Al-Si Order and Chemical Composition Model across Scapolite Solid Solutions with Evidence from Rietveld Structure Refinements
Abstract
:1. Introduction
2. Scapolite Crystal Structure
3. Scapolite Solid Solutions
4. Space Groups and Antiphase Domain Boundaries (APBs)
5. Al-Si Order and Compositional Model for Scapolite Solid Solutions
6. Scapolite Samples and Experimental Methods
7. Results and Discussion
7.1. Normalized Unit-Cell Paramters
7.2. Anion Groups
7.3. Average <M–O> and <M–A> Distances
7.4. Average <T–O–T> Bridging Angle and <T–O> Distance
7.5. Oval-Shaped Channels and Tetrahedral Rotations
8. Concluding Remarks
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovering, J.F.; White, A.J.R. Granulitic and eclogitic inclusions from basic pipes at Delegate, Australia. Contrib. Mineral. Petrol. 1969, 21, 9–52. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Palmer, M.R.; Xue, C.J.; Li, Y.H. Halogen-rich scapolite-biotite rocks from the Tongmugou Pb-Zn deposit, Qinling, north-western China: Implications for the ore-forming process. Mineral. Mag. 1994, 58, 543–552. [Google Scholar] [CrossRef]
- Kullerud, K.; Erambert, M. Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: Implications for fluid compositional evolution during fluid-mineral interaction in the deep crust. Geochim. Cosmochim. Acta 1999, 63, 3829–3844. [Google Scholar] [CrossRef]
- Moecher, D.P.; Essene, E.J. Phase-equilibria for calcic scapolite, and implications of variable Al-Si disorder for P-T, T-XCO2, and a-X relations. J. Petrol. 1990, 31, 997–1024. [Google Scholar] [CrossRef]
- Moecher, D.P.; Essene, E.J. Calculation of CO2 activities using scapolite equilibria: Constraints on the presence and composition of a fluid phase during high-grade metamorphism. Contrib. Mineral. Petrol. 1991, 108, 219–240. [Google Scholar] [CrossRef]
- Kostov-Kytin, V.; Kadiyski, M.; Nikolova, R. Further on the Choice of Space Group for Scapolite Group Members and Genetic Considerations about the Si-Al Ordering in Their Framework Construction. Minerals 2024, 14, 556. [Google Scholar] [CrossRef]
- Lotti, P.; Gatta, G.D.; Gigli, L.; Krüger, H.; Kahlenberg, V.; Meven, M.; Comboni, D.; Milani, S.; Merlini, M.; Liermann, H.-P. Thermal and combined high-temperature and high-pressure behavior of a natural intermediate scapolite. Am. Mineral. 2024, 109, 243–254. [Google Scholar] [CrossRef]
- Rao, Y.; Guo, Q.; Zhang, S.; Liao, L. Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals 2023, 13, 462. [Google Scholar] [CrossRef]
- Shendrik, R.; Kaneva, E.; Pankratova, V.; Pankrushina, E.; Radomskaya, T.; Gavrilenko, V.; Loginova, P.; Pankratov, V. Intrinsic luminescence and radiation defects in scapolite. Chem. Phys. Lett. 2024, 838, 141081. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; John Wiley: New York, NY, USA, 1992. [Google Scholar]
- Teertstra, D.K.; Schindler, M.; Sherriff, B.L.; Hawthorne, F.C. Silvialite, a new sulfate-dominant member of the scapolite group with an Al-Si composition near the I4/m-P42/n phase transition. Mineral. Mag. 1999, 63, 321–329. [Google Scholar] [CrossRef]
