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Abstract: The Uhelchulu quartz diorite-granodiorite intrusions in Xiwuqi, Inner Mongolia, are
exposed along the northwestern margin of the Xilinhot microcontinental block, located within the
central and eastern parts of the southeastern Hegenshan suture zone. LA-ICP-MS zircon U-Pb
dating yielded crystallization ages of (396 ± 8) Ma for the quartz diorite and (385 ± 5) Ma for the
granodiorite, indicating an Early-Middle Devonian magmatic event. The quartz diorite exhibits
I-type granite features, characterized by elevated Al2O3 (14.33–15.43 wt%), MgO (3.73–5.62 wt%),
and Na (Na2O/K2O = 1.04–1.44), coupled with low P2O5 (0.15–0.20 wt%) and TiO2 (0.73–0.99 wt%).
Trace element patterns show relative enrichments in Rb, Th, U, and Pb, while Nb, Ta, Sr and Ti are
relatively depleted. Total REE contents are relatively low (123–178 ppm), with significant LREE
enrichment (ΣLREE/ΣHREE = 4.75–5.20), and a non-obvious Eu anomaly (δEu = 0.75–0.84). In
contrast, the granodiorite displays S-type granite characteristics, with high SiO2 (70.48–73.01 wt%), K
(K2O/Na2O = 1.35–1.83), Al2O3 (A/CNK = 1.16–1.31), and a high differentiation index (DI = 76–82).
Notably, MgO (1.44–2.24 wt%) contents are low, and significant depletions of Ba, Sr, Ti, and Eu
are observed, while Rb, Pb, Th, U, Zr, and Hf are significantly enriched. Total REE contents are
relatively low (178–314 ppm), exhibiting significant LREE enrichment (LREE/HREE = 6.17–8.36)
and a pronounced negative Eu anomaly (δEu = 0.34–0.49). The overall characteristics point towards
an active continental margin arc background for the Uhelchulu intrusions. Previous studies have
suggested that the Hegenshan ocean continuously subducted northward from the Early Carboniferous
to the Late Permian, but there is a lack of evidence for its geological evolution during the pre-Early
Carboniferous. Therefore, this paper provides a certain basis for studying the geological evolution
during the pre-Early Carboniferous in the Hegenshan ocean. We preliminarily believed that the
Hegenshan ocean underwent a southward subduction towards the Xilinhot microcontinental block
in the Xiwuqi area, at least from the Early Devonian to the Middle Devonian and the Hegenshan
ocean may might have undergone a shift in subduction mechanism during the Late Devonian or
Early Carboniferous.

Keywords: Hegenshan ocean; Hegenshan suture zone; Xilinhot microcontinental block; active
continental marginal arc; I-S type granite; Early-Middle Devonian; Xiwuqi

1. Introduction

The Central Asian orogenic belt is a typical accretion-type orogenic belt located be-
tween the Eastern European Craton, Siberian Craton, Tarim Craton, and North China
Craton (Figure 1a) [1–5]. Previous studies have shown that multi-ocean basins, multi-
subduction zones, and multi-directional convergence are important mechanisms for conti-
nental accretion in this belt [6,7]. It is characterized by extensive accretion and collage of
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continental and oceanic crustal fragments, accretionary complexes, magmatic arcs, ophi-
olites and other geological bodies [8,9]. From the Paleozoic to the Mesozoic, this belt
experienced complex tectonic history marked by the closure of the several Paleo-Asian
oceanic branches (including the Hegenshan, Okhotsk, and Solonker oceanic basin) and
collage of a number of continental fragments (such as Xilinhot microcontinental block,
Xing’an block) and intra-oceanic arcs to the North China Craton [10–19], with the formation
of suture zones such as Hegenshan, Diyanmiao, and Solonker (Figure 1b). The Hegenshan
suture zone, specifically, emerged in the eastern-northern portion of the Central Asian
orogenic belt through subduction and collision processes involving the Xing’an block and
Xilinhot microcontinental block [20–27].
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Recent regional geological surveys in the Xiwuqi area of Inner Mongolia have iden-
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Figure 1. Tectonic division of the Central Asian orogenic belt and location of study area (a) revised
after Sengör et al., 1993 [1]; Kai-Jun Zhang, 2014 [8]. (b,c) after Wang et al., 2020 [28]). 1. Cretaceous
Meiletu Formation; 2. Cretaceous Baiyin Gaolao Formation; 3. Jurassic Manketu Ebo Formation;
4. Triassic Hongqi Formation; 5. Permian Dashizhai Formation; 6. Permian Shoushangou Formation;
7. Carboniferous Amushan Formation; 8. Carboniferous Ben Batu Formation; 9. Devonian Tarbagate
Formation; 10. Cretaceous granite porphyry; 11. Cretaceous monzogranite; 12. Triassic monzo-
granite; 13. Permian syenite granite; 14. Carboniferous monzogranite; 15. Carboniferous diorite
granite; 16. Carboniferous quartz diorite; 17. Carboniferous monzogranite; 18. Devonian gabbro;
19. Devonian granodiorite; 20. Devonian quartz diorite; and 21. Fracture.

