation, this process merges adjacent superpixels ex-
hibiting similar characteristics. This merging step addresses the issue of over-segmentation,
where individual superpixels may be too small or fragmented to be useful in isolation.
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2.3.1. GLBP Feature Extraction

This section introduces a novel texture feature extraction algorithm that integrates
the local binary pattern (LBP) operator with Gabor filters, leveraging both spatial and
frequency domain characteristics, as shown in Figure 3. This hybrid approach robustly
extracts features from sandstone thin section images, effectively minimizing the impact of
external factors such as noise, illumination, rotation, and shadows.
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thin section images.

Operational Steps:
1. Input Data: The initial step involves inputting the sandstone thin section image

data designated for segmentation.
2. Feature Extraction Using Gabor Filters: The algorithm applies Gabor filters at

various scales and orientations to the original sandstone thin section images. Specifically,
the filters are set at six different scales and six orientations, creating a total of 36 distinct
Gabor filters. These filters systematically extract features across the images, resulting in
36 Gabor feature vectors. Figure 4 illustrates the features extracted by the Gabor filters at
each scale and orientation. The scales are shown vertically from top to bottom (1 through
6), and the orientations are displayed horizontally.
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sandstone thin section images.

3. Mean Feature Calculation Using Gabor Filters.
Each Gabor feature extracted from different orientations and scales is averaged to

calculate the mean feature for each respective setting. The Gabor filters are applied at
six different scales and orientations, resulting in 36 distinct Gabor filters. The mean of
the features extracted by each Gabor filter at these scales and orientations is computed
as follows: 
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Figure 5 visually demonstrates the effectiveness of Gabor filter transformations in
extracting distinctive textural features from sandstone thin sections at various scales and
orientations. Each panel within the figure highlights the nuanced differences between
quartz grains and other geological components, which are not easily discernible in the
original images. In panels such as Figure 5a,b, red boxes identify two quartz grains that
appear similar in the raw image but are distinctly separated in the processed images due
to the enhanced textural contrasts provided by the Gabor features. Similarly, Figure 5d,f
use red and blue boxes to differentiate between quartz and pores with enhanced clarity.
This shows that even subtle textural differences become pronounced when viewed through
Gabor-filtered images. The distinct representation of quartz in Figure 5f, where its color
appears markedly darker than surrounding materials, exemplifies how effectively these
features can isolate specific components.
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4. Encoding with LBP Operator
The mean feature images obtained from the Gabor filters are then encoded using the

LBP operator. This operator emphasizes local textural patterns by comparing each pixel
with its neighborhood. Figure 6 displays the LBP-encoded images corresponding to the
mean features.
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5. GLBP Feature Construction Using PCA
The six image matrices generated from the LBP encoding are then subjected to prin-

cipal component analysis (PCA). This step reduces dimensionality and extracts the most
significant features, forming a feature vector that succinctly represents the textural charac-
teristics of the sandstone images.
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2.3.2. Enhanced SLIC Superpixel Segmentation Algorithm: GL-SLIC

In this section, we introduce the GL-SLIC algorithm, an advanced version of the
Simple Linear Iterative Clustering (SLIC) superpixel segmentation method. This algorithm
incorporates texture features derived from GLBP (Gabor–local binary pattern) attributes.
This enhanced algorithm aims to produce superpixels that more accurately conform to
the edges of mineral particles within sandstone images, capturing both local and global
features effectively.

Process and Methodology:
1. Feature Extraction: Initially, the GLBP texture features of the image are extracted

using Gabor filters and LBP operators. The image is then transformed from RGB color
space to CIE-Lab color space to prepare it for segmentation. This transformation enhances
the distinction based on lightness and color components, which align more closely with
human visual perception.

2. Initialization of Cluster Centers: The image is divided into K superpixel grids,
with each grid’s step size proportional to the total number of pixels in the image. The
initial cluster centers are chosen by placing them at certain intervals, ensuring that each
superpixel represents a region of approximately equal size within the image. Each initial
cluster center corresponding to a superpixel center is denoted as Ck. Ck is mapped to a
six-dimensional vector Ck = [lk, ak, bk, xk, yk, GLk], where xk and yk are spatial positions,
lk, ak, and bk are the color features in the CIE-Lab color space, and GLk represents the GLBP
feature value for k = 1,2,. . ., K.

3. Optimization of Initial Cluster Centers: To enhance the accuracy of clustering and
segmentation, an optimization strategy for initial cluster centers is employed. This process
involves adjusting the cluster centers to areas with the lowest gradient within their neighbor-
hoods. This helps avoid placing them on edges or noisy regions where abrupt changes in
image properties occur. As a result, the algorithm ensures that superpixels are more likely to
encapsulate homogeneous regions, thereby improving the overall segmentation quality.

The calculation of the gradient at a pixel position (x, y) is crucial for this optimization
process and is defined by the following formula:

G(x, y) = ∥l(x + 1, y)− l(x − 1, y)∥2 + ∥l(x, y + 1)− l(x, y − 1)∥2

where l(x, y) represents the first three components of the feature vector Ck at location
(x, y), specifically lk,ak, and bk. This gradient computation integrates the local differences
in luminance and color channels, effectively capturing edge intensity which guides the
relocation of cluster centers to less variant regions.

4. Initialization of Distances and Labels: Each pixel is initially assigned a label labels(i)
= −1 and a distance d(i)= ∞. This setup prepares for the subsequent clustering process by
ensuring all pixels can be evaluated for their proximity to potential new cluster centers.

5. Distance Calculation Between Pixels and Cluster Centers: For each pixel within
the neighborhood of a cluster center, the distance to the cluster center is computed. This
calculation incorporates a combination of Euclidean distances based on spatial, color, and
texture features. The overall distance metric used for superpixel segmentation is composed
of three parts: color feature distance, spatial feature distance, and texture feature distance.

Color Feature Distance dc:

dc =

√
(li − lk)

2 + (ai − ak)
2 + (bi − bk)

2

Spatial Feature Distance ds:

ds =

√
(xi − xk)

2 + (yi − yk)
2
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Texture Feature Distance dgl :

dgl =
√
(gli − glk)

2

Overall Distance Metric D′:

D′ =

√(
dc

m

)2
+

(
ds

s

)2
+ g

(
dgl

)2

where m and S are normalization factors for spatial and color distances, respectively, and g
is a weighting function for the texture gradient.

6. Pixel Classification and Iteration: Pixels are classified into the nearest cluster based
on the calculated distances. Cluster centers are then recalculated as the mean of the features
within each cluster, and this reassignment continues iteratively until the cluster centers
stabilize, indicating that a robust segmentation has been achieved.

7. Recalculation of Cluster Centers: The process of recalculating the cluster centers
involves updating their positions based on the mean of the feature vectors of all pixels
currently assigned to each cluster. This is achieved by performing the following steps:

Compute Mean Feature Vectors: For each cluster, calculate the mean of the fea-
ture vectors of all assigned pixels. This mean vector becomes the new position of the
cluster center.

Reassign Pixels: With the newly calculated cluster centers, reassign each pixel to
the nearest cluster based on the comprehensive distance metric previously defined. This
involves recalculating the distances for all pixels relative to each new cluster center and
updating their cluster assignments accordingly.

Iteration: This process of recalculating cluster centers and reassigning pixels is iterated.
After each iteration, check for significant changes in the positions of the cluster centers.

Convergence Criterion: The iteration stops when the changes in the cluster cen-
ters’ positions between successive iterations fall below a predefined threshold, indicating
convergence. This threshold ensures that the algorithm terminates when cluster centers
stabilize, reflect.

8. Finalization of Clusters: The process concludes with a final adjustment of clusters
to ensure that each superpixel optimally represents a distinct region of the image, with
minimal intra-cluster variance and maximized inter-cluster distinction.

The GL-SLIC algorithm leverages the textural and color features encoded by the GLBP
method, resulting in superpixels that are more aligned with natural divisions in the image,
such as mineral boundaries. This improved segmentation forms a critical foundation for
accurate subsequent analyses, including region merging and classification tasks.

2.3.3. Superpixel Merging Strategy

To enhance the quality of data for training classification models, a coarse merging of
generated superpixels is necessary. Initially, an adjacency matrix is constructed based on
the average color features of each superpixel block. The dissimilarity between two adjacent
regions is measured by the Euclidean distance between the average color values of the
superpixels. Regions with smaller dissimilarities are more similar and thus are candidates
for merging. Given a threshold, superpixel merging is conducted using a breadth-first
traversal algorithm tailored for graph-based segmentation. The range for the threshold ψ is
determined by the variability in the color features across different rock images, which can
be significant.

To set the threshold ψ, consider the following inequalities which balance between
merging too many dissimilar superpixels and maintaining meaningful segmentation.
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Normalized Difference Threshold:

wij − min
(
wij

)
max

(
wij

)
− min

(
wij

) < ψ

where wij is the weight of the edge between superpixels i and j, representing the dissim-
ilarity based on color features. min

(
wij

)
and max

(
wij

)
are the minimum and maximum

weights in the adjacency graph, respectively.
Weighted Threshold Formulation:

ψ × max
(
wij

)
+ (1−ψ)×min

(
wij

)
> wij

Alternative Formulation:

ψ1 × max
(
wij

)
+ ψ2×min(wij) >wij

where ψ1 and ψ2 are parameters that you can adjust to fine-tune the merging criteria, ideally
within a range of [0, 1].

Given the diversity in rock images, a more relaxed merging strategy might lead to
excessive merges; hence, the threshold settings are critical to ensure that only truly similar
superpixels are combined. Moreover, while the GL-SLIC algorithm primarily utilizes the
CIE-Lab color space for distance metrics, in this context, the YCBCR color space is also
employed to cater to different chromatic and luminance variations more effectively.

2.4. Semi-Supervised Self-Training Framework
2.4.1. Method Process

This section introduces a semi-supervised self-training model for classifying petro-
graphic thin section images, as shown in Figure 7. This model emphasizes pseudo-labeling
to augment the training dataset effectively. The process is iterative and refines classification
accuracy through repeated training cycles. Here are the detailed steps:
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1. Initial Training with Labeled Samples

The model initialization begins with the primary classifier (VGG16) being trained
using 600 manually labeled samples. This foundational training establishes the initial
learning parameters that guide the classification of unlabeled samples.

2. Classification of Unlabeled Samples

The primary model processes the remaining 7920 unlabeled samples, classifying them
based on the features learned during initial training. Each sample receives a preliminary
label and a confidence score.

3. Pseudo-Label Generation

The primary model assigns pseudo-labels to the unlabeled samples. Only samples
with a confidence score greater than 94% are considered. These high-confidence pseudo-
labels indicate that the model is highly certain of their classifications.

4. Selection of High-Confidence Samples

Samples that meet the high-confidence threshold are selected for further process-
ing. These samples are considered accurate enough to be used for additional training.
The discriminator model (ResNet18) reviews these pseudo-labeled samples to confirm
their validity.

5. Fine-Tuning with Augmented Data

The training cycle enters the fine-tuning phase. The model is refined using both the
original labeled samples and the new high-confidence samples identified in the previous
step. This step improves the model’s accuracy by integrating more verified data into the
training set.

6. Iterative Refinement

Steps 2 through 5 are repeatedly executed to gradually expand the dataset with high-
confidence pseudo-labeled samples. This iterative refinement boosts the capabilities of
both the classifier and discriminator, enabling the system to reliably annotate the entire
dataset automatically. Each cycle aims to not only increase the quantity of data being used
for training but to improve the overall precision and reliability of the model.

Through these steps, the model leverages both labeled and high-quality pseudo-
labeled data to enhance its learning efficacy and accuracy. This method reduces dependency
on extensive labeled datasets while ensuring the classifier remains robust and capable of
handling diverse data scenarios. Each cycle aims to increase the pool of high-confidence
data, progressively enhancing the model’s performance until no significant gains can be
derived from additional unlabeled data.

2.4.2. Classifier Architecture

The architecture of the Classifier is detailed in Figure 8. It utilizes a modified VGG16
framework, incorporating the first 14 layers with batch normalization. The model is
structured into two segments, each comprising two convolutional blocks. Each block
includes a convolution operation, followed by batch normalization and a ReLU activation
function, and concludes with a max-pooling layer. The input data, with dimensions (3, 32,
32), traverse these layers, resulting in a tensor of (128, 8, 8). This tensor is subsequently
flattened into a one-dimensional array of 8192 elements before passing through two fully
connected layers. The output is processed via a softmax function to produce probability
distributions across N classes. The highest probability determines the class label.
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The network architecture of the primary model is depicted in Figure 8. It uses the
first 14 layers of a batch-normalized VGG16 network. This network is partitioned into
two segments, each comprising two convolution blocks. Each block includes a convolution
operation, batch normalization, and a ReLU activation, followed by a max-pooling layer.
The input tensor size is (3, 32, 32). After processing through these layers, it outputs a
tensor of size (128, 8, 8). Before entering the fully connected layers, the tensor is flattened to
(1, 8192). It then passes through two dense layers and concludes with a softmax function
that outputs the probabilities for N classes. The class with the highest probability is selected
as the label.

2.4.3. Discriminator Architecture

Figure 9 illustrates the Discriminator model, which employs a subset of the ResNet18
architecture. This model begins with an initial convolution, followed by batch normaliza-
tion and max pooling. The subsequent layers include Layer 1 to Layer 3, each consisting
of two basic block types. Basic Block1 is composed of two repetitive sets of convolution,
batch normalization, and ReLU activation, without any downsampling or increase in di-
mensionality. Basic Block2 follows a similar structure for the first two sets but includes a
downsampling and dimensionality increase in the third set. The output tensor, resized to
(256, 3, 3), is flattened to (1, 2304). It then proceeds through a final fully connected layer. A
softmax function calculates the probability distributions for N classes, aiming to fine-tune
the classification results derived from the primary model.
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2.4.4. Evaluation Metrics

To quantitatively assess the proposed segmentation algorithm, this study utilizes three
established metrics: under segmentation error (UE), boundary recall (BR), and precision.
Each metric provides insights into different aspects of the segmentation quality.

Under Segmentation Error (UE)
Under segmentation error evaluates the extent to which the segmentation fails to cover

the entire region of interest. It is defined as the average proportion of the union minus
the intersection over the segmentation regions compared to the true segments. A lower
UE indicates higher accuracy in covering the true segments fully. The formula for UE is
expressed as:

UE =
1

N

N

∑
i=1

(Gi ∩ Si) ∪ Si − Gi

where Gi represents the ground truth region, and Si denotes the segmented
superpixel region.
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Boundary Recall (BR)
Boundary recall measures how well the segmentation boundaries align with the actual

boundaries of the region. Higher values indicate better alignment and segmentation
accuracy. The formula for BR is:

BR =
TP

TP + FN
where TP (true positives) are the correctly identified boundary pixels, and FN (false
negatives) are the missed boundary pixels.

Precision
Precision quantifies the accuracy of the boundary delineation, where a higher score

indicates more precise boundary segmentation. It is calculated as:

Presion =
TP

TP + FP

where FP (false positives) represents the incorrectly identified boundary pixels outside the
true boundary.

F1 Score
F1 score is the harmonic mean of precision and recall, useful when seeking a balance

between precision and recall performance, particularly when they might be contradictory. It is
especially beneficial in situations with an uneven class distribution. F1 score is calculated as:

F1_score =
2Precision × Recall
Precision + Recall

=
2TP

2TP + FN + FP

Mean F1 Score
To evaluate the model’s performance across multiple classes, the mean F1 score across

all classes is computed, providing a holistic measure of the model’s overall accuracy:

F1_score =
1
n∑n

i=1 F1_scorei

These metrics collectively enable a comprehensive evaluation of the segmentation
algorithm, detailing its effectiveness in accurately delineating and recognizing regions
within images.

3. Experiments and Results
3.1. GL-SLIC Segmentation Results
3.1.1. Comparison of Superpixel Segmentation Algorithms

To establish the efficacy of the GL-SLIC algorithm, a comparative analysis was con-
ducted against mainstream superpixel segmentation algorithms: LSC, SLIC, FH, QS, SEEDS,
and Watershed. The segmentation outcomes on sandstone thin section images were ob-
served, and the results generated by each algorithm are presented in Figure 10.

Sandstone thin sections, characterized by an abundance of mineral grains with closely
associated features and indistinct boundaries, present a higher degree of segmentation com-
plexity compared to other natural images. A visual assessment reveals that while some
algorithms perform admirably, others fall short. The FH, QS, SEEDS, and Watershed algo-
rithms produce irregularly shaped superpixels of uneven sizes. Specifically, the FH algorithm
shows redundant boundaries and multiple excessively small superpixels. Watershed aligns
more closely with mineral boundaries but generates small, isolated areas within mineral parti-
cles that fail to merge. QS displays instances of over-segmentation, and SEEDS—although
closely aligning with the mineral edges—lacks uniformity in shape and size.
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Figure 10. Comparison of superpixel segmentation algorithms on sandstone images: (a) original
sandstone image; (b) FH; (c) QS; (d) SEEDS; (e) Watershed; (f) LSC; (g) SLIC; (h) GL-SLIC.

The SLIC and LSC algorithms, along with the proposed GL-SLIC algorithm, yield
more regularly shaped, evenly sized, and compact superpixels. Notably, the LSC algorithm
produces the most regular shapes but has lower adherence to the true mineral edges.
Both SLIC and GL-SLIC create well-defined shapes with SLIC producing consistently
regular superpixels.

In Figure 11, the red-boxed areas marked (a) and (b) are magnified to display the
detailed segmentation comparison in Figure 12. In the comparison, areas (a1), (a2),
and (a3)—produced by the SLIC algorithm—are juxtaposed with areas (b1), (b2), and
(b3)—generated by the GL-SLIC algorithm—respectively. (a1) fails to discern the mineral
grain clearly, while (b1) accurately encapsulates a smaller mineral particle. For (a2) and
(b2), there is a noticeable deviation from the actual mineral boundary in (a2), whereas (b2)
closely matches the real boundary. Similarly, (a3) does not recognize the protrusion in the
mineral particle, which is precisely identified in (b3).
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Empirical observations demonstrate that the superpixels generated by the SLIC algo-
rithm do not entirely conform to the actual mineral particle boundaries. In contrast, the
GL-SLIC algorithm excels in aligning with the true edges. This improved adherence in
GL-SLIC can be attributed to the incorporation of the GLBP texture features in the distance
metric. Additionally, these features are considered during cluster center updates, making
GL-SLIC more suitable for preprocessing sandstone thin section images.

Table 1 presents the averaged UE (undersegmentation error), BR (boundary recall),
and precision metrics for the SLIC, LSC, QS, FH, SEEDS, and Watershed algorithms and
the proposed GL-SLIC algorithm across 50 sandstone thin section images from the dataset.
The GL-SLIC algorithm outperforms others on all three metrics, demonstrating its superior
segmentation precision and fidelity to real mineral particle edges. This ensures more
accurate mineral particle identification within the sandstone images. Overall, the GL-SLIC
algorithm not only exhibits higher segmentation accuracy but also improves the fit to the
true edges of mineral grains, reducing the undersegmentation error rate.

Table 1. Comparison of experimental results for superpixel segmentation algorithms.

Algorithm UE BR Precision

FH 0.1345 0.5847 0.2563
QS 0.1232 0.5325 0.3648

SEEDS 0.1078 0.7453 0.5761
Watershed 0.0934 0.6147 0.5256

LSC 0.0773 0.6343 0.5272
SLIC 0.0844 0.6565 0.5846

GL-SLIC 0.0648 0.6987 0.6053

3.1.2. Validation of Region Merging Algorithm

Building upon the foundation laid by the GL-SLIC segmentation algorithm, this section
validates the proposed region merging algorithm. Figure 13 illustrates the application
of this algorithm on a medium-coarse-grained quartz sandstone image, showcasing the
pre-segmentation and post-merging results.
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Visually, the merged superpixels predominantly represent entire mineral grains. This
indicates the algorithm’s efficacy in consolidating fragmented mineral particles and elon-
gated pore structures into cohesive units. Figure 13c demonstrates that the superpixels
after merging nearly mirror complete mineral particles, with minimal misclassification
observed during the merging process.

However, the algorithm’s performance varies with the size and shape of the features.
It effectively merges smaller quartz fragments and elongated pores, but larger pore spaces
pose a challenge. These larger pores often contain diverse mineral inclusions, leading to
significant internal feature variation, which can result in over-segmentation post-merging.

Table 2 presents the average results from 50 sandstone thin section images processed
using the GL-SLIC algorithm both before and after applying the region-merging algo-
rithm. The metrics used—undersegmentation error (UE), boundary recall (BR), and
precision—show marked improvement post-merging. Notably, the precision and boundary
recall values increase. This demonstrates that the merged superpixels align more closely
with the true boundaries of mineral grains, resulting in more accurate representations of
the actual geological structures.

Table 2. Experimental results of superpixel merging using the GL-SLIC algorithm.

Evauation Metric before Merging after Merging

UE 0.0648 0.0513
BR 0.6987 0.7056

Precision 0.6053 0.7233

3.2. Experiments of Semi-Supervised Learning Framework

Figure 14 showcases the initial use of manually labeled data to prime both the primary
and discriminator models. After initialization, both models exhibit testing accuracies above
90% but quickly encounter issues with overfitting. To address this, unlabeled monolithic
rock data are introduced into both models to generate high-confidence data, enhancing
the training dataset. By the second iteration, when the dataset size reaches 750 images,
both models maintain accuracies above 90%, with overfitting issues significantly mitigated.
At this stage, the classification models already show promising results. However, the
monolithic rock dataset includes data beyond the manually labeled five categories, labeled
as “other.” To appropriately classify this additional category, model iterations continue
until the termination criteria are met. Subsequently, high-quality data from the remaining
unlabeled monolithic rock data are selected as the “other” category.
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Figure 14. Iterative model training and data augmentation process using labeled and unlabeled rock data
to mitigate overfitting and enhance classification accuracy: (a) primary model; (b) discriminator model.

Towards the end, data for each of the six categories—quartz, pores, rock fragments,
matrix, kaolinite, and “other”—reach approximately 1300 images each. The primary model
is then trained with this varied category data. After multiple experiments, the model
converges around the 120th iteration. Figure 15 illustrates the variation in training and
testing accuracies, with the last iteration showing a training accuracy of 88.7% and a testing
accuracy of 90.2%.

Minerals 2024, 14, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 14. Iterative model training and data augmentation process using labeled and unlabeled rock 
data to mitigate overfitting and enhance classification accuracy: (a) primary model; (b) discriminator 
model. 

Towards the end, data for each of the six categories—quartz, pores, rock fragments, 
matrix, kaolinite, and “other”—reach approximately 1300 images each. The primary 
model is then trained with this varied category data. After multiple experiments, the 
model converges around the 120th iteration. Figure 15 illustrates the variation in training 
and testing accuracies, with the last iteration showing a training accuracy of 88.7% and a 
testing accuracy of 90.2%. 

 
Figure 15. Curves of training and testing accuracy variation with epochs for the primary model. 

To provide a detailed evaluation of the model’s performance and pinpoint the spe-
cific rock components that are problematic, confusion matrices for both the training and 
testing datasets are utilized, thereby illustrating the classification accuracies across all six 
rock types. This approach allows for a nuanced analysis of the model’s strengths and 
weaknesses in distinguishing between the different categories of rock components. Figure 
16 shows the confusion matrices for the training and validation sets. It can be seen that, 
except for the “other” category, the accuracy for each class is relatively high, with an av-
erage accuracy of around 95%. However, when data from the “other” category are incor-
porated, the accuracy notably decreases to around 90%. This drop is primarily attributed 
to the inherent characteristics of the “other” category, which lacks distinctive features 

Figure 15. Curves of training and testing accuracy variation with epochs for the primary model.

To provide a detailed evaluation of the model’s performance and pinpoint the specific
rock components that are problematic, confusion matrices for both the training and testing
datasets are utilized, thereby illustrating the classification accuracies across all six rock
types. This approach allows for a nuanced analysis of the model’s strengths and weaknesses
in distinguishing between the different categories of rock components. Figure 16 shows the
confusion matrices for the training and validation sets. It can be seen that, except for the
“other” category, the accuracy for each class is relatively high, with an average accuracy
of around 95%. However, when data from the “other” category are incorporated, the
accuracy notably decreases to around 90%. This drop is primarily attributed to the inherent
characteristics of the “other” category, which lacks distinctive features compared to the
well-defined categories of quartz, pores, rock fragments, matrix, and kaolinite. Due to the
ambiguous nature of this category, the model struggles to discern clear patterns within the
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100 manually labeled samples of the “other” category, leading to a less precise learning
outcome.
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Figure 16. Classification accuracy analysis: (a) training set confusion matrix, (b) test set
confusion matrix.

Analysis of Figure 16 reveals severe misclassification within the “other” category,
containing data closely resembling other categories. Initially, only a limited selection of the
five main rock components was manually labeled, leaving a substantial amount of data
in the “other” category unsorted; the semi-supervised dual model approach attempts to
address this by generating pseudolabels to expand the known categories. However, due to
the complexity of rock images and the similarity among different components, the final
unlabeled data assumed as “other” may still contain data from the other five categories.

To address the imbalance caused by the necessary removal of data wrongly included
in the “other” category—which would reduce its volume by nearly 44%—image rotation
methods are employed to enhance and balance the dataset. After cleansing and enhanc-
ing the dataset, the model converges by the 80th iteration with significantly improved
accuracies: 93.7% for training and 96.3% for testing, the results are shown in Figure 17.
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Figure 17. Improved model accuracy post dataset cleansing and enhancement.

The current model accuracy indicates significant improvement following the cleansing
and enhancement of the dataset. The model’s capability to accurately classify different
rock types is reassessed by generating and analyzing confusion matrices for the entire
dataset and calculating the classification accuracy for each rock type. The confusion matrix
presented in Figure 18 shows that while the classification accuracy for the “other” category
is 89%, the accuracies for all other categories exceed 96%. This outcome confirms the
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effectiveness of the strategies employed to manage the data within the “other” category.
Additionally, the model achieves an F1 score of 96.4% on the test dataset, indicating that
the classification performance for this monolithic rock dataset is highly satisfactory.
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In summary, this chapter integrates a semi-supervised dual-model training approach,
utilizing both the primary and discriminator models to evaluate and generate high-
confidence pseudolabel data through iterative refinements, ultimately achieving an ex-
panded and highly accurate classification model for the entire monolithic rock dataset.

3.3. Component Identification Result

After achieving high classification accuracy, as evidenced by the confusion matrix
and F1 score, we proceeded to integrate the classification results with segmentation to
identify different mineral components within the original petrographic thin section images
as in Figure 19. Comparing the method used in this study to the UNet-based semantic
segmentation method, it is evident that our method yields clearer boundaries and more
accurate recognition results. When calculating accuracy against manually annotated results,
our method achieves an accuracy of 89.33%, whereas the semantic segmentation method
only reaches 72.12%.
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This qualitative assessment shows that the integration of classification with segmen-
tation allows for a detailed and accurate identification of geological features within the
rock samples. The clear delineation of quartz, pores, matrix, kaolinite, lithic fragments, and
other components aligns well with geological expectations, providing a comprehensive
understanding of the sample composition.

3.4. Discussion and Limitations

The results from our experiments highlight several key strengths and some limitations
of the methods used for component identification in petrographic thin section images.

3.4.1. Strengths

High Classification Accuracy: The integrated approach combining classification and
segmentation yielded high accuracy, with most rock components correctly identified. This
is evident from the confusion matrix and F1 score, showing robust performance even with
only 6% of the data labeled.

Clear Boundary Delineation: The boundaries between different rock components are
well-defined, with minimal misclassification or merging errors. This clarity is crucial for
accurate geological interpretation and analysis.

Comprehensive Component Identification: The approach effectively identifies and seg-
ments multiple components, including quartz, pores, matrix, kaolinite, and lithic fragments.
This comprehensive identification supports detailed geological and petrophysical analyses.

3.4.2. Limitations

Incomplete Merging: One significant limitation of our study is the occurrence of
incomplete merging, where certain rock components are not entirely segmented. This issue
can affect the overall accuracy and completeness of the analysis, particularly in regions
where mineral grains and pores have intricate boundaries. Future work should focus on
refining the merging algorithms to better handle these complex structures.

Low Image Resolution: The relatively low resolution of the rock images used in this
study may limit the level of detail captured, potentially impacting the accuracy of component
identification, especially for finer geological features. Higher-resolution imaging techniques
should be explored to enhance the precision of segmentation and classification tasks.

Lithological Limitations: The study’s findings are based on a specific type of rock from
a particular geological formation. The model’s effectiveness across different lithologies
remains uncertain. Therefore, further validation across various rock types and formations
is necessary to ensure the generalizability and robustness of the proposed method.

Limited Data Annotation: With only 6% of the data annotated, the results are promis-
ing but may not fully represent the variability within the dataset. Expanding the annotated
dataset could improve the model’s performance and reliability. Additionally, the reliance
on high-confidence pseudo labels might introduce biases if the initial labeled data is not
sufficiently diverse.

Challenges in Feature Extraction: The effectiveness of the GL-SLIC algorithm re-
lies heavily on the quality of feature extraction. Variations in lighting, sample prepara-
tion, and imaging conditions can affect the extracted features’ quality. Enhancing the
robustness of feature extraction methods to account for these variations is crucial for
consistent performance.

4. Conclusions

This study presents an advancement in the automated segmentation and classification
of sandstone thin section images by integrating the GL-SLIC algorithm with deep learning
techniques. The semi-supervised learning framework addresses the challenge of limited
labeled data by using a small set of manually labeled samples to generate high-confidence
pseudo labels, thereby substantially expanding the training dataset.
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The results indicate that this method enhances segmentation accuracy, particularly in
delineating the intricate boundaries of mineral grains and pores. This precision is essential
for detailed petrographic analysis, where accurate boundary definition is necessary for
reliable component identification. The model achieves a high classification accuracy of
up to 96.3% across various rock types, confirming its robustness and effectiveness in
distinguishing different geological components.

Additionally, the semi-supervised approach is both efficient and scalable. It general-
izes well from minimal initial input, which is particularly valuable in geological studies
where labeled data is often limited. By improving the clarity and accuracy of geological
interpretations, this method supports more informed decision-making in geological and
petrophysical analyses.

In summary, the integration of traditional segmentation techniques with semi-supervised
deep learning addresses the limitations of existing methods and achieves high accuracy in
petrographic analysis. This study lays a foundation for future advancements in geological
image analysis, highlighting the potential for adaptive, data-efficient methods to significantly
enhance petrographic and broader geological studies.
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