- Shaw, D.M. The geochemistry of scapolite. Part I. Previous work and general mineralogy. J. Petrol. 1960, 1, 218–260. [Google Scholar] [CrossRef]
- Evans, B.W.; Shaw, D.M.; Haughton, D.R. Scapolite stoichiometry. Contrib. Mineral. Petrol. 1969, 24, 293–305. [Google Scholar] [CrossRef]
- Hassan, I.; Buseck, P.R. HRTEM characterization of scapolite solid solutions. Am. Mineral. 1988, 73, 119–134. [Google Scholar]
- Antao, S.M.; Hassan, I. Thermal behavior of scapolite Me79.6 and Me33.3. Can. Mineral. 2002, 40, 1395–1401. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. Increase in Al-Si and Ca-Na disorder with temperature in scapolite Me32.9. Can. Mineral. 2008, 46, 1577–1591. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. Unusual Al-Si ordering in calcic scapolite, Me79.6, with increasing temperature. Am. Mineral. 2008, 93, 1470–1477. [Google Scholar] [CrossRef]
- Antao, S.M. Quartz: Structural and thermodynamic analyses across the α↔ β transition with origin of negative thermal expansion (NTE) in β quartz and calcite. Acta Crystallogr. 2016, 72, 249–262. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I.; Mulder, W.H.; Lee, P.L.; Toby, B.H. In situ study of the R-3c→R-3m orientational disorder in calcite. Phys. Chem. Miner. 2009, 36, 159–169. [Google Scholar] [CrossRef]
- Hassan, I.; Antao, S.M.; Parise, J.B. Cancrinite: Crystal structure, phase transitions, and dehydration behavior with temperature. Am. Mineral. 2006, 91, 1117–1124. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I.; Mulder, W.H.; Lee, P.L. The R-3c→R-3m transition in nitratine, NaNO3, and implications for calcite, CaCO3. Phys. Chem. Miner. 2008, 35, 545–557. [Google Scholar] [CrossRef]
- Antao, S.M.; Mohib, S.; Zaman, M.; Marr, R.A. Ti-rich andradites: Chemistry, structure, multi-phases, optical anisotropy, and oscillatory zoning. Can. Mineral. 2015, 53, 133–158. [Google Scholar] [CrossRef]
- Antao, S.M.; Benmore, C.J.; Li, B.; Wang, L.; Bychkov, E.; Parise, J.B. Network rigidity in GeSe2 glass at high pressure. Phys. Rev. Lett. 2008, 100, 115501. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.D.; Antao, S.M.; Chupas, P.S.; Lee, P.L.; Shastri, S.D.; Parise, J.B. Quantitative high-pressure pair distribution function analysis of nanocrystalline gold. Appl. Phys. Lett. 2005, 86, 061910. [Google Scholar] [CrossRef]
- Lin, S.B. Crystal chemistry and stoichiometry of the scapolite group. Acta Geol. Taiwan 1975, 18, 36–48. [Google Scholar]
- Lin, S.B.; Burley, B.J. On the weak reflections violating body-centered symmetry in scapolites. Tschermaks Mineral.-Petrol. Mitteilungen 1973, 20, 28–44. [Google Scholar] [CrossRef]
- Sokolova, E.V.; Hawthorne, F.C. The crystal chemistry of the scapolite-group minerals. I. Crystal structure and long-range order. Can. Mineral. 2008, 46, 1527–1554. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Sokolova, E.V. The crystal chemistry of the scapolite-group minerals. II. The origin of the I4/m ←→ P42/n phase transition and the nonlinear variations in chemical composition. Can. Mineral. 2008, 46, 1555–1575. [Google Scholar] [CrossRef]
- Sherriff, B.L.; Sokolova, E.V.; Kabalov, Y.K.; Jenkins, D.M.; Kunath-Fandrei, G.; Goetz, S.; Jäger, C.; Schneider, J. Meionite: Rietveld structure-refinement, 29Si MAS and 27Al SATRAS NMR spectroscopy, and comments on the marialite-meionite series. Can. Mineral. 2000, 38, 1201–1213. [Google Scholar] [CrossRef]
- Sherriff, B.L.; Sokolova, E.V.; Kabalov, Y.K.; Teertstra, D.K.; Kunath-Fandrei, G.; Goetz, S.; Jäger, C. Intermediate scapolite: 29Si MAS and 27Al SATRAS NMR spectroscopy and Rietveld structure-refinement. Can. Mineral. 1998, 36, 1267–1283. [Google Scholar]
- Sokolova, E.V.; Gobechiya, E.R.; Zolotarev, A.A.; Kabalov, Y.K. Refinement of the crystal structures of two marialites from the Kukurt deposit of the east Pamirs. Crystallogr. Rep. 2000, 45, 934–938. [Google Scholar] [CrossRef]
- Sokolova, E.V.; Kabalov, Y.K.; Sherriff, B.L.; Teertstra, D.K.; Jenkins, D.M.; Kunath-Fandrei, G.; Goetz, S.; Jäger, C. Marialite: Rietveld structure-refinement and 29Si MAS and 27Al satellite transition NMR spectroscopy. Can. Mineral. 1996, 34, 1039–1050. [Google Scholar]
- Teertstra, D.K.; Sherriff, B.L. Scapolite cell-parameter trends along the solid-solution series. Am. Mineral. 1996, 81, 169–180. [Google Scholar] [CrossRef]
- Zolotarev, A.A. Once more on isomorphic schemes and isomorphic series in the scapolite group. Zap. Vser. Mineral. Obs. 1996, 125, 69–73. [Google Scholar]
- Zolotarev, A.A.; Petrov, T.G.; Moshkin, S.V. Peculiarities of chemical compositions of the scapolite group minerals. Zap. Vser. Mineral. Obs. 2003, 132, 63–84. [Google Scholar]
- Seto, Y.; Shimobayashi, N.; Miyake, A.; Kitamura, M. Composition and I4/m-P42/n phase transition in scapolite solid solutions. Am. Mineral. 2004, 89, 257–265. [Google Scholar] [CrossRef]
- Phakey, P.P.; Ghose, S. Scapolite: Observation of anti-phase domain structure. Nat. Phys. Sci. 1972, 238, 78–80. [Google Scholar] [CrossRef]
- Antao, S.M. Unit-cell parameters for scapolite solid solutions and a discontinuity at Me75, ideally NaCa3[Al5Si7O24](CO3). Powder Diffr. 2013, 28, 253–259. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. Complete Al-Si order in scapolite Me37.5, ideally Ca3Na5[Al8Si16O48]Cl(CO3) and implications for antiphase domain boundaries (APBs). Can. Mineral. 2011, 49, 581–586. [Google Scholar] [CrossRef]
- Chamberlain, C.P.; Docka, J.A.; Post, J.E.; Burnham, C.W. Scapolite—Alkali atom configurations, antiphase domains, and compositional variations. Am. Mineral. 1985, 70, 134–140. [Google Scholar]
- Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954, 39, 92–96. [Google Scholar]
- Antao, S.M.; Hassan, I.; Parise, J.B. Aluminate sodalite: Phase transitions and high-temperature structural evolution of the cubic phase. Can. Mineral. 2004, 42, 1047–1056. [Google Scholar] [CrossRef]
- Teertstra, D.K.; Sherriff, B.L. Substitutional mechanisms, compositional trends and the end-member formulae of scapolite. Chem. Geol. 1997, 136, 233–260. [Google Scholar] [CrossRef]
