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Abstract: This paper presents the results of a study of the mineralogical and chemical composition of
zinc and lead metallurgical slags. These slags contain numerous elements, including toxic metals,
which form conglomerates or multiphase intergrowths. The phase composition of slags is one of
the main factors that determine their behaviour in weathering environments, that is, their ability to
release metals when exposed to atmospheric factors. In this paper, the release of elements from slags
and their mobility in a hypergenic environment is determined based on the results of leachability
tests and on geochemical modelling, thus assessing the environmental impact of landfilled slags. The
elements released from slags in the largest quantities are zinc and lead. Zn is leached out over a
long period of time. It was found that after 12 years, the concentration of Zn in the eluate exceeds by
40 times the permissible value of 200 mg/kg for hazardous waste. The degree of leaching of lead
from slags as a function of time (after 12 years), despite its significant solubility in water, is much
lower than the degree of leaching of zinc. The most mobile phase components of slags in the studied
hypergenic environment are the lead phases (anglesite and galena) and, to a lesser extent, the zinc
phases (sphalerite and willemite). Anglesite and galena in almost the entire Eh-pH range, along with
admixtures of elements, decompose into ionic forms: PbCl42−, Pb2+, and PbOH+. Sphalerite in the
soil and water environment (oxidizing and acidic conditions) will decompose into the mobile ionic
form Zn2+. Willemite, which is resistant to weathering, will undergo similar decomposition. It can
therefore be assumed that the carriers of toxic metals are primarily lead sulphides and sulphates, zinc
sulphides, and, less frequently, zinc, lead, and iron oxides.
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1. Introduction

Slags resulting from zinc and lead metallurgy are characterised by a diversity of
chemical and phase compositions, which in turn depend on the type of feedstock used, the
parameters of the technological process applied, and its course [1,2].

These slags contain numerous elements, including toxic metals, i.e., Pb, Zn, Cu, Sn, Sb,
Na, Mg, Al, Ca, As, In, Cd, Ag, Au, and Bi, and their phase composition is dominated by
complex polyphase conglomerates formed as a result of high-temperature processes [1–5].

Slags from non-ferrous metals metallurgy that are classified as hazardous waste are
deposited in landfills and may therefore pose a potential threat to the environment, in
particular to soil and water [5].

Determining the adverse environmental impact of landfilled slags requires detailed
chemical and mineralogical studies as a basis for predicting the stability of slag constituents
under hypergenic conditions [5,6].

The phase composition of slags is one of the main factors determining their stability in
weathering environments and their ability to release metals when exposed to atmospheric
factors such as precipitation or temperature [5–7].
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The most commonly used methods for assessing the degree of environmental mobility
of slag minerals are leachability tests conducted under various pH conditions. Less common
are methods based on geochemical modelling, hence the application of Eh-pH (Pourbaix)
diagrams [8,9], which allow the determination of the regions of stability (within which
components occur in mobile soluble forms) and corrosion (within which components occur
in insoluble stable forms) for given elemental phases and provide valuable additional
information on the forms of occurrence of slag constituents and their behaviour in a
hypergenic environment.

2. Zinc and Lead Metallurgical Overview

A total of 20% of the zinc produced globally is obtained using pyrometallurgical
methods and 80% is obtained by hydrometallurgical methods [10–12], but most of the
studies reviewed here apply to the pyrometallurgical processing of sulphide ores [13,14].

The pyrometallurgical extraction of Zn is dominated by two main processes: the Zn
retort process and the Imperial Smelting Process (ISP). The Zn retort process produces Zn
metal by reducing ZnO and coke briquettes in a vertical retort furnace or, to a lesser extent,
in a horizontal retort furnace. The resulting Zn vapours are collected from the top of the
retort and fed to a condenser, where they are cooled and recovered as molten Zn at around
420–450 ◦C [13–15].

The most widely used pyrometallurgical method for obtaining zinc is the ISP, which
is a highly efficient technique that allows for the processing of complex polymetallic raw
materials that cannot be processed by other methods.

The ISP is based on the reduction of roasted zinc–lead concentrate with coke [16–18]
in a shaft furnace. Lead, liquid slag with a melting point of about 1200 ◦C, and process
gases containing CO2, CO, N2, and Zn vapours are formed in the melting zone. Slag and
raw lead are periodically discharged from the shaft furnace to the settling tank, from which
the slag (shaft furnace slag) is directed to the granulation trough. The raw lead is sent to
the refining process. One of the products of this process is refining slag [12–15].

Lead is mainly produced (more than 70% of world Pb production) by the pyromet-
allurgical processing of sulphide ores. Lead production from ores involves crushing,
grinding, and enrichment with flotation, followed by sintering and smelting in a shaft
furnace [13,14,19].

