Bubble Size Characterization in the HydroFloat® Fluidized-Bed Flotation Cell Using Tap Water and Seawater
Abstract
:1. Introduction
2. Methodology
- -
- Apparatus and material reagents;
- -
- Procedures;
- -
- Mathematical modeling.
2.1. Apparatus and Material Reagents
2.2. Procedures
2.3. Mathematical Modeling
3. Results and Discussion
3.1. Effect of Different Position Samples on Bubble Size in the HydroFloat® Cell
3.2. Effect of Frother Reagents on Bubble Size Using Tap Water
3.3. Effect of Jg and Jl on Bubble Size Using Tap Water
3.4. Effect of Seawater Concentration on Bubble Size
3.5. Analysis of Variables Using Design of Experiments
4. Conclusions
- The tap water experimental results indicate that the Sauter mean bubble size (d32) decreased as the concentration of frother increased, approaching the critical coalescence concentration (CCC). At gas superficial velocity (Jg) = 2.70 cm/s and liquid superficial velocity (Jl) = 17.6 cm/s, the CCC for MIBC was determined to be 11.98 ppm, corresponding to 0.1175 mmol/L, while for F507, the CCC was found to be 5.47 ppm, which is equivalent to 0.0128 mmol/L.
- A higher concentration of the frother produces smaller stable bubbles. Comparing F507 with MIBC, a lower concentration of the first produces more diminutive and more stable bubbles, with a constant size of 0.51 and 0.40 mm for MIBC and F507, respectively. This variation in bubble size can be attributed to frothers that impede coalescence and also influence break-up. In comparison to F507, the MIBC molecule is smaller, possessing fewer hydrophilic sites for bonding with water molecules. Consequently, the MIBC molecules on the bubble surface are closer, resulting in smaller break-away bubbles.
- The analysis of the effect of Jg and Jl on bubble size using an MIBC frother in experiments with tap water showed that when Jg increases, d23 increases for all frother concentrations. This is more noticeable with a lower concentration of MIBC. The opposite situation occurs when Jl increases.
- In the experiments with different seawater concentrations, when the seawater concentration increases, bubble size decreases, reaching a minimum size of 0.41 mm. Comparing the results of seawater with tap water using a frother, we can observe the positive effects of seawater on the bubble’s compression, even when a lower concentration of seawater is used. With 40% seawater in the solution, the bubble size begins to stabilize, and 87% of the bubbles reach sizes between 0.28 and 0.4 mm. The CCC was obtained with 51% seawater. Hence, we can use 40 and 50% seawater solutions to achieve a minimum bubble size.
- The design of experiment technique was used to examine how Jl and Jg, frother concentration, and seawater concentration affect bubble size. The results indicate that all linear factors are significant, the quadratic terms of the frother and seawater concentrations are also significant, and the interaction term between superficial air velocity and superficial liquid velocity does not significantly impact bubble size. Through global sensitivity analysis, it is observed that the variables with the most significant impact on bubble size are the frother and seawater concentrations, followed by superficial liquid velocity. Superficial gas velocity has little effect on bubble size under the conditions studied.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mesa, D.; Brito-Parada, P.R. Scale-up in froth flotation: A state-of-the-art review. Sep. Purif. Technol. 2019, 210, 950–962. [Google Scholar] [CrossRef]
- Lai, H.; Deng, J.; Liu, Q.; Wen, S.; Song, Q. Surface chemistry investigation of froth flotation products of lead-zinc sulfide ore using ToF-SIMS and multivariate analysis. Sep. Purif. Technol. 2021, 254, 117655. [Google Scholar] [CrossRef]