Recent regional geological surveys in the Xiwuqi area of Inner Mongolia have identi-
fied numerous Carboniferous-Permian magmatic rocks, providing a valuable dataset for
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understanding the tectonic evolution of the Hegenshan ocean during this period. These
magmatic rocks offer insights into distinct stages of tectonic activity within this region. The
pre-arc basalt in Dahat, located on the west side of the Diyanmiao ophiolite belt in Xiwuqi,
as identified by Li et al., suggests the Hegenshan ocean underwent initial intra-oceanic sub-
duction and oceanic-continental magmatism during Early Carboniferous [29]. Wang et al.
discovered adakite, high magnesium andesite, and tonalite in Meilaotuola and believed
that the Hegenshan ocean underwent oceanic subduction and island arc magmatism during
the Late Carboniferous in Xiwuqi [30–32]. Yang et al. suggested that the gabbro-granite in
Houtoumiao, Xiwuqi was formed in the subduction background of the Hegenshan ocean
in Late Carboniferous [33]. The volcanic rocks in the Dashizhai Formation in the Hanwula
area of Xiwuqi, as proposed by Zhang et al. originated from a post-arc spreading environ-
ment within the Hegenshan ocean in Early Permian [34,35]. The granites in Xiwuqi, such as
Serbeng and Nuheting Sala, according to Fan et al. are related to the northward subduction
of the Hegenshan ocean during Late Permian [36]. The above studies all suggested that
the Hegenshan ocean had underwent northward subduction during the Carboniferous to
Permian, which is consistent with the research results of other regions in this area, including
the Early Carboniferous volcanic rocks in the Engeryinpeng area of northern Suzuoqi [37],
the Late Carboniferous amphibolite gabbro in Dongwuqi [38], and the Early-Late Carbonif-
erous diorite-quartz diorite-tonalite-granodiorite in the Suzuoqi-Xiwuqi area [39].

However, the understanding of the tectonic background of the Hegenshan ocean
before the Carboniferous is still unclear. Currently, only a few magmatic rocks have
been identified from the Devonian in this area. Niu et al. proposed that the Hegenshan
ocean was already in a post-collision extensional background during the Early Devonian
based on their analysis of Huangheshao syenite in Damaoqi [40]. Huang’s research on
the Hegenshan ophiolite suggested that the Hegenshan ocean opened during the Middle
Devonian and subsequently subducted southward during the Late Devonian, leading to
collision [41–44]. Therefore, in regional geological surveys, we always hope to identify
more pre-Carboniferous magmatic rocks and continuously supplement our understanding
of the pre-Carboniferous geological evolution in the Hegenshan ocean.

Our study reports the first discovery of intrusive rocks from the Devonian in the
Uhelchulu to Guiqinkundui areas of Xiwuqi, offering a valuable opportunity to investigate
the tectonic background of the Hegenshan ocean in the Devonian. By conducting zircon
U-Pb precise dating and whole-rock geochemical analyses of Uhelchulu quartz diorite
and Guiqinkundui granodiorite, this paper aims to shed light on the Devonian tectonic
background of the Hegenshan ocean and provide a window for a systematic study of its
tectonic evolution.

2. Regional Geological Background and Petrological Characteristics

The research area is situated within the northwestern edge of the Xilinhot micro-
continental block, characterized by its proximity to the south of the Hegenshan suture
zone (Figure 1c) [28]. The geological evolution of the research area is closely related to
the subduction process associated with the closure of the Hegenshan ocean. This tec-
tonic activity has resulted in a distinctive structural pattern, with geological units aligning
along a NE-SW trend, parallel to the extension direction of the Hegenshan suture zone
(Figure 1c) [28]. The Hegenshan suture zone acts as a prominent tectonic boundary, separat-
ing distinct stratigraphic sequences on either side. On the northwestern edge of the suture,
the Devonian geological bodies are the main units, dominated by the marine Tarbagate
Formation and intrusions. In contrast, on the southeastern edge of the suture, within the
Xilinhot microcontinental block, the geological bodies are more diverse, the stratas include
the Carboniferous marine Benbatu Formation, Amushan Formation, the Permian marine-
continental Shoushankou Formation, Dashizhai Formation, Zhesi Formation, the Triassic
continental Hongqi Formation, and the Jurassic-Cretaceous continental volcanic rocks. The
intrusive rocks include gabbro, quartz diorite, granodiorite, tonalite, and diorite from the
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Carboniferous-Triassic, as well as diorite and granite porphyry from the Jurassic Cretaceous.
Prior to our study, no Devonian intrusions have been found within the research area.

The Uhelchulu quartz diorite and Guiqinkundui granodiorite distribute in the promi-
nent northeast-trending belt (Figure 1c). Quartz diorite, located in the southwestern
Uhelchulu area, exhibits unconformable contacts with the overlying Lower Permian
Dashizhai Formation to the north and the Lower Cretaceous Baiyingolao Formation vol-
canic rocks to the east. The southern margin of the quartz diorite is intruded by Early
Carboniferous monzogranite. The Guiqinkundui granodiorite is overlain unconformably
by the Lower Cretaceous Baiyingolao Formation volcanic rocks, the Triassic Hongqi For-
mation to the northeast and the Upper Carboniferous Benbatu Formation to the west and
intruded by Late Triassic monzogranite to the north.

3. Sampling and Analytical Methods
3.1. Sampling

Eight samples were collected from fresh outcrops of the Uhelchulu quartz diorite and
Guiqinkundui granodiorite to investigate their petrographic, geochemical, and geochrono-
logical characteristics. Among them, four samples from the Uhelchulu quartz diorite
(A01, A02, A03, and A04) were selected for petrographic and whole-rock geochemical
analyses, while one sample (U01) was collected for zircon U-Pb geochronology. Similarly,
four samples from the Guiqinkundui granodiorite (A05, A06, A07, A08) were selected for
petrographic and whole-rock geochemical analyses, with one sample (U02) selected for
zircon U-Pb geochronology.

3.2. Analytical Techniques

Whole-rock geochemical analyses were carried out at the laboratory of the Regional
Geological and Mineral Survey and Research Institute of Hebei Province. Major element
analyses were performed using X-ray fluorescence (XRF) with an error margin of less than
2 wt%. Trace element analyses were conducted using inductively coupled plasma mass
spectrometry (ICP-MS) with an accuracy exceeding 5 wt%.

Zircon grains were isolated from the rock samples through a meticulous single min-
eral separation process, completed with assistance from the Hebei Provincial Institute of
Regional Geology and Mineral Investigation. Subsequently, cathodoluminescence (CL)
imaging was performed using a scanning electron microscope at the laboratory of the
Institute of Geology and Geophysics, Chinese Academy of Sciences.

Zircon U-Pb isotopic dating was conducted using LA-ICP-MS analysis at the Tian-
jin Geological Survey Center of the China Geological Survey. The laser ablation system
employed was a UP193FX 193nm ArF excimer system (NewWave, USA, Washington),
equipped with a laser from ATL (Germany, Munich) and an Agilent 7500a mass spec-
trometer for ICP-MS. The laser system operated at a wavelength of 193 nm with a pulse
width of less than 4 ns. The laser spot diameter used for analysis was 35 µm. For external
matrix correction, the internationally recognized Plesovice (206Pb/238U weighted average
age (337.13 ± 0.37) Ma) and Qinghu standard zircons (206Pb/238U weighted average age
(159.45 ± 0.16) Ma) were utilized. NIST SRM 612 with 29Si served as the internal standard
element. Isotopic ratios and elemental content were calculated using the GLITER-ver 4.0
program (Macquarie University). Ordinary lead correction was performed using Ander-
son’s ComPbCorr # 3.17 correction program [45]. U-Pb concordia plots, age distribution
frequency plots, and age weighted averages were generated using the IsoPlot/Ex_ver 3 pro-
gram [46]. Detailed descriptions of the analytical methods and data processing procedures
can be found in Liu et al. [47–49].
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4. Results
4.1. Mineralogical Characteristics
4.1.1. Uhelchulu Quartz Diorite

The outcrop of the Uhelchulu quartz diorite is exposed in a steep slope (Figure 2a,b),
and under the microscope, it presents a medium-to-fine idiomorphic crystal. Its microstruc-
ture is shown in Figure 2e, and the main minerals are plagioclase, quartz, hornblende, and
biotite. Plagioclase is in a hypidiomorphic platy-shaped crystal, with faintly visible bands
and double crystal development, with an abundance of 50 vol% in the rock; Quartz is
xenomorphic, with an abundance of 20 vol% in the rock, occupying gaps between feldspars;
Biotite occurs as sheets and has an abundance of about 10 vol% in the rock; Hornblende
appears as a hypidiomorphic columnar (Figure 2e), with an abundance of about 10 vol% in
the rock; and Opaque minerals are in a hypidiomorphic-to-heteromorphic granular-shaped
crystal, with an abundance of <1 vol% in the rock and scattered distribution. The secondary
minerals are mainly apatite and zircon.

Minerals 2024, 14, x FOR PEER REVIEW 5 of 20 
 

 

4. Results 
4.1. Mineralogical Characteristics 
4.1.1. Uhelchulu Quartz Diorite 

The outcrop of the Uhelchulu quartz diorite is exposed in a steep slope (Figure 2a,b), 
and under the microscope, it presents a medium-to-fine idiomorphic crystal. Its micro-
structure is shown in Figure 2e, and the main minerals are plagioclase, quartz, hornblende, 
and biotite. Plagioclase is in a hypidiomorphic platy-shaped crystal, with faintly visible 
bands and double crystal development, with an abundance of 50 vol% in the rock; Quartz 
is xenomorphic, with an abundance of 20 vol% in the rock, occupying gaps between feld-
spars; Biotite occurs as sheets and has an abundance of about 10 vol% in the rock; Horn-
blende appears as a hypidiomorphic columnar (Figure 2e), with an abundance of about 
10 vol% in the rock; and Opaque minerals are in a hypidiomorphic-to-heteromorphic 
granular-shaped crystal, with an abundance of <1 vol% in the rock and scattered distribu-
tion. The secondary minerals are mainly apatite and zircon. 

 
Figure 2. Field and microscopic photographs of the quartz diorite in Uhelchulu and granodiorite in 
Guiqinkundui. (a,b) field photos of Uhelchulu quartz diorite; (c,d) field photos of Guiqinkundui 

Figure 2. Field and microscopic photographs of the quartz diorite in Uhelchulu and granodiorite
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4.1.2. Guiqinkundui Granodiorite

The outcrop of the Guiqinkundui granodiorite is well exposed (Figure 2c,d). Under
the microscope, it presents a fine-grained hypidiomorphic structure, fragmented patchy
structure, and block-like structure. Its microstructure is shown in Figure 2f, and the main
minerals are plagioclase, k-feldspar, quartz, biotite, and hornblende. Plagioclase is in
hypidiomorphic platy crystal, with an abundance of 55 vol% in the rock; k-feldspar is
hypidiomorphic with a interstitial distribution, with an abundance of 10 vol% in the rock;
Quartz is xenomorphic, distributed between feldspars in an interstitial manner, it exhibits
slight fragmentation, wavy extinction, deformation patterns, and other stress phenomena,
with an abundance of 20 vol% in the rock; Biotite is flaky, with an abundance of 15 vol% in
the rock. The hornblende is hypidiomorphic with a relatively low abundance in the rock.

A fine-grained biotite diorite xenolith is observed within the rock (Figure 2d), with
an unclear boundary to the medium-to-fine grained granodiorite. It is mainly composed
of plagioclase and biotite. The auxiliary mineral are mainly opaque minerals (<1 vol%),
ilmenite, magnetite, apatite, zircon, and monazite.

From the relationship within biotite, alkali feldspar, and quartz, it can be preliminarily
determined that biotite formed earlier than alkali feldspar and quartz, and the Guiqinkun-
dui granodiorite might have undergone a strong crystallization-differentiation process. The
diorite xenolith suggests that magma of the Guiqinkundui granodiorite may originate from
partial melting of dioritic rocks.

4.2. Geochronology

Zircon grains extracted from the Uhelchulu quartz diorite and Guiqinkundui gran-
odiorite exhibit a characteristic pink-yellow color and display well-defined morphologies,
predominantly prismatic to short prismatic shaped crystal. The grains range in size from
approximately 205 to 330 µm in length and 20 to 96 µm in width, with aspect ratios varying
between 2:1 and 3:1. Cathodoluminescence (CL) imaging reveals the presence of oscillatory
zoning patterns within the zircon (Figure 3a,b), indicative of a magmatic origin. These
patterns are characterized by distinct rhythmic zoning structures with minimal visible
residual cores. Secondary fractures are relatively limited, and the Th/U ratios of the zircon
consistently exceed 0.1 (Th/U = 0.12–0.96), further corroborating a magmatic origin for
the zircon grains. The results of LA-ICP-MS zircon U-Pb dating for the Uhelchulu quartz
diorite and Guiqinkundui granodiorite are shown in Tables 1 and 2, respectively.
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Table 1. LA-ICP-MS zircon U-Pb dating of the Uhelchulu quartz diorite (U01).

Spot Content
(×10−6) Isotope Ratio Age (Ma)

U01 Pb Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 232Th/238U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ

1 9 55 136 0.0643 0.0007 0.4792 0.0136 0.0540 0.0015 0.41 402 4 398 11 371 63

2 17 70 272 0.0638 0.0005 0.4936 0.0083 0.0561 0.0009 0.26 399 3 407 7 457 36

3 15 40 237 0.0649 0.0007 0.5159 0.0091 0.0559 0.0010 0.17 406 4 422 7 447 38

4 18 69 277 0.0647 0.0006 0.5257 0.0095 0.0572 0.0010 0.25 404 4 429 8 498 39

5 16 97 198 0.0757 0.0008 0.6044 0.0134 0.0579 0.0013 0.50 470 5 480 11 527 48

6 11 87 154 0.0645 0.0006 0.5007 0.0198 0.0563 0.0021 0.58 403 4 412 16 463 84

7 14 40 158 0.0757 0.0008 0.5950 0.0119 0.1278 0.0024 0.26 470 5 474 9 2068 33

8 5 31 62 0.0735 0.0013 0.8845 0.0606 0.0867 0.0059 0.52 457 8 643 44 1355 131

9 19 104 281 0.0622 0.0006 0.6960 0.0111 0.0811 0.0013 0.38 389 4 536 9 1225 31

10 18 116 286 0.0610 0.0006 0.4551 0.0087 0.0541 0.0010 0.42 382 4 381 7 375 42

11 23 182 351 0.0621 0.0005 0.4628 0.0077 0.0541 0.0009 0.53 388 3 386 6 374 37

12 23 135 307 0.0707 0.0006 0.5431 0.0090 0.0557 0.0009 0.45 440 3 440 7 442 36

13 12 73 183 0.0622 0.0007 0.4835 0.0153 0.0563 0.0017 0.41 389 4 400 13 466 68

Tested by Tianjin Geological Survey Center of China Geological Survey.

Table 2. LA-ICP-MS Zricon U-Pb dating of the Guiqinkundui granodiorite (U02).

Spot Content
(×10−6) Isotope Ratio Age (Ma)

U02 Pb Th U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 232Th/238U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ

1 33 204 516 0.0624 0.0006 0.5424 0.0163 0.0630 0.0018 0.41 390 4 440 13 709 62

2 29 55 462 0.0654 0.0009 0.5113 0.0128 0.0567 0.0015 0.12 408 5 419 11 481 59

3 15 45 248 0.0610 0.0007 0.5133 0.0236 0.0610 0.0027 0.19 382 4 421 19 640 96

4 48 128 778 0.0629 0.0006 0.5356 0.0103 0.0618 0.0011 0.17 393 4 436 8 667 38

5 31 186 449 0.0634 0.0006 0.5654 0.0116 0.0647 0.0013 0.42 396 4 455 9 764 42

6 28 122 472 0.0599 0.0005 0.4604 0.0112 0.0557 0.0013 0.27 375 3 385 9 440 54

7 24 162 329 0.0678 0.0007 0.5284 0.0182 0.0565 0.0019 0.51 423 4 431 15 472 76

8 23 117 365 0.0605 0.0006 0.5041 0.0136 0.0604 0.0017 0.33 379 4 414 11 618 60

9 19 61 303 0.0600 0.0012 0.5227 0.0403 0.0632 0.0043 0.21 376 8 427 33 714 143

10 30 100 481 0.0636 0.0006 0.5001 0.0174 0.0570 0.0019 0.21 397 4 412 14 493 75

11 59 834 888 0.0640 0.0008 0.5034 0.0082 0.0571 0.0010 0.96 400 5 414 7 495 39

12 49 212 827 0.0593 0.0007 0.4424 0.0080 0.0541 0.0010 0.26 371 4 372 7 376 43

13 20 138 321 0.0598 0.0006 0.4556 0.0167 0.0552 0.0020 0.44 375 4 381 14 421 81

14 19 118 297 0.0608 0.0006 0.4560 0.0178 0.0544 0.0020 0.41 381 4 382 15 386 84

15 32 245 410 0.0692 0.0007 0.5485 0.0176 0.0575 0.0019 0.61 432 5 444 14 509 74

16 38 158 614 0.0612 0.0006 0.4543 0.0132 0.0538 0.0015 0.26 383 4 380 11 364 63

17 15 87 242 0.0633 0.0009 0.4780 0.0153 0.0547 0.0017 0.37 396 6 397 13 401 70

18 42 227 700 0.0597 0.0007 0.4470 0.0080 0.0543 0.0009 0.33 374 4 375 7 383 39

19 24 67 387 0.0643 0.0008 0.5039 0.0113 0.0569 0.0013 0.18 401 5 414 9 487 49

20 45 246 745 0.0599 0.0007 0.4543 0.0088 0.0550 0.0010 0.34 375 4 380 7 411 43

Tested by Tianjin Geological Survey Center of China Geological Survey.

The Uhelchulu quartz diorite exhibits a consistent 206Pb/238U age distribution across
all zircon grains, with the exception of those at measurement points 5, 7, 8, and 12. These
latter grains may represent inherited zircon incorporated during magmatic processes. The
remaining 206Pb/238U age values range from 381 to 405 Ma, clustering along the concordia
line (Figure 4a). The weighted average age of 13 206Pb/238U measurements is (395 ± 8) Ma
(MSWD = 1.4), suggesting that the Uhelchulu quartz diorite crystallized during the Early
Devonian (Figure 4b). Similarly, all 20 zircon grains analyzed from the Guiqinkundui gran-
odiorite exhibit a relatively homogeneous distribution of 206Pb/238U age values, ranging
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from 371 to 431 Ma, clustering along the concordia line (Figure 4c). The weighted average
age of 20 206Pb/238U measurements is (384 ± 5) Ma (MSWD = 1.5) (Figure 4d), indicating
that the Guiqinkundui granodiorite formed during the Middle Devonian.
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The analysis of major trace elements along with calculated normative mineral abun-
dances (CIPW-norm) and selected geochemical ratios for the Uhelchulu quartz diorite and
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Al2O3 14.66 15.15 15.43 14.33 11.70 12.89 13.24 12.53

Fe2O3 1.76 2.55 2.50 2.01 0.88 0.59 0.93 0.83
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Table 3. Cont.

Sample
Uhelchulu Quartz Diorite Guiqinkundui Granodiorite

A01 A02 A03 A04 A05 A06 A07 A08

FeO 4.67 6.27 6.32 5.56 2.84 3.71 1.56 3.03

MnO 0.13 0.17 0.18 0.16 0.06 0.07 0.04 0.05

MgO 3.73 5.23 5.62 4.58 1.71 2.12 1.44 2.24

CaO 5.59 6.76 6.01 5.11 1.27 1.75 1.30 1.51

Na2O 2.48 2.47 2.63 2.18 2.15 2.29 2.23 2.16

K2O 2.39 1.72 1.87 1.77 3.94 3.10 3.75 3.47

P2O5 0.15 0.20 0.20 0.17 0.11 0.08 0.11 0.12

LOI 3.08 2.60 2.75 2.68 1.55 2.16 1.50 1.68

Total 99.81 99.81 99.84 99.86 99.85 99.91 99.88 99.95

FeOt 6.25 8.56 8.57 7.37 3.63 4.24 2.40 3.78

FeO*/MgO 1.68 1.64 1.53 1.61 2.13 2.00 1.66 1.69

Na2O/K2O 1.04 1.44 1.41 1.23 0.55 0.74 0.59 0.62

A/CNK 0.87 0.83 0.89 0.97 1.16 1.25 1.31 1.24

A/NK 2.20 2.56 2.43 2.61 1.50 1.81 1.71 1.71

Ti 4359 5918 5744 4833 3813 4029 3064 3726

Y 28.2 43.3 36.3 31.0 34.1 45.9 34.5 37.3

V 170 184 199 162 76 94 72 74

Cr 119 117 154 116 50 63 49 59

Co 24.8 29.9 31.5 23.5 11.0 12.5 10.8 11.9

Ga 20.05 19.99 19.66 16.78 16.06 19.03 16.90 17.12

Rb 82.8 70.3 74.1 66.1 212.0 194.5 205.7 208.5

Sr 257 298 321 242 89 134 143 158

Ba 683 340 350 224 481 377 592 483

Zr 163 174 168 165 195 234 187 197

Nb 11.3 11.2 11.1 10.4 16.3 20.0 18.6 18.5

Hf 10.20 11.40 9.85 9.55 7.07 8.61 6.28 7.13

Ta 0.76 0.65 0.71 0.85 1.50 1.85 1.78 1.55

Pb 10.3 6.3 7.7 9.4 20.0 22.0 22.7 20.3

Th 5.16 2.94 3.96 13.81 22.01 41.22 30.88 38.17

U 0.87 0.56 0.76 0.94 3.07 2.90 2.79 3.05

La 17.97 25.47 23.72 20.05 33.02 67.62 46.37 37.49

Ce 46.51 64.36 54.91 54.14 72.66 127.08 72.3 81.4

Pr 6.08 8.89 7.28 6.06 8.12 15.97 6.21 10.17

Nd 25.38 37.91 31.07 25.48 31.36 57.60 43.11 51.22

Sm 5.53 8.49 6.97 5.87 6.65 10.86 7.85 8.91

Eu 1.46 2.01 1.75 1.42 1.03 1.19 0.88 1.07

Gd 4.88 7.48 6.28 5.15 5.98 9.09 7.98 6.72

Tb 0.89 1.37 1.16 0.96 1.11 1.51 1.32 1.36

Dy 5.82 8.98 7.53 6.34 7.17 9.13 5.21 7.15

Ho 1.14 1.74 1.49 1.22 1.35 1.83 1.40 1.53
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Table 3. Cont.