3. Methodology for Analysing Zn-Pb Metallurgical Slags
3.1. Chemical and Phase Composition
3.1.1. Elementary Analysis

Methods commonly used to analyse the chemical composition of slags are X-ray fluores-
cence (XRF)—macro-component analysis—and spectrometric methods (Inductively Coupled
Plasma—Mass Spectrometry (ICP-MS), Inductively Coupled Plasma—Atomic Emission Spec-
trometry (ICP-AES), Inductively Coupled Plasma—Optical Emission Spectrometry (ICP-OES),
and Atomic Absorption Spectrometry (AAS))—micro-component (trace element) analysis. X-ray
fluorescence relies on the secondary emission of X-rays (fluorescence) from matter that has been
excited by high-energy X-ray or gamma-ray bombardment.

Elementary analysis of a sample using interaction with X-rays is carried out by em-
ploying one of two measurement techniques [20–22]:

• Energy dispersive spectrometry (EDXRF), in which the measurement of the energy
value of the analytical signal and its intensity is carried out using a special detector
that counts the number and measures the energy of each photon that reaches it;

• Wavelength dispersive spectrometry (WDXRF), in which the photon stream is dis-
persed on a suitable crystal that acts as a diffraction grating, and a suitable detector
or detector array allows the intensity of the radiation at a specific wavelength to
be measured.

The WDXRF method is more sensitive, provides better energy resolution, and covers a
wider range of elements (Be to U) compared to the EDXRF method.
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Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled
plasma atomic (optical) emission spectrometry (ICP-AES or ICP-OES) involve decomposed
samples in a liquid state that are vaporized using an argon plasma source, during which
atoms are converted to ions in the excited state. In the case of ICP-MS, the ions then flow
into a mass spectrometer where they are isolated by atomic mass-to-charge ratios using a
quadrupole or magnetic sector analyser. A detector then measures the metal ions from the
mass spectrometer and calculates their abundance based on signal intensity. In contrast,
ICP-AES is based on measuring light emitted from excited atoms and ions instead of a
mass measurement [22–24]. ICP-MS and ICP-AES are capable of measuring 70 elements
simultaneously with atomic masses ranging from Li to U and sometimes heavier (excluding
a few due to interference); ICP-MS has lower levels of detection than ICP-AES [22–24].

Atomic absorption spectrometry AAS is an analytical technique that utilises the phe-
nomenon of the absorption of electromagnetic radiation of a specific wavelength by free
atoms in the ground state.

The element to be determined is initially present in the form of a chemical compound
from which it must be isolated in the form of free atoms. This is achieved with thermal
dissociation in atomisers: a flame atomiser (FAAS) or a graphite-coated furnace (GFAAS).
In contrast to the multi-element analysis of ICP-MS and ICP-AES, AAS determines the
concentrations of a single particular element. However, both FAAS and GFAAS can be
used to determine the concentrations of over 50 different elements.

3.1.2. Phase Analysis and Microanalytical Techniques

To identify the phase composition of slags, the X-ray diffraction (XRD) method is
commonly used. It is a non-destructive method, usually with a detection limit of one or
more per cent by weight. The principle of the diffractometer is based on the interaction of
the X-ray beam with the crystal structure of the sample. The radiation source is usually
a Co, Cu, or Mo tube. Some of the scattered X-rays undergo constructive interference or
diffraction and allow for the identification of the structure of a mineral based on Bragg’s
law. Crystalline mineral phases as well as amorphous phases, including glass, can be
quantified using techniques such as Rietveld analysis and diffraction profile fitting [25].

One of the most commonly employed microanalytical techniques is electron probe
microanalysis (EPMA), which is used to analyse the chemical composition of crystalline
phase grains within a micro-area. X-ray electron microanalysis utilises the interaction of
high-energy electrons of the beam with the electrons of the inner shells of the atoms of
which the sample under examination is composed. Registering the characteristic X-rays
emitted by the excited electrons provides information on the chemical composition of
the sample under examination, while registering elementary particles, i.e., secondary and
backscattered electrons, allows the surface of the mineral under examination to be imaged.
The characteristic X-rays are detected at particular wavelengths, and their intensities
are measured to determine concentrations. This analytical technique has a high spatial
resolution and sensitivity, and individual analyses are reasonably short, requiring only
a minute or two in most cases. Additionally, the electron microprobe can function like
a scanning electron microscope (SEM) and provide highly magnified secondary- and
backscattered-electron images of a sample [6,26].

Characteristic X-rays can be detected using two methods: energy dispersive spec-
troscopy EDS and wavelength dispersive spectroscopy WDS. These two methods comple-
ment each other, as the wavelength and energy of the characteristic X-rays are interrelated.

In the EDS method, the energy spectrum distribution of the characteristic X-rays is
measured. Typically, the active element of an EDS detector is made of a Si(Li) semiconductor.
During the measurement, the entire spectrum of emitted X-rays is recorded. This method
allows compositional analysis from a selected area, point-wise and profile-wise along
a designated line, and the mapping of the distribution of individual elements on the
sample surface. The EDS method is used in both scanning and transmission electron
microscopy [21,26].
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The WDS method, on the other hand, utilises X-ray diffraction on an analysing crys-
tal, following Bragg’s law. The deflected X-rays are recorded by a detector (usually a
proportional gas counter) [21,27].