- Jameson, G.J. New directions in flotation machine design. Miner. Eng. 2010, 23, 835–841. [Google Scholar] [CrossRef]
- Jameson, G.J. Advances in fine and coarse particle flotation. Can. Metall. Q. 2010, 49, 328–330. [Google Scholar] [CrossRef]
- Cilek, E.C.; Ozgen, S. Improvement of the flotation selectivity in a mechanical flotation cell by ultrasound. Sep. Sci. Technol. 2010, 45, 572–579. [Google Scholar] [CrossRef]
- Hirajima, T.; Mori, M.; Ichikawa, O.; Sasaki, K.; Miki, H.; Farahat, M.; Sawada, M. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment. Miner. Eng. 2014, 66, 102–111. [Google Scholar] [CrossRef]
- Hirajima, T.; Miki, H.; Suyantara, G.P.W.; Matsuoka, H.; Elmahdy, A.M.; Sasaki, K.; Imaizumi, Y.; Kuroiwa, S. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner. Eng. 2017, 100, 83–92. [Google Scholar] [CrossRef]
- Khoshdast, H. Flotation Frothers: Review of Their Classifications, Properties and Preparation. Open Miner. Process. J. 2011, 4, 25–44. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, L.; Cao, M.; Liu, Q. Slime coatings in froth flotation: A review. Miner. Eng. 2017, 114, 26–36. [Google Scholar] [CrossRef]
- Awatey, B.; Skinner, W.; Zanin, M. Effect of particle size distribution on recovery of coarse chalcopyrite and galena in Denver flotation cell. Can. Metall. Q. 2013, 52, 465–472. [Google Scholar] [CrossRef]
- Awatey, B.; Thanasekaran, H.; Kohmuench, J.N.; Skinner, W.; Zanin, M. Optimization of operating parameters for coarse sphalerite flotation in the HydroFloat fluidised-bed separator. Miner. Eng. 2013, 50–51, 99–105. [Google Scholar] [CrossRef]
- Mehrfert, P.J. Investigating the Potential of HydroFloat (TM) Coarse Particle Flotation Techniques on Copper Sulphide Ores. In Proceedings of the 49th Annual Canadian Minerals Processors Conference Proceedings, Ottawa, ON, Canada, 26 May 2017; ALS Metallurgy: Kamloops, BC, Canada, 2017. [Google Scholar]
- Hassanzadeh, A.; Safari, M.; Hoang, D.H. Fine, coarse and fine-coarse particle flotation in mineral processing with a particular focus on the technological assessments. In Proceedings of the 2nd International Conference on Mineral Science, Online, 1–15 March 2021; p. 9383. [Google Scholar]
- Kohmuench, J.N.; Mankosa, M.J.; Thanasekaran, H.; Hobert, A. Improving coarse particle flotation using the HydroFloatTM (raising the trunk of the elephant curve). Miner. Eng. 2018, 121, 137–145. [Google Scholar] [CrossRef]
- Kohmuench, J.N.; Luttrell, G.H.; Mankosa, M.J. Coarse particle concentration using the HydroFloat separator. Miner. Metall. Process. 2001, 18, 61–67. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Nisola, G.M.; Cuevas, R.A.I.; Torrejos, R.E.C.; Kim, H.; Lee, S.-P.; Chung, W.-J. Li1−xNi0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology. Sep. Purif. Technol. 2019, 212, 416–426. [Google Scholar] [CrossRef]
- Darabi, H.; Koleini, S.M.J.; Deglon, D.; Rezai, B.; Abdollahy, M. Investigation of bubble-particle attachment, detachment and collection efficiencies in a mechanical flotation cell. Powder Technol. 2020, 375, 109–123. [Google Scholar] [CrossRef]
- Kromah, V.; Powoe, S.B.; Khosravi, R.; Neisiani, A.A.; Chelgani, S.C. Coarse particle separation by fluidized-bed flotation: A comprehensive review. Powder Technol. 2022, 409, 117831. [Google Scholar] [CrossRef]
- Drzymala, J.; Kowalczuk, P. Classification of Flotation Frothers. Minerals 2018, 8, 53. [Google Scholar] [CrossRef]
- Finch, J.A.; Nesset, J.E.; Acuña, C. Role of frother on bubble production and behaviour in flotation. Miner. Eng. 2008, 21, 949–957. [Google Scholar] [CrossRef]