Sample
Uhelchulu Quartz Diorite Guiqinkundui Granodiorite

A01 A02 A03 A04 A05 A06 A07 A08

Er 3.29 5.09 4.33 3.60 3.95 5.31 3.09 4.61

Tm 0.55 0.82 0.71 0.58 0.66 0.85 0.54 0.74

Yb 3.30 4.89 4.15 3.42 4.00 5.10 3.09 4.16

Lu 0.42 0.64 0.54 0.46 0.56 0.73 0.53 0.68

δEu 0.84 0.75 0.80 0.77 0.49 0.36 0.34 0.41

(La/Yb)N 3.67 3.51 3.85 3.96 5.57 8.94 10.12 6.08

ΣLREE 103 147 126 113 153 280 177 190

ΣHREE 20 31 26 22 25 34 23 27

ΣLREE/ΣHREE 5.07 4.75 4.80 5.20 6.17 8.36 7.63 7.06

ΣREE 123 178 152 135 178 314 2008 217

TZr (°C) 748 734 740 762 817 839 808 813

10,000 × Ga/Al 1.58 1.49 1.41 1.21 1.59 1.79 1.41 1.58

Zr +Nb + Ce + Y 249 293 270 260 318 427 270 260

Quartz(Q) 18.63 11.23 9.56 21.03 39.53 37.02 34.50 34.32

Anorthite(An) 22.54 25.93 25.52 24.81 5.64 8.34 5.82 6.83

albite(Ab) 21.7 21.46 22.91 18.94 18.53 19.82 27.75 23.77

orthoclase(Or) 14.6 10.44 11.37 10.74 23.69 18.73 22.50 20.87

diopside(Di) 4.14 5.86 3.14 0.1

hyersthene(Hy) 13.95 18.87 21.42 19.4 7.93 10.87 4.82 9.58

ilmenite(Il) 1.43 1.93 1.87 1.58 1.23 1.31 1.18 1.33

magnetite(Mt) 2.64 3.81 3.73 3 1.3 0.88 1.37 1.22

apatite(Ap) 0.37 0.48 0.47 0.41 0.27 0.19 0.26 0.28

corundum (C) 1.89 2.85 1.79 1.81
Note: FeO * = FeO + 0.899 × Fe2O3.

4.3.1. Major Elements

The Uhelchulu quartz diorite exhibits SiO2 ranging from 55.39 to 60.53 wt% (Table 3).
Other major element concentrations include: Al2O3 (14.33–15.43 wt%), K2O (1.77–2.39 wt%),
Na2O (2.18–2.63 wt%), TiO2 (0.73–0.99 wt%), MnO (0.13–0.18 wt%), MgO (3.73–5.62 wt%),
CaO (5.11–6.76 wt%), and P2O5 (0.15–0.20 wt%). The K2O + Na2O content varies between
3.95 and 4.87 wt%, with a Na2O/K2O ratio of 1.04 to 1.44. The A/CNK and A/NK ratios fall
within the ranges of 0.83–0.97 and 2.20–2.61, respectively. Normative mineral calculations
based on the CIPW norm reveal a quartz content ranging from 9.56 to 21.03 wt%, and an
apatite content of 0.37 to 0.48 wt%, with no presence of corundum. The Uhelchulu quartz
diorite is characterized by low potassium, high sodium, and high calcium content, along
with relatively low concentrations of TiO2, MnO, and P2O5. This geochemical signature is
consistent with a rock that has undergone significant fractional crystallization. In the TAS
diagram (Figure 5a) [50], the sample points fall within the diorite-gabbro diorite field. The
AFM diagram (Figure 5b) [51] indicates that the Uhelchulu quartz diorite belongs to the
calc-alkaline series.

The Guiqinkundui granodiorite displays a relatively high silica content, with SiO2
ranging from 70.48 to 73.01 wt% (Table 3). The K2O + Na2O content ranges from 5.39 to
6.09 wt%, with K2O concentrations ranging from 3.10 to 3.94 wt% and a K2O/Na2O ratio of
1.35 to 1.83. These values indicate a rock that is alkali-rich and specifically potassium-rich.
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The high CaO/Na2O ratio (0.58–0.76 > 0.3) further supports this conclusion. The Al2O3
content varies from 11.70 to 13.24 wt%, resulting in an A/CNK ratio of 1.16 to 1.31. The
presence of corundum molecules in the CIPW norm classifies the rock as peraluminous.
The CaO, MnO, P2O5, and TiO2 content is relatively low, resulting in a differentiation index
(DI) of 76–82. This high DI value indicates that the rock mass has undergone a significant
degree of differentiation and evolution. In the TAS diagram (Figure 5a) [50], the sample
points fall within the granite-granodiorite field. Similarly, the AFM diagram (Figure 5b) [51]
confirms that the Guiqinkundui granodiorite belongs to the calc-alkaline series.
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4.3.2. Trace Elements

The trace element compositions of the Uhelchulu quartz diorite and Guiqinkundui gra-
nodiorite exhibit notable similarities and differences (Table 3, Figure 6a,b). Both rock types
show REE patterns with significant light over heavy REE enrichment and little fractionation
within the heavy REE when normalized to chondrite [52], indicative of enrichment in both
light and heavy REEs with significant fractionation between the two groups.
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Figure 6. (a) Chondrite-normalized REE distribution patterns (after Boynton, 1984 [52]) and (b) Prim-
itive mantle-normalized trace elements distribution patterns (after Sun and McDonough, 1989 [53])
for the Uhelchulu quartz diorite and Guiqinkundui granodiorite, Xiwuqi.

The total REE content (∑REE) is slightly lower than it in the Uhelchulu quartz diorite
(123–178 ppm) compared to the Guiqinkundui granodiorite (178–314 ppm). However,
the Guiqinkundui granodiorite exhibits a more pronounced negative europium anomaly
(δEu = 0.36–0.49) compared to the Uhelchulu quartz diorite (δEu = 0.75–0.84).

Overall, both rock types are characterized by elevated trace element concentrations
with respect to the primitive mantle [53]. They display significant depletion of Ba, Nb, Ta,
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Sr, Eu, and Ti, while Rb, Th, U, Pb, Zr, and Hf are notably enriched. The Guiqinkundui
granodiorite displays more pronounced “peak” values for these elements compared to the
Uhelchulu quartz diorite.

The geochemical signatures of the Uhelchulu quartz diorite and Guiqinkundui gran-
odiorite suggest that they likely originated from similar source rocks potentially related
to island arc-type magmatism. The source may have involved partial melting of lower
crustal diorite rocks, followed by assimilation of crustal materials during intrusion. The
Guiqinkundui granodiorite appears to have undergone more significant fractional crystal-
lization compared to the Uhelchulu quartz diorite.

5. Discussion
5.1. Intrusion Age

Previous studies on the Uhelchulu quartz diorite and Guiqinkundui granodiorite
have lacked precise geochronological constraints. The 1:200,000 Maodeng regional geo-
logical survey report by the Bureau of Inner Mongolia Geology (1976) [54] classified the
Guiqinkundui granodiorite as a middle acidic intrusive rock of Late Hualixi age, corre-
sponding to the Late Permian. Furthermore, the Institute of Inner Mongolia Autonomous
Region Geological Survey (2008) [55], in their 1:250,000 Chaokewula regional geological
survey report, speculated the unit to be Late Jurassic.

This study presents precise zircon U-Pb dating results, revealing ages of (396 ± 8) Ma
(MSWD = 1.4) for the Uhelchulu quartz diorite and (385 ± 5) Ma (MSWD = 1.5) for the
Guiqinkundui granodiorite. The measured zircons exhibit exclusively magmatic charac-
teristics, confirming the Early Devonian and Middle Devonian ages of these intrusions,
respectively. These findings contradict previous assumptions of a late Variscan or Late
Jurassic origin for these rocks.

These newly determined ages significantly expand the record of tectonic-magmatic
activity in the Xiwuqi area from the Carboniferous-Permian to the Devonian. This discovery
provides a crucial chronological framework for investigating the tectonic evolution of the
Hegenshan ocean during the Devonian period.

5.2. Petrogenesis

The petrogenesis of granitic rocks is widely understood to be governed by the source
characteristics, leading to the distinction of granites into I-type, S-type, A-type, and M-
type, with M-type granites being relatively uncommon [56]. A-type granites are typically
distinguished by the presence of alkaline mafic minerals [57]. Chemically, A-type granites
are characterized by elevated concentrations of elements like Zr, Nb, Ce, Ga, and Y, as well
as high silicon, potassium, and iron. These granites are also typically associated with high
crystallization temperatures [58–60].

The FeO*/MgO ratios of the Uhelchulu quartz diorite and Guiqinkundui granodi-
orite (1.53–2.13) fall well below the significantly iron-rich A-type granite classification
(FeO*/MgO > 10) [61]. Detailed petrographic analysis revealed the absence of alkaline
mafic minerals, a key characteristic of A-type granites. Furthermore, zircon saturation
temperatures, determined through whole-rock major element and Zr content analysis,
suggest relatively lower crystallization temperatures compared to A-type granites. The
Uhelchulu quartz diorite exhibits a zircon saturation temperature range of 734–762 ◦C (av-
erage 746 ◦C; Table 3), while the Guiqinkundui granodiorite displays a range of 817–839 ◦C
(average 819 ◦C; Table 3) [62]. Both of these temperature ranges fall below the average
A-type granite temperature of 833 ◦C [62].

The Ga/Al ratio (10,000 × Ga/Al) ranges from 1.21 to 1.79, significantly lower than
the established A-type granite threshold of 2.6 [61]. Similarly, the sum of Zr + Nb + Ce + Y
(249–427 ppm, average 303 ppm) falls below the A-type granite lower limit of 350 ppm [61]
(Table 3). These geochemical observations further corroborate the notion that the Uhelchulu
quartz diorite and Guiqinkundui granodiorite do not exhibit the defining petrological and
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geochemical characteristics of A-type granites. Instead, their features are more consistent
with those of I-type or S-type granites, as supported by relevant diagrams (Figure 7a,b) [61].

Previous studies have established that apatite solubility decreases with increasing SiO2
during magma differentiation in metaluminous to weakly peraluminous magmas [62,63].
However, in strongly peraluminous magmas, the solubility trend is reversed. The Uhelchulu
quartz diorite exhibits an extremely low P2O5 content (0.15–0.20 wt%) that consistently
decreases with increasing SiO2 content (Figure 7c) [64], aligning with the established evo-
lutionary trend of I-type granites. Furthermore, the Uhelchulu quartz diorite samples
plot within the I-type granite field on the Na2O-K2O diagram (Figure 7d). In contrast,
the P2O5 content of the Guiqinkundui granodiorite shows a positive correlation with
SiO2 (Figure 7c) [64], and its samples fall within the S-type granite field on the Na2O-
K2O diagram (Figure 7d) [64]. Additionally, CIPW normative mineral calculations for the
Guiqinkundui granodiorite indicate the presence of corundum (1.79–2.85 vol%), confirming
its peraluminous nature.

Therefore, we tentatively conclude that the Uhelchulu quartz diorite has I-type granite
characteristics, while the Guiqinkundui granodiorite has S-type granite characteristics.
Previous studies and experimental petrology have shown that the genesis of I-type and
S-type granites is mainly due to partial melting and fractional crystallization of crustal
materials [65–67].
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5.3. Tectonic Implications

The Devonian tectonic environment of the Hegenshan ocean remains poorly under-
stood, primarily due to limited research and a scarcity of geological evidence. Existing
interpretations of the Hegenshan ocean Devonian evolution depend largely on studies of
Devonian magmatic rocks within the Hegenshan ophiolitic mélange belt. Huang proposed
that the Hegenshan ocean began forming during the Middle-Late Devonian, underwent
northward subduction during the Early Carboniferous, and ultimately closed during the
Late Carboniferous [41]. Shao et al. based on the age of the Gegenaobao volcanic rocks
and the emplacement of ultrabasic rocks, suggested that the Hegenshan ocean closed
during the Late Devonian-Early Carboniferous, with an unconformity observed between
the serpentinite and the overlying strata in the Hegenshan area [68].

The first discovery of Devonian intrusive rocks in the Xiwuqi area during the regional
geological survey provides valuable insights into the Devonian tectonic environment of the
Hegenshan ocean. Despite the limited availability of other geological evidence from the
same period, this study offers a preliminary exploration of the tectonic setting associated
with the formation of the Uhelchulu quartz diorite and Guiqinkundui granodiorite, drawing
primarily on their geochemical characteristics.

Using Nb-Y and Rb-(Y + Nb) discrimination diagrams (Figure 8a,b) [69], all samples
of Uhelchulu quartz diorite and Guiqinkundui granodiorite plot within the volcanic arc
environment. This geochemical evidence, combined with the detailed petrogenesis analysis,
supports the formation of these rocks in an active continental margin arc environment, thus
strongly contracting earlier interpretations, providing compelling evidence for a distinct
tectonic setting during their formation.
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gin arc setting within the Xilinhot microcontinental block during the Early to Middle De-
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Figure 8. Discrimination diagrams for Uhelchulu quartz diorite and Guiqinkundui granodiorite in
Xiwuqi, (a) Y-Nb and (b) (Y + Nb)-Rb (after Pearce et al., 1984 [69]). Syn-COLG (syn-collision granite);
WPG (within plate granite); VAG (volcanic arc granite); and ORG (mid ocean ridge granite).

Petrological and geochemical analyses of the Uhelchulu quartz diorite and Guiqinkun-
dui granodiorite indicate that the Xiwuqi area occupied an active continental margin arc set-
ting within the Xilinhot microcontinental block during the Early to Middle Devonian. This
interpretation suggests that the Hegenshan oceanic crust underwent southward subduction
during this period (Figure 9a). Previous research has suggested that the Hegenshan ocean
transitioned to northward subduction at least during the Early Carboniferous (Figure 9b).
Therefore, we preliminarily believed that the Hegenshan ocean may might have undergone
a shift in subduction mechanism during the Late Devonian or Early Carboniferous.

Profeta et al. (2016) proposed a fitting relationship between the whole-rock chemistry
(La/Yb)N of intrusions and crustal thickness: H = 21.277ln(1.0204w(La)N/w(Yb)N), Where
H is the thickness of the crust and w(La)N/w(Yb)N is the ratio after homogenization of
chondrite meteorite [70]. This calculation needs to remove the samples that do not meet
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the requirements, such as La > 1 × 10−6, Th/U < 0.1, and SiO2 > 75% in the whole-rock
chemistry [71,72]. We calculated the variation in crustal thickness from the Early Devonian
to Early Cretaceous in the research area (Figure 10) based on the data from this paper and
other researchers (Table 4) [30,36,39,73–77]. The crustal thickness in the Early Devonian
is relatively thin (~28.52 km), but it increased to 43.13 km during the Middle Devonian.
The crustal thickening might continue until the Middle Carboniferous (~42.60 km), which
might be related to the continuous southward subduction of the Hegenshan ocean. In
the late Early Carboniferous, there was a sudden thinning of the crust, which might be
related to the shift in the subduction mechanism of the Hegenshan ocean in the Early
Carboniferous. This calculation result might further support the understanding of our
study. Subsequently, it underwent crustal thickening and thinning processes several times
until the Early Cretaceous in the research region, which is consistent with the geological
evolution processes studied by previous researchers.
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Table 4. The calculation results of crustal thickness in the research area.

Source Uhelchulu Quartz Diorite Guiqinkundui Granodiorite [59] [23] [60] [14] [58] [20] [57] [56]

Sample A01 A02 A03 A04 A05 A06 A07 A08 PM2 JG21 14NM PS1-8 PS1-1 P37 SEB1 ST01 PT1 PT2

SiO2 60.44 55.71 55.39 60.53 73.01 70.48 72.27 71.04 66.37 54.36 51.71 66.58 67.92 74.22 65.96 74.68 60.40 63.23

Th/U 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.55 0.75 2.07 0.30 0.30 0.42 0.48 0.35 0.33 0.33

La 17.97 25.47 23.72 20.05 33.02 67.62 46.37 37.49 8.70 9.04 8.40 10.89 14.57 31.50 17.03 24.49 32.00 22.20

Yb 3.30 4.89 4.15 3.42 4.00 5.10 3.09 4.16 0.86 1.80 1.57 0.91 1.33 5.41 0.54 7.30 2.19 1.78

(La/Yb)N 3.67 3.51 3.85 3.96 5.57 8.94 10.12 6.08 7.26 3.60 3.84 8.58 7.86 4.18 22.62 2.41 10.48 8.95

H 28.52 43.13 42.60 27.68 29.00 45.23 30.84 22.62 19.11 48.74

Age
(Ma) 396 385 330 325 316 305 275 255 159 132
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6. Conclusions

This study provides novel insights into the Devonian tectonic evolution of the Hegen-
shan ocean, based on the petrological and geochemical characterization of the Uhelchulu
quartz diorite and Guiqinkundui granodiorite in the Xiwuqi area.

LA-ICP-MS zircon U-Pb dating yielded ages of (396 ± 8) Ma (MSWD = 1.4) for
the Uhelchulu quartz diorite and (385 ± 5) Ma (MSWD = 1.5) for the Guiqinkundui
granodiorite, conclusively demonstrating Early to Middle Devonian magmatic activity.
This discovery significantly expands the known extent of Devonian magmatism, previously
documented only north of the Hegenshan suture zone, to the southern Xiwuqi area. These
ages provide critical chronological constraints for further elucidating the complex tectonic
evolution of the Hegenshan ocean during this critical period.

The mineralogical and whole-rock geochemical characteristics suggest that the Uhelchulu
quartz diorite has I-type granite characteristics, while the Guiqinkundui granodiorite has
S-type granite characteristics.

Geochemical analysis of the tectonic environment indicated that the Uhelchulu quartz
diorite and Guiqinkundui granodiorite formed in an active continental margin arc back-
ground, which may be related to the southward subduction of the Hegenshan ocean in
the Early to Middle Devonian. The Hegenshan ocean might have undergone a shift in
subduction mechanism during the Late Devonian or Early Carboniferous.
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