While EDS yields more information and typically requires a much shorter counting
time, WDS is generally more precise with lower limits of detection due to its superior X-ray
peak resolution and greater peak-to-background ratio.

In addition to electron microprobe analysis (EMPA), scanning electron microscopy
(SEM) is also commonly used to characterise slags. It enables the imaging of the structures
and morphology of the materials under analysis by means of a focused electron beam,
scanning line-by-line sections of the surface of the samples under examination. Analogue-
to-digital processing of the signals, which are recorded with detector systems as a result of
the interaction of the emitted electrons with the material under examination, results in a
two-dimensional image or X-ray spectrum [21,26,28].

Scanning electron microscopes offer the ability to take images of the examined ma-
terials at magnifications of up to 300,000 times in three basic modes of operation: low
voltage, high vacuum (HV), and low vacuum (LV). In particular, the use of the low vacuum
(LV) mode allows delicate, vulnerable objects to be imaged, thus making it possible to
skip the preparation step that is typical with non-conducting materials. In addition, SEM
microscopes are fitted with X-ray microanalysis systems for qualitative and quantitative
measurements of the chemical composition of samples with energy dispersion EDS or
wavelength dispersion WDS [21,26,27].

3.2. Leachability Tests

The environmental impact of slags is determined based on the results of leachability
tests (dynamic and static), simulating natural slag weathering processes or landfill condi-
tions. These tests help determine the mobility of elements contained in slags and predict
their long-term (up to several hundred years) behaviour in the environment [1,2,29,30].

There are many types of leach test procedures that vary based on the sample preparation,
leachant composition, method of contact, solid-to-solution ratio, leachant renewal, tempera-
ture, contact time, and, ultimately, purpose, among others. The most commonly employed
leaching tests can be divided into several types. One method, the single batch test, developed
by the United States Environmental Protection Agency (USEPA) for regulatory compliance
includes a leaching procedure with toxicity characterisation (Toxicity Characteristic Leaching
Procedure—TCLP) [1,2,29,30]. This procedure replaced the extraction procedure toxicity test
(EP-tox) and the synthetic precipitation leaching procedure (SPLP) (USEPA, 2008). Another
single batch test procedure is that described in the EN 12457-2 standard [31] introduced
by the European Committee for Standardisation (European Committee for Standardisation,
2002) (Figure 1).

There are also other methods used for static leaching of components. Based on the
American standard ASTM-D5284 (2009) [32], according to which contaminant leachability
tests are conducted using static acid tests with different dry solids to leachant ratios
(depending on the characterised natural conditions of waste storage), a test is conducted in
which the leachant is a weakly acidic solution (pH 5.5) and the dry solids to solution ratio
is 1:10. Such conditions allow the effect of pH on the rate of leaching of constituents (heavy
metals) from the waste to be determined, and thus on the rate of generation of constituents
migrating into the soil and water environment under natural conditions (being similar to
the natural pH of the environment and the precipitation water leaching the waste).

The extraction solutions used for the elemental leachability tests conducted on Zn-Pb
metallurgical slags were organic acids and hyperalkaline buffer solutions. These tests were
mostly carried out for elements with an average content in slags of more than several per
cent, i.e., Zn, Pb, Fe, Cu, Cd, and As [1–3,29,30,33].
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where: Qn—normalised element concentration [mole × m−2], [E1]—element content in
the eluate [ppm], [E2]—element content in the slag [ppm], V—volume of the eluate [mL],
AW—standard atomic weight of the element, W—slag weight [g], and SA—specific surface
area of slags [m2 × g−1]. Taking into account the leaching time t [days], leaching curves
are determined using the following formula:
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3.3. Geochemical Modelling

The results of the leachability tests carried out are most often complemented by
geochemical modelling. For more than 20 years, many researchers have used elemental
speciation modelling to study the reactivity of landfilled wastes (including slags) in a
hypergenic environment. Geochemical modelling is also the basis for identifying secondary
minerals that crystallise in the slags as a result of environmental factors [4,33,34].

The reliability of modelling results is often limited by the incomplete mineralogical
characterisation of the slags, insufficient data on the environmental conditions of the study
area, and a lack of thermodynamic parameters of the mineral phases and their aqueous
solutions. In order to improve the quality of the geochemical models obtained, it is essential
to take into account the solubility kinetic coefficients of both the mineral phases and glass
present in the slags. Due to the varying chemical composition of the glass, taking these
coefficients into account is problematic [35,36].

One of the most commonly used modelling methods is that which uses PHREEQC—a
computer program for speciation, batch-reaction, one-dimensional transport, and inverse
geochemical calculations. There are a number of other software tools for geochemical mod-
elling based on thermