Application of Nanofibrous Clay Minerals in Water-Based Drilling Fluids: Principles, Methods, and Challenges
Abstract
:1. Introduction
2. Clay Mineralogy
2.1. Crystal Structure
2.2. Chemical Composition
2.3. Morphology
2.4. Properties and Applications
3. Rheological Properties of Pal and Sep in WBDFs
3.1. Network Formation Mechanism
3.2. Influence of Clay Concentration
3.3. Influence of Morphology and Fiber Arrangements
3.4. Influence of pH Conditions
3.5. Influence of Electrolytes
3.6. Influence of Temperatures
4. Filtration Properties
5. Method of Applying Pal and Sep in WBDFs
6. Challenges
6.1. Cost
6.2. Demand and Supply
6.3. Environmental Concerns
6.4. Technical Requirements
6.5. Field Application
7. Conclusions and Perspectives
- (1)
- It is recommended that future research focuses on developing more cost-effective processing methods for Pal and Sep. This could include optimizing the refinement processes to reduce energy consumption and exploring the potential of using smaller quantities of these minerals in drilling fluid formulations without compromising performance. Furthermore, developing new processing technologies to enhance low-grade or underperforming minerals is essential to reducing costs and ensuring a sufficient supply.
- (2)
- To mitigate environmental concerns, it is crucial to promote sustainable mining practices which minimize the ecological footprint of extracting Pal and Sep. Additionally, research should explore the development of environmentally friendly drilling fluid formulations which incorporate these minerals. This could include designing biodegradable or easily recyclable fluids, thereby reducing the environmental impact of their disposal.
- (3)
- In terms of technical requirements, further research is needed to fully understand the interactions between nanofibrous clay minerals and other drilling fluid components. Developing standardized formulations which are optimized for different drilling conditions will be essential for ensuring consistent performance in the field. Collaboration between academia, industry, and field operators could accelerate the development of these standardized formulations and their testing in real-world conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Zhuang, G.; Yuan, P.; Bergaya, F. Chapter 12—Future challenges related to clay minerals in drilling and drilling fluids. In Clay Science in Drilling and Drilling Fluids; Zhuang, G., Yuan, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 313–338. [Google Scholar]
- Zhuang, G.; Li, Q.; Bergaya, F.; Yuan, P. Chapter 1—The significance of clay minerals in drilling and drilling fluids. In Clay Science in Drilling and Drilling Fluids; Zhuang, G., Yuan, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–19. [Google Scholar]
- Caenn, R.; Darley, H.C.H.; Gray, G.R. Chapter 1—Introduction to Drilling Fluids. In Composition and Properties of Drilling and Completion Fluids, 7th ed.; Caenn, R., Darley, H.C.H., Gray, G.R., Eds.; Gulf Professional Publishing: Boston, MA, USA, 2017; pp. 1–34. [Google Scholar]
- Tabatabaee Moradi, S.S. Development of a water-based drilling fluid for chemical enhancement of drilling rate in a dolomite rock sample. J. Pet. Sci. Eng. 2022, 216, 110768. [Google Scholar] [CrossRef]
- Zhuang, G.; Zhang, Z.; Jaber, M. Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview. Appl. Clay Sci. 2019, 177, 63–81. [Google Scholar] [CrossRef]
- Luckham, P.F.; Rossi, S. The colloidal and rheological properties of bentonite suspensions. Adv. Colloid Interface Sci. 1999, 82, 43–92. [Google Scholar] [CrossRef]