- Melo, F.; Laskowski, J.S. Fundamental properties of flotation frothers and their effect on flotation. Miner. Eng. 2006, 19, 766–773. [Google Scholar] [CrossRef]
- Ding, S.; Yin, Q.; He, Q.; Feng, X.; Yang, C.; Gui, X.; Xing, Y. Role of hydrophobic fine particles in coarse particle flotation: An analysis of bubble-particle attachment and detachment. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 662, 130980. [Google Scholar] [CrossRef]
- Cho, Y.S.; Laskowski, J.S. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 2002, 64, 69–80. [Google Scholar] [CrossRef]
- Zhou, X.; Jordens, A.; Cappuccitti, F.; Finch, J.A.; Waters, K.E. Gas dispersion properties of collector/frother blends. Miner. Eng. 2016, 96–97, 20–25. [Google Scholar] [CrossRef]
- Nassif, M.; Finch, J.A.; Waters, K.E. Developing critical coalescence concentration curves for industrial process waters using dilution. Miner. Eng. 2013, 50–51, 64–68. [Google Scholar] [CrossRef]
- Szyszka, D. Critical coalescence concentration (Ccc) for surfactants in aqueous solutions. Minerals 2018, 8, 431. [Google Scholar] [CrossRef]
- Cruz, C.; Botero, Y.L.; Jeldres, R.I.; Uribe, L.; Cisternas, L.A. Current Status of the Effect of Seawater Ions on Copper Flotation: Difficulties, Opportunities, and Industrial Experience. Miner. Process. Extr. Metall. Rev. 2022, 43, 545–563. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Miki, H.; Sasaki, K. Floatability of molybdenite and chalcopyrite in artificial seawater. Miner. Eng. 2018, 115, 117–130. [Google Scholar] [CrossRef]
- Sovechles, J.M.; Waters, K.E. Effect of Ionic Strength on Bubble Coalescence in Inorganic Salt and Seawater Solutions. AIChE J. 2015, 61, 2489–2496. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Gálvez, E.D. The use of seawater in mining. Miner. Process. Extr. Metall. Rev. 2017, 39, 1–16. [Google Scholar] [CrossRef]
- Jeldres, R.I.; Arancibia-Bravo, M.P.; Reyes, A.; Aguirre, C.E.; Cortes, L.; Cisternas, L.A. The impact of seawater with calcium and magnesium removal for the flotation of copper-molybdenum sulphide ores. Miner. Eng. 2017, 109, 10–13. [Google Scholar] [CrossRef]
- Castro, S. Physico-chemical factors in flotation of Cu-Mo-Fe ores with seawater: A critical review. Physicochem. Probl. Miner. Process. 2018, 54, 1223–1236. [Google Scholar]
- Quinn, J.J.; Kracht, W.; Gomez, C.O.; Gagnon, C.; Finch, J.A. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties. Miner. Eng. 2007, 20, 1296–1302. [Google Scholar] [CrossRef]
- Sovechles, J.M.; Lepage, M.R.; Johnson, B.; Waters, K.E. Effect of gas rate and impeller speed on bubble size in frother-electrolyte solutions. Miner. Eng. 2016, 99, 133–141. [Google Scholar] [CrossRef]
- Cruz, C.; Reyes, A.; Jeldres, R.I.; Cisternas, L.A.; Kraslawski, A. Using Partial Desalination Treatment To Improve the Recovery of Copper and Molybdenum Minerals in the Chilean Mining Industry. Ind. Eng. Chem. Res. 2019, 58, 8915–8922. [Google Scholar] [CrossRef]
- Arancibia-Bravo, M.P.; Lucay, F.A.; López, J.; Cisternas, L.A. Modeling the effect of air flow, impeller speed, frother dosages, and salt concentrations on the bubbles size using response surface methodology. Miner. Eng. 2019, 132, 142–148. [Google Scholar] [CrossRef]
- Quinn, J.J.; Sovechles, J.M.; Finch, J.A.; Waters, K.E. Critical coalescence concentration of inorganic salt solutions. Miner. Eng. 2014, 58, 1–6. [Google Scholar] [CrossRef]
- Zhu, H.; Valdivieso, A.L.; Zhu, J.; Song, S.; Min, F.; Corona Arroyo, M.A. A study of bubble size evolution in Jameson flotation cell. Chem. Eng. Res. Des. 2018, 137, 461–466. [Google Scholar] [CrossRef]
- Fosu, S.; Awatey, B.; Skinner, W.; Zanin, M. Flotation of coarse composite particles in mechanical cell vs. the fluidised-bed separator (The HydroFloatTM). Miner. Eng. 2015, 77, 137–149. [Google Scholar] [CrossRef]
- Islam, M.T.; Nguyen, A.V. Effect of particle size and shape on liquid–solid fluidization in a HydroFloat cell. Powder Technol. 2021, 379, 560–575. [Google Scholar] [CrossRef]
- Trahar, W.J. A rational interpretation of the role of particle size in flotation. Int. J. Miner. Process. 1981, 8, 289–327. [Google Scholar] [CrossRef]
- Majumder, S.K.; Kundu, G.; Mukherjee, D. Mixing mechanism in a modified co-current downflow bubble column. Chem. Eng. J. 2005, 112, 45–55. [Google Scholar] [CrossRef]
- Arias, D.; Villca, G.; Pánico, A.; Cisternas, L.A.; Jeldres, R.I.; González-Benito, G.; Rivas, M. Partial desalination of seawater for mining processes through a fluidized bed bioreactor filled with immobilized cells of Bacillus subtilis LN8B. Desalination 2020, 482, 114388. [Google Scholar] [CrossRef]
- Nesset, J.E.; Hernandez-Aguilar, J.R.; Acuna, C.; Gomez, C.O.; Finch, J.A. Some gas dispersion characteristics of mechanical flotation machines. Miner. Eng. 2006, 19, 807–815. [Google Scholar] [CrossRef]
- Lazić, Ž.R. Design of Experiments in Chemical Engineering—A Practical Guide; Wiley-Vch Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; ISBN 3527311424. [Google Scholar]
- Arroug, L.; Elaatmani, M.; Zegzouti, A. A preliminary study to investigate the beneficiation of low-grade phosphate sludge using reverse flotation: Modeling and optimization through Box-Behnken design and response surface methodology. Chem. Eng. Res. Des. 2024, 204, 228–237. [Google Scholar] [CrossRef]
- Jansen, M.J.W. Analysis of variance designs for model output. Comput. Phys. Commun. 1999, 117, 35–43. [Google Scholar] [CrossRef]
- Lucay, F.A.; Lopez-Arenas, T.; Sales-Cruz, M.; Gálvez, E.D.; Cisternas, L.A. Performance profiles for benchmarking of global sensitivity analysis algorithms. Rev. Mex. Ing. Quim. 2020, 19, 423–444. [Google Scholar] [CrossRef]
- Lucay, F.A.; Gálvez, E.D.; Salez-Cruz, M.; Cisternas, L.A. Improving milling operation using uncertainty and global sensitivity analyses. Miner. Eng. 2019, 131, 249–261. [Google Scholar] [CrossRef]
- Sepúlveda, F.D.; Cisternas, L.A.; Gálvez, E.D. The use of global sensitivity analysis for improving processes: Applications to mineral processing. Comput. Chem. Eng. 2014, 66, 221–232. [Google Scholar] [CrossRef]
- Corona-Arroyo, M.A.; López-Valdivieso, A.; Laskowski, J.S.; Encinas-Oropesa, A. Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column. Miner. Eng. 2015, 81, 109–115. [Google Scholar] [CrossRef]
- Jávor, Z.; Schreithofer, N.; Heiskanen, K. Validity of critical coalescence concentration in dynamic conditions. Int. J. Miner. Process. 2014, 127, 16–22. [Google Scholar] [CrossRef]
- Chen, X.; Peng, Y.; Bradshaw, D. Effect of regrinding conditions on pyrite flotation in the presence of copper ions. Int. J. Miner. Process. 2013, 125, 129–136. [Google Scholar] [CrossRef]
- Mankosa, M.J.; Kohmuench, J.N.; Eisenmann, M.D.; Luttrell, G.H. Testing of the Hydrofloat Separator for Coal Cleaning Applications; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1995; pp. 1–6. [Google Scholar]
Parameter | San Jorge Bay Seawater Concentration (mg/L) |
---|---|
Magnesium (Mg2+) | 1310 ± 38 |
Sodium (Na+) | 11,138 ± 12 |
Potassium (K+) | 401 ± 4 |
Calcium (Ca2+) | 415 ± 26 |
Chloride (Cl−) | 19,867 ± 24 |
Nitrate (NO3−) | 3.62 ± 0.38 |
Bicarbonate (HCO3−) | 143 ± 5 |
Sulfate (SO42−) | 2791 ± 18 |
Type of Experiment | Factor Bubble Size Measure | Coded Variable Level | ||
---|---|---|---|---|