- Aitken, B.G.; Evans, H.T.; Konnert, J.A. The crystal-structure of a synthetic meionite. Neues Jahrb. Fur Mineral. -Abh. 1984, 149, 309–324. [Google Scholar]
- Levien, L.; Papike, J.J. Scapolite crystal chemistry: Aluminum-silicon distributions, carbonate group disorder, and thermal expansion. Am. Mineral. 1976, 61, 864–877. [Google Scholar]
- Lin, S.B.; Burley, B.J. The crystal structure of meionite. Acta Crystallogr. 1973, 29, 2024–2026. [Google Scholar] [CrossRef]
- Lin, S.B.; Burley, B.J. Crystal structure of a sodium and chlorine-rich scapolite. Acta Crystallogr. 1973, 29, 1272–1278. [Google Scholar] [CrossRef]
- Oterdoom, W.H.; Wenk, H.R. Ordering and composition of scapolite—Field observations and structural interpretations. Contrib. Mineral. Petrol. 1983, 83, 330–341. [Google Scholar] [CrossRef]
- Papike, J.J.; Stephenson, N.C. The crystal structure of mizzonite, a calcium- and carbonate-rich scapolite. Am. Mineral. 1966, 51, 1014–1027. [Google Scholar]
- Papike, J.J.; Zoltai, T. The crystal structure of a marialite scapolite. Am. Mineral. 1965, 50, 641–655. [Google Scholar]
- Peterson, R.C.; Donnay, G.; Lepage, Y. Sulfate disorder in scapolite. Can. Mineral. 1979, 17, 53–61. [Google Scholar]
- Ulbrich, H.H. Structural refinement of the Monte Somma scapolite, a 93% meionite. Schweiz. Mineral. Und Petrogr. Mitteilungen 1973, 53, 385–393. [Google Scholar]
- Buseck, P.R.; Iijima, S. High resolution electron microscopy of silicates. Am. Mineral. 1974, 59, 1–21. [Google Scholar]
- Lin, S.B.; Burley, B.J. The crystal-structure of an intermediate scapolite—Wernerite. Tschermaks Mineral. -Petrol. Mitteilungen 1974, 21, 196–215. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I.; Wang, J.; Lee, P.L.; Toby, B.H. State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can. Mineral. 2008, 46, 1501–1509. [Google Scholar] [CrossRef]
- Hassan, I.; Antao, S.M.; Parise, J.B. Sodalite: High temperature structures obtained from synchrotron radiation and Rietveld refinements. Am. Mineral. 2004, 89, 359–364. [Google Scholar] [CrossRef]
- Lee, P.L.; Shu, D.; Ramanathan, M.; Preissner, C.; Wang, J.; Beno, M.A.; Von Dreele, R.B.; Ribaud, L.; Kurtz, C.; Antao, S.M.; et al. A twelve-analyzer detector system for high-resolution powder diffraction. J. Synchrotron Radiat. 2008, 15, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Toby, B.H.; Lee, P.L.; Ribaud, L.; Antao, S.M.; Kurtz, C.; Ramanathan, M.; Von Dreele, R.B.; Beno, M.A. A dedicated powder diffraction beamline at the advanced photon source: Commissioning and early operational results. Rev. Sci. Instrum. 2008, 79, 085105. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. Generalized Structure Analysis System; Report No. LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, USA, 2000. [Google Scholar]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Ulbrich, H.H. Crystallographic data and refractive indicies of scapolites. Am. Mineral. 1973, 58, 81–92. [Google Scholar]
- Eugster, H.P.; Protska, H.J.; Appleman, D.E. Unit cell dimensions of natural and synthetic scapolites. Science 1962, 137, 853–854. [Google Scholar] [CrossRef] [PubMed]
- Graziani, G.; Lucchesi, S. The thermal behavior of scapolites. Am. Mineral. 1982, 67, 1229–1241. [Google Scholar]
- Baker, J. Thermal expansion of scapolite. Am. Mineral. 1994, 79, 878–884. [Google Scholar]
- Hassan, I.; Grundy, H.D. The crystal structures of sodalite-group minerals. Acta Crystallogr. 1984, 40, 6–13. [Google Scholar] [CrossRef]
Me% | Formulae and Clusters | T1 Site | T2 Site | T3 Site | Mean <T–O> |
---|---|---|---|---|---|
0 | Na8[Al6Si18O48]Cl2 | 8Si | 3Al + 5Si | 3Al + 5Si | |
[Na4·Cl]3+ = 1 | 1Si | 0.375Al + 0.625Si | =T2 | ||
Tetrahedral distances | 1.6100 Å | 1.6601 Å | 1.6601 Å | 1.6434 | |
9.38 | Na7.25Ca0.75[Al6.5Si17.5O48]Cl1.75(CO3)0.25 | 8Si | 3.25Al + 4.75Si | 3.25Al + 4.75Si | |
[Na4·Cl]3+:[NaCa3·CO3]5+ = 1.75:0.25 | 1Si | 0.406Al + 0.594Si | =T2 | ||
Tetrahedral distances | 1.6100 Å | 1.6642 Å | 1.6642 Å | 1.6461 | |
18.75 | Na6.5Ca1.5[Al7Si17O48]Cl1.5(CO3)0.50 | 8Si | 3.5Al + 4.5Si | 3.5Al + 4.5Si | |
[Na4·Cl]3+:[NaCa3·CO3]5+ = 1.5:0.5 | 1Si | 0.438Al + 0.563Si | =T2 | ||
Tetrahedral distances | 1.6100 Å | 1.6701 Å | 1.6701 Å | 1.6501 | |
37.5 | Na5Ca3[Al8Si16O48]Cl(CO3) | 8Si | 8Al | 8Si | |
[Na4·Cl]3+:[NaCa3·CO3]5+ = 1:1 | 1Si | 1Al | 1Si | ||
Tetrahedral distances | 1.6100 Å | 1.7435 Å | 1.6100 Å | 1.6545 | |
56.25 | Na3.5Ca4.5[Al9Si15O48]Cl0.5(CO3)1.5 | 1Al + 7Si | 7Al + 1Si | 1Al + 7Si | |
[Na4·Cl]3+:[NaCa3·CO3]5+ = 0.5:1.5 | 0.125Al + 0.875Si | 0.875Al + 0.125Si | 0.125Al + 0.875Si | ||
Tetrahedral distances | 1.6267 Å | 1.7268 Å | 1.6267 Å | 1.6601 | |
75 | Na2Ca6[Al10Si14O48](CO3)2 | 2Al + 6Si | 4Al + 4Si | 4Al + 4Si | |
[NaCa3·CO3]5+ = 1 | 0.25Al + 0.75Si | 0.5Al + 0.5Si | =T2 | ||
Tetrahedral distances | 1.6434 Å | 1.6768 Å | 1.6768 Å | 1.6656 | |
87.5 | NaCa7[Al11Si13O48](CO3)2 | 2.7Al + 5.3Si | 4.15Al + 3.85Si | 4.15Al + 3.85Si | |
[NaCa3·CO3]5+:[Ca4·CO3]6+ = 1:1 | 0.338Al + 0.663Si | 0.519Al + 0.481Si | =T2 | ||
Tetrahedral distances | 1.6567 Å | 1.6793 Å | 1.6793 Å | 1.6718 | |
100 | Ca8[Al12Si12O48](CO3)2 | 3.4Al + 4.6Si | 4.3Al + 3.7Si | 4.3Al + 3.7Si | |
[Ca4·CO3]6+ = 1 | 0.425Al + 0.575Si | 0.538Al + 0.463Si | =T2 | ||
Tetrahedral distances | 1.6667 Å | 1.6834 Å | 1.6834 Å | 1.6779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antao, S.M. Al-Si Order and Chemical Composition Model across Scapolite Solid Solutions with Evidence from Rietveld Structure Refinements. Minerals 2024, 14, 812. https://doi.org/10.3390/min14080812
Antao SM. Al-Si Order and Chemical Composition Model across Scapolite Solid Solutions with Evidence from Rietveld Structure Refinements. Minerals. 2024; 14(8):812. https://doi.org/10.3390/min14080812
Chicago/Turabian StyleAntao, Sytle M. 2024. "Al-Si Order and Chemical Composition Model across Scapolite Solid Solutions with Evidence from Rietveld Structure Refinements" Minerals 14, no. 8: 812. https://doi.org/10.3390/min14080812
APA StyleAntao, S. M. (2024). Al-Si Order and Chemical Composition Model across Scapolite Solid Solutions with Evidence from Rietveld Structure Refinements. Minerals, 14(8), 812. https://doi.org/10.3390/min14080812