- Kok, M.V. Rheological and thermal analysis of bentonites for water base drilling fluids. Energy Sources 2004, 26, 145–151. [Google Scholar]
- Xu, T.; Bezuijen, A. Bentonite slurry infiltration into sand: Filter cake formation under various conditions. Géotechnique 2019, 69, 1095–1106. [Google Scholar] [CrossRef]
- Alghareeb, A. A Review on Controlling Bentonite-Based Drilling Mud Properties. Int. J. Archit. Energy Urban. 2020, 1, 44–55. [Google Scholar]
- Vipulanandan, C.; Mohammed, A. Effect of drilling mud bentonite contents on the fluid loss and filter cake formation on a field clay soil formation compared to the API fluid loss method and characterized using Vipulanandan models. J. Pet. Sci. Eng. 2020, 189, 107029. [Google Scholar] [CrossRef]
- Temraz, M.G.; Hassanien, I. Mineralogy and rheological properties of some Egyptian bentonite for drilling fluids. J. Nat. Gas Sci. Eng. 2016, 31, 791–799. [Google Scholar] [CrossRef]
- Larsen, D.H. Use of Clay in Drilling Fluids. Clays Clay Miner. 1952, 1, 269–281. [Google Scholar] [CrossRef]
- Leong, Y.K.; Du, M.; Au, P.I.; Clode, P.; Liu, J. Microstructure of Sodium Montmorillonite Gels with Long Aging Time Scale. Langmuir 2018, 34, 9673–9682. [Google Scholar] [CrossRef]
- Au, P.-I.; Du, M.; Liu, J.; Haq, M.B.; Leong, Y.-K. Surface chemistry, rheology and microstructure of as-received SHCa-1 hectorite gels. Clay Miner. 2019, 54, 269–275. [Google Scholar] [CrossRef]
- Du, M.; Liu, P.; Clode, P.L.; Liu, J.; Haq, B.; Leong, Y.-K. Impact of additives with opposing effects on the rheological properties of bentonite drilling mud: Flow, ageing, microstructure and preparation method. J. Pet. Sci. Eng. 2020, 192, 107282. [Google Scholar] [CrossRef]
- Du, M.; Liu, P.; Wong, J.-E.; Clode, P.L.; Liu, J.; Leong, Y.-K. Colloidal forces, microstructure and thixotropy of sodium montmorillonite (SWy-2) gels: Roles of electrostatic and van der Waals forces. Appl. Clay Sci. 2020, 195, 105710. [Google Scholar] [CrossRef]
- Caenn, R.; Darley, H.C.H.; Gray, G.R. Chapter 4—Clay Mineralogy and the Colloid Chemistry of Drilling Fluids. In Composition and Properties of Drilling and Completion Fluids, 7th ed.; Caenn, R., Darley, H.C.H., Gray, G.R., Eds.; Gulf Professional Publishing: Boston, MA, USA, 2017; pp. 93–134. [Google Scholar]
- Kelessidis, V.C.; Christidis, G.; Makri, P.; Hadjistamou, V.; Tsamantaki, C.; Mihalakis, A.; Papanicolaou, C.; Foscolos, A. Gelation of water–bentonite suspensions at high temperatures and rheological control with lignite addition. Appl. Clay Sci. 2007, 36, 221–231. [Google Scholar] [CrossRef]
- Kelessidis, V.C.; Tsamantaki, C.; Dalamarinis, P. Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Appl. Clay Sci. 2007, 38, 86–96. [Google Scholar] [CrossRef]
- Kelessidis, V.C.; Tsamantaki, C.; Michalakis, A.; Christidis, G.E.; Makri, P.; Papanicolaou, K.; Foscolos, A. Greek lignites as additives for controlling filtration properties of water–bentonite suspensions at high temperatures. Fuel 2007, 86, 1112–1121. [Google Scholar] [CrossRef]
- Kelessidis, V.C.; Maglione, R. Yield stress of water–bentonite dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2008, 318, 217–226. [Google Scholar] [CrossRef]
- Chen, J.S.; Cushman, J.H.; Low, P.F. Rheological Behavior of Na-Montmorillonite Suspensions at Low Electrolyte Concentration. Clays Clay Miner. 1990, 38, 57–62. [Google Scholar] [CrossRef]
- Santoyo, E.; Santoyo-Gutiérrez, S.; García, A.; Espinosa, G.; Moya, S.L. Rheological property measurement of drilling fluids used in geothermal wells. Appl. Therm. Eng. 2001, 21, 283–302. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Y.; Zhou, F.; Amutenya Evelina, L.M.; Long, W.; Chen, S.; He, L.; Yi, X.; Yang, X. Evaluation method of thermal stability of bentonite for water-based drilling fluids. J. Pet. Sci. Eng. 2022, 208, 109239. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Sun, Y.; Lin, D.; Feng, X.; Wang, F. Insights into the high temperature-induced failure mechanism of bentonite in drilling fluid. Chem. Eng. J. 2022, 445, 136680. [Google Scholar] [CrossRef]
- Afolabi, R.O.; Orodu, O.D.; Seteyeobot, I. Predictive modelling of the impact of silica nanoparticles on fluid loss of water based drilling mud. Appl. Clay Sci. 2018, 151, 37–45. [Google Scholar] [CrossRef]
- Cheraghian, G.; Wu, Q.; Mostofi, M.; Li, M.-C.; Afrand, M.; Sangwai, J.S. Effect of a novel clay/silica nanocomposite on water-based drilling fluids: Improvements in rheological and filtration properties. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 339–350. [Google Scholar] [CrossRef]
- Elkatatny, S.; Kamal, M.S.; Alakbari, F.; Mahmoud, M. Optimizing the rheological properties of water-based drilling fluid using clays and nanoparticles for drilling horizontal and multi-lateral wells. Appl. Rheol. 2018, 28, 43606. [Google Scholar]
- Aftab, A.; Ismail, A.R.; Ibupoto, Z.; Akeiber, H.; Malghani, M. Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review. Renew. Sustain. Energy Rev. 2017, 76, 1301–1313. [Google Scholar] [CrossRef]
- Vryzas, Z.; Kelessidis, V.C. Nano-Based Drilling Fluids: A Review. Energies 2017, 10, 540. [Google Scholar] [CrossRef]
- Ali, M.; Jarni, H.H.; Aftab, A.; Ismail, A.R.; Saady, N.M.C.; Sahito, M.F.; Keshavarz, A.; Iglauer, S.; Sarmadivaleh, M. Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review. Energies 2020, 13, 3417. [Google Scholar] [CrossRef]
- Kosynkin, D.V.; Ceriotti, G.; Wilson, K.C.; Lomeda, J.R.; Scorsone, J.T.; Patel, A.D.; Friedheim, J.E.; Tour, J.M. Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids. ACS Appl. Mater. Interfaces 2012, 4, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ridha, S.; Ibrahim, A.; Shahari, R.; Fonna, S. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids. IOP Conf. Ser.-Mater. Sci. Eng. 2018, 352, 012025. [Google Scholar] [CrossRef]
- Sadeghalvaad, M.; Sabbaghi, S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technol. 2015, 272, 113–119. [Google Scholar] [CrossRef]
- Aftab, A.; Ali, M.; Arif, M.; Panhwar, S.; Saady, N.M.C.; Al-Khdheeawi, E.A.; Mahmoud, O.; Ismail, A.R.; Keshavarz, A.; Iglauer, S. Influence of tailor-made TiO2/API bentonite nanocomposite on drilling mud performance: Towards enhanced drilling operations. Appl. Clay Sci. 2020, 199, 105862. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M.D. Nanomaterials Modified Drilling Fluid for Improving Deep Drilling Conditions. J. Energy Resour. Technol. 2022, 144, 073202. [Google Scholar] [CrossRef]
- Abdo, J. Nano-attapulgite for improved tribological properties of drilling fluids. Surf. Interface Anal. 2014, 46, 882–887. [Google Scholar] [CrossRef]
- Abdo, J.; AL-Sharji, H.; Hassan, E. Effects of nano-sepiolite on rheological properties and filtration loss of water-based drilling fluids. Surf. Interface Anal. 2016, 48, 522–526. [Google Scholar] [CrossRef]
- Al-Malki, N.; Pourafshary, P.; Al-Hadrami, H.; Abdo, J. Controlling bentonite-based drilling mud properties using sepiolite nanoparticles. Pet. Explor. Dev. 2016, 43, 717–723. [Google Scholar] [CrossRef]
- Ettehadi, A. A Comparative Study on Thixotropic Behavior of Clay Based Drilling Fluids. Annu. Trans. Nord. Rheol. Soc. 2020, 28, 99–107. [Google Scholar]
- Ettehadi, A. An Experimental Study on Structural and Thermal Stability of Water-Based Drilling Fluids. Eur. J. Sci. Technol. 2021, 23, 70–80. [Google Scholar]
- Ettehadi, A.; Ülker, C.; Altun, G. Nonlinear viscoelastic rheological behavior of bentonite and sepiolite drilling fluids under large amplitude oscillatory shear. J. Pet. Sci. Eng. 2022, 208, 109210. [Google Scholar] [CrossRef]
- Weng, J.; Gong, Z.; Liao, L.; Lv, G.; Tan, J. Comparison of organo-sepiolite modified by different surfactants and their rheological behavior in oil-based drilling fluids. Appl. Clay Sci. 2018, 159, 94–101. [Google Scholar] [CrossRef]
- Buriti, B.; Barsosa, M.E.; Buriti, J.D.; Cartaxo, J.D.; Ferreira, H.S.; Neves, G.D. Modification of palygorskite with cationic and nonionic surfactants for use in oil-based drilling fluids. J. Therm. Anal. Calorim. 2022, 147, 2935–2945. [Google Scholar] [CrossRef]
- Huang, X.; Shen, H.; Sun, J.; Lv, K.; Liu, J.; Dong, X.; Luo, S. Nanoscale Laponite as a Potential Shale Inhibitor in Water-Based Drilling Fluid for Stabilization of Wellbore Stability and Mechanism Study. ACS Appl. Mater. Interfaces 2018, 10, 33252–33259. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-B.; Sun, J.-S.; Huang, Y.; Yan, B.-C.; Dong, X.-D.; Liu, F.; Wang, R. Laponite: A promising nanomaterial to formulate high-performance water-based drilling fluids. Pet. Sci. 2021, 18, 579–590. [Google Scholar] [CrossRef]
- Galan, E. Properties and applications of palygorskite-sepiolite clays. Clay Miner. 1996, 31, 443–453. [Google Scholar] [CrossRef]
- Zhuang, G.; Zhang, Z.; Bergaya, F.; Yuan, P. Chapter 3—Application of fibrous clay minerals in water-based drilling fluids. In Clay Science in Drilling and Drilling Fluids; Zhuang, G., Yuan, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 55–82. [Google Scholar]
- Neaman, A.; Singer, A. Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Appl. Clay Sci. 2004, 25, 121–124. [Google Scholar] [CrossRef]
- Neaman, A.; Singer, A. Rheological properties of aqueous suspensions of palygorskite. Soil Sci. Soc. Am. J. 2000, 64, 427–436. [Google Scholar] [CrossRef]
- Echt, T.; Plank, J. An improved test protocol for high temperature carrying capacity of drilling fluids exemplified on a sepiolite mud. J. Nat. Gas Sci. Eng. 2019, 70, 102964. [Google Scholar] [CrossRef]
- García-Villén, F.; Sánchez-Espejo, R.; López-Galindo, A.; Cerezo, P.; Viseras, C. Design and characterization of spring water hydrogels with natural inorganic excipients. Appl. Clay Sci. 2020, 197, 105772. [Google Scholar] [CrossRef]
- Liu, P.; Du, M.; Clode, P.; Li, H.; Liu, J.; Leong, Y.K. Surface Chemisty, Microstructure, and Rheology of Thixotropic 1-D Sepiolite Gels. Clays Clay Miner. 2020, 68, 9–22. [Google Scholar] [CrossRef]
- Choupani, M.A.; Tabatabaee Moradi, S.S.; Tabatabaei Nejad, S.A. Study on Attapulgite as Drilling Fluid Clay Additive in Persian Gulf Seawater. Int. J. Eng. 2022, 35, 587–595. [Google Scholar]
- Guggenheim, S.; Krekeler, M.P.S. Chapter 1—The Structures and Microtextures of the Palygorskite–Sepiolite Group Minerals. In Developments in Clay Science; Galàn, E., Singer, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–32. [Google Scholar]
- Álvarez, A.; Santarén, J.; Esteban-Cubillo, A.; Aparicio, P. Chapter 12—Current Industrial Applications of Palygorskite and Sepiolite. In Developments in Clay Science; Galàn, E., Singer, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 281–298. [Google Scholar]
- García-Romero, E.; Suárez, M. Sepiolite–palygorskite: Textural study and genetic considerations. Appl. Clay Sci. 2013, 86, 129–144. [Google Scholar] [CrossRef]
- Murray, H.H. Applied clay mineralogy today and tomorrow. Clay Miner. 1999, 34, 39–49. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Haden, W. Attapulgite: Properties and Uses. Clays Clay Miner. 1961, 10, 284–290. [Google Scholar] [CrossRef]
- Haden, W.L.; Schwint, I.A. Attapulglte: Its Properties and Applications. Ind. Eng. Chem. 1967, 59, 58–69. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Z.; Han, F. Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Appl. Clay Sci. 2020, 190, 105543. [Google Scholar] [CrossRef]
- Santanna, V.C.; Silva, S.L.; Silva, R.P.; Castro Dantas, T.N. Use of palygorskite as a viscosity enhancer in salted water-based muds: Effect of concentration of palygorskite and salt. Clay Miner. 2020, 55, 48–52. [Google Scholar] [CrossRef]
- Dahab, A.S. Thermal-Stability of Drilling-Fluids Prepared from Saudi Palygorskite. J. Can. Pet. Technol. 1991, 30, 49–52. [Google Scholar] [CrossRef]
- Baltar, C.A.M.; da Luz, A.B.; Baltar, L.M.; de Oliveira, C.H.; Bezerra, F.J. Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid. Appl. Clay Sci. 2009, 42, 597–600. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Wang, Q.; Wang, A. Disaggregation of palygorskite crystal bundles via high-pressure homogenization. Appl. Clay Sci. 2011, 54, 118–123. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Wang, A. Superior dispersion properties of palygorskite in dimethyl sulfoxide via high-pressure homogenization process. Appl. Clay Sci. 2013, 86, 174–178. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Wang, A. Effects of solvent treatment and high-pressure homogenization process on dispersion properties of palygorskite. Powder Technol. 2013, 235, 652–660. [Google Scholar] [CrossRef]
- Xu, J.X.; Wang, W.B.; Wang, A.Q. Dispersion of palygorskite in ethanol-water mixtures via high-pressure homogenization: Microstructure and colloidal properties. Powder Technol. 2014, 261, 98–104. [Google Scholar] [CrossRef]
- Boudriche, L.; Chamayou, A.; Calvet, R.; Hamdi, B.; Balard, H. Influence of different dry milling processes on the properties of an attapulgite clay, contribution of inverse gas chromatography. Powder Technol. 2014, 254, 352–363. [Google Scholar] [CrossRef]
- Viseras, C.; Meeten, G.H.; Lopez-Galindo, A. Pharmaceutical grade phyllosilicate dispersions: The influence of shear history on floc structure. Int. J. Pharm. 1999, 182, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, Z.; Morsali, A. Sonochemical preparation of palygorskite nanoparticles. Appl. Clay Sci. 2011, 51, 51–53. [Google Scholar] [CrossRef]
- Pardo-Canales, L.; Essih, S.; Cecilia, J.A.; Domínguez-Maqueda, M.; Olmo-Sánchez, M.I.; Pozo-Rodríguez, M.; Franco, F. Modification of the textural properties of palygorskite through microwave assisted acid treatment. Influence of the octahedral sheet composition. Appl. Clay Sci. 2020, 196, 105745. [Google Scholar] [CrossRef]
- Myriam, M.; Suárez, M.; Martín-Pozas, J.M. Structural and Textural Modifications of Palygorskite and Sepiolite Under Acid Treatment. Clays Clay Miner. 1998, 46, 225–231. [Google Scholar] [CrossRef]
- Oliveira, R.; Acchar, W.; Soares, G.; Barreto, L. The increase of surface area of a Brazilian palygorskite clay activated with sulfuric acid solutions using a factorial design. Mater. Res. 2013, 16, 924–928. [Google Scholar] [CrossRef]
- Zhou, H.; Murray, H.H. Chapter 10—Overview of Chinese Palygorskite Clay Resources—Their Geology, Mineralogy, Depositional Environment, Applications and Processing. In Developments in Clay Science; Galàn, E., Singer, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 239–263. [Google Scholar]
- Altun, G.; Serpen, U. Investigating improved rheological and fluid loss performance of sepiolite muds under elevated temperatures. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Cinar, M.; Can, M.F.; Sabah, E.; Karaguzel, C.; Celik, M.S. Rheological properties of sepiolite ground in acid and alkaline media. Appl. Clay Sci. 2009, 42, 422–426. [Google Scholar] [CrossRef]
- Liu, P.; Du, M.; Clode, P.; Liu, J.; Leong, Y.-K. Rod–plate interactions in sepiolite–LAPONITE® gels: Microstructure, surface chemistry and rheology. Soft Matter 2021, 17, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.; Ferraz, E.; Santarén, J.; Rasteiro, M.G.; Gamelas, J.A.F. Improving Colloidal Stability of Sepiolite Suspensions: Effect of the Mechanical Disperser and Chemical Dispersant. Minerals 2020, 10, 779. [Google Scholar] [CrossRef]
- Sabah, E.; Mart, U.; Çınar, M.; Çelik, M.S. Zeta Potentials of Sepiolite Suspensions in Concentrated Monovalent Electrolytes. Sep. Sci. Technol. 2007, 42, 2275–2288. [Google Scholar] [CrossRef]
- Gautam, S.; Guria, C.; Rajak, V.K. A state of the art review on the performance of high-pressure and high-temperature drilling fluids: Towards understanding the structure-property relationship of drilling fluid additives. J. Pet. Sci. Eng. 2022, 213, 110318. [Google Scholar] [CrossRef]
- Mao, H.; Yang, Y.; Zhang, H.; Zhang, J.; Huang, Y. A critical review of the possible effects of physical and chemical properties of subcritical water on the performance of water-based drilling fluids designed for ultra-high temperature and ultra-high pressure drilling applications. J. Pet. Sci. Eng. 2020, 187, 106795. [Google Scholar] [CrossRef]
- Belani, A.; Orr, S. A Systematic Approach to Hostile Environments. J. Pet. Technol. 2008, 60, 34–39. [Google Scholar] [CrossRef]
- Mohamed, A.; Salehi, S.; Ahmed, R. Significance and complications of drilling fluid rheology in geothermal drilling: A review. Geothermics 2021, 93, 102066. [Google Scholar] [CrossRef]
- Carney, L.L.; Meyer, R.L. A New Approach to High Temperature Drilling Fields. In Proceedings of the SPE Annual Fall Technical Conference and Exhibition, New Orleans, LA, USA, 3–6 October 1976. SPE-6025-MS. [Google Scholar]
- Ettehadi, A.; Altun, G. Extending thermal stability of calcium carbonate pills using sepiolite drilling fluid. Pet. Explor. Dev. 2017, 44, 477–486. [Google Scholar] [CrossRef]
- Ettehadi, A.; Altun, G. In-Situ Thermal Rheological Properties of Drilling Muds. In Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition, Abu Dhabi, United Arab Emirates, 29–31 January 2018. SPE/IADC-189349-MS. [Google Scholar]
- Altun, G.; Osgouei, A.E.; Ozyurtkan, M.H. Customization of sepiolite based drilling fluids at high temperatures. In Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, MN, USA, 1–4 June 2014. ARMA 14-7031: American Rock Mechanics Association. [Google Scholar]
- Carney, L.L.; Guven, N. Investigation of changes in the structure of clays during hydrothermal study of drilling fluids. Soc. Pet. Eng. J. 1980, 20, 385–390. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Li, S.; Ji, Y. Application of Several Kinds of Clays and a New Type of Nano-Modified Bontonite in Drilling Fluids. Adv. Mater. Res. 2013, 746, 489–495. [Google Scholar] [CrossRef]