Low −1 | Center 0 | High 1 | ||
Experiment A | Xg: Superficial air velocity, cm/s | 1.35 | 2.70 | 4.06 |
Xl: Superficial water velocity, cm/s | 13.5 | 17.6 | 21.7 | |
Xc: Frother concentration, ppm | 5.0 | 10.0 | 15.0 | |
Experiment B | Xg: Superficial air velocity, cm/s | 1.35 | 2.70 | 4.06 |
Xl: Superficial water velocity, cm/s | 13.5 | 17.6 | 21.7 | |
XS: Seawater in solution, mol/L | 0.053 | 0.291 | 0.529 |
Experiment A | Experiment B | Experiment A | Experiment B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | Xg | Xl | Xc | d32 (mm) | Xs | d32 (mm) | Test | Xg | Xl | Xc | d32 (mm) | Xs | d32 (mm) |
1 | 1.35 | 13.5 | 5 | 1.25 | 0.053 | 1.40 | 15 | 2.71 | 17.6 | 15 | 0.57 | 0.529 | 0.44 |
2 | 1.35 | 13.5 | 10 | 0.82 | 0.291 | 0.37 | 16 | 2.71 | 21.7 | 5 | 0.99 | 0.053 | 0.93 |
3 | 1.35 | 13.5 | 15 | 0.59 | 0.529 | 0.39 | 17 | 2.71 | 21.7 | 10 | 0.67 | 0.291 | 0.40 |
4 | 1.35 | 17.6 | 5 | 0.89 | 0.053 | 1.13 | 18 | 2.71 | 21.7 | 15 | 0.56 | 0.529 | 0.42 |
5 | 1.35 | 17.6 | 10 | 0.64 | 0.291 | 0.37 | 19 | 4.06 | 13.5 | 5 | 1.55 | 0.053 | 1.50 |
6 | 1.35 | 17.6 | 15 | 0.54 | 0.529 | 0.38 | 20 | 4.06 | 13.5 | 10 | 0.85 | 0.291 | 0.37 |
7 | 1.35 | 21.7 | 5 | 0.82 | 0.053 | 0.94 | 21 | 4.06 | 13.5 | 15 | 0.59 | 0.529 | 0.41 |
8 | 1.35 | 21.7 | 10 | 0.60 | 0.291 | 0.38 | 22 | 4.06 | 17.6 | 5 | 1.29 | 0.053 | 1.40 |
9 | 1.35 | 21.7 | 15 | 0.53 | 0.529 | 0.43 | 23 | 4.06 | 17.6 | 10 | 0.81 | 0.291 | 0.39 |
10 | 2.71 | 13.5 | 5 | 1.42 | 0.053 | 1.44 | 24 | 4.06 | 17.6 | 15 | 0.61 | 0.529 | 0.46 |
11 | 2.71 | 13.5 | 10 | 0.76 | 0.291 | 0.37 | 25 | 4.06 | 21.7 | 5 | 1.05 | 0.053 | 1.30 |
12 | 2.71 | 13.5 | 15 | 0.60 | 0.529 | 0.40 | 26 | 4.06 | 21.7 | 10 | 0.72 | 0.291 | 0.39 |
13 | 2.71 | 17.6 | 5 | 1.32 | 0.053 | 1.40 | 27 | 4.06 | 21.7 | 15 | 0.57 | 0.529 | 0.40 |
14 | 2.71 | 17.6 | 10 | 0.72 | 0.291 | 0.39 |
Tap Water Experiments Using MIBC in Frother Experiments | Seawater Experiments without Using a Frother | ||||
---|---|---|---|---|---|
Term Constant | Result | Sobol–Jansen Total Index | Term Constant | Result | Sobol–Jansen Total Index |
Xg | ✓ | 0.010 | Xg | ✓ | 0.006 |
Xl | ✓ | 0.167 | Xl | ✓ | 0.013 |
Xc | ✓ | 0.718 | Xs | ✓ | 0.948 |
Xg × Xl | × | 0.222 | Xg × Xl | × | 0.022 |
Xg × Xc | ✓ | 0.763 | Xg × Xs | ✓ | 0.966 |
Xl × Xc | ✓ | 0.952 | Xl × Xs | ✓ | 0.981 |
Xg2 | × | - | Xg2 | × | - |
Xl2 | × | - | Xl2 | × | - |
Xc2 | ✓ | - | Xs2 | ✓ | - |
R-Sq | 97.1% | R-Sq | 97.7% | ||
R-Sq(adj) | 95.5% | R-Sq(adj) | 96.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gahona, G.; Cisternas, L.A.; Araya-Gómez, N.; Lucay, F.A.; Gálvez, E.D.; Lopéz-Valdivieso, A.; Valdes, F. Bubble Size Characterization in the HydroFloat® Fluidized-Bed Flotation Cell Using Tap Water and Seawater. Minerals 2024, 14, 813. https://doi.org/10.3390/min14080813
Gahona G, Cisternas LA, Araya-Gómez N, Lucay FA, Gálvez ED, Lopéz-Valdivieso A, Valdes F. Bubble Size Characterization in the HydroFloat® Fluidized-Bed Flotation Cell Using Tap Water and Seawater. Minerals. 2024; 14(8):813. https://doi.org/10.3390/min14080813
Chicago/Turabian StyleGahona, Giovanni, Luís A. Cisternas, Natalia Araya-Gómez, Freddy A. Lucay, Edelmira D. Gálvez, Alejandro Lopéz-Valdivieso, and Felipe Valdes. 2024. "Bubble Size Characterization in the HydroFloat® Fluidized-Bed Flotation Cell Using Tap Water and Seawater" Minerals 14, no. 8: 813. https://doi.org/10.3390/min14080813
APA StyleGahona, G., Cisternas, L. A., Araya-Gómez, N., Lucay, F. A., Gálvez, E. D., Lopéz-Valdivieso, A., & Valdes, F. (2024). Bubble Size Characterization in the HydroFloat® Fluidized-Bed Flotation Cell Using Tap Water and Seawater. Minerals, 14(8), 813. https://doi.org/10.3390/min14080813