- Tao, Z.; Tianqi, L.; Yuechao, L.; Yang, L.; Gaowei, G.; Jingcheng, C.; Fengshan, Z. Preparation and Rheological Properties of Attapulgite Gel for Aqueous Suspensions. In Proceedings of the 2016 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016), Shenyang, China, 29–31 December 2016. [Google Scholar]
- Wenlong, Z.; Xiaoming, W.; Yuming, H.; Jie, X.; Wenshi, W. Research and Application of High-Temperature Drilling Fluid for Scientific Core Drilling Project. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 13 November 2017. SPE-188906-MS. [Google Scholar]
- Christidis, G.E.; Athanasakis, N.; Marinakis, D. Rheological properties of magnesium bentonite and sepiolite suspensions after dynamic ageing at high temperatures. Clay Miner. 2024. [Google Scholar] [CrossRef]
- Guven, N.; Panfil, D.J.; Carney, L.L. Comparative Rheology of Water-Based Drilling Fluids with Various Clays. In Proceedings of the International Meeting on Petroleum Engineering, Tianjin, China, 31 October 1988. SPE-17571-MS. [Google Scholar]
- Osgouei, A.E.; Ozyurtkan, M.H.; Altun, G.; Dilsiz, E.A. Dynamic Filtration Properties of Clay Based Drilling Muds under Elevated Temperatures. In Proceedings of the SPE Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 10–12 December 2012. SPE-163325-MS. [Google Scholar]
- Osgouei, A.E.; Ozyurtkan, M.H.; Altun, G. Dynamic Filtration Properties of Fresh Water Sepiolite-based Muds. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 36, 2079–2086. [Google Scholar] [CrossRef]
- Altun, G.; Osgouei, A.E. Investigation and remediation of active-clay contaminated sepiolite drilling muds. Appl. Clay Sci. 2014, 102, 238–245. [Google Scholar] [CrossRef]
- Neaman, A.; Singer, A. Rheology of mixed palygorskite-montmorillonite suspensions. Clays Clay Miner. 2000, 48, 713–715. [Google Scholar] [CrossRef]
- İşçi, E.; Turutoğlu, S.İ. Stabilization of the mixture of bentonite and sepiolite as a water based drilling fluid. J. Pet. Sci. Eng. 2011, 76, 1–5. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M.D. Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems. J. Energy Resour. Technol. 2012, 134, 014501. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M.D. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Appl. Clay Sci. 2013, 86, 76–82. [Google Scholar] [CrossRef]
- Huang, W.; Leong, Y.-K.; Chen, T.; Au, P.-I.; Liu, X.; Qiu, Z. Surface chemistry and rheological properties of API bentonite drilling fluid: pH effect, yield stress, zeta potential and ageing behaviour. J. Pet. Sci. Eng. 2016, 146, 561–569. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, G.; Zhang, J.; Chen, J.; Liu, Q.; Fan, W.; Li, Q. Application of Nanofibrous Clay Minerals in Water-Based Drilling Fluids: Principles, Methods, and Challenges. Minerals 2024, 14, 842. https://doi.org/10.3390/min14080842
Zhuang G, Zhang J, Chen J, Liu Q, Fan W, Li Q. Application of Nanofibrous Clay Minerals in Water-Based Drilling Fluids: Principles, Methods, and Challenges. Minerals. 2024; 14(8):842. https://doi.org/10.3390/min14080842
Chicago/Turabian StyleZhuang, Guanzheng, Jiajun Zhang, Jinrong Chen, Qian Liu, Wenxiao Fan, and Qiang Li. 2024. "Application of Nanofibrous Clay Minerals in Water-Based Drilling Fluids: Principles, Methods, and Challenges" Minerals 14, no. 8: 842. https://doi.org/10.3390/min14080842
APA StyleZhuang, G., Zhang, J., Chen, J., Liu, Q., Fan, W., & Li, Q. (2024). Application of Nanofibrous Clay Minerals in Water-Based Drilling Fluids: Principles, Methods, and Challenges. Minerals, 14(8), 842. https://doi.org/10.3390/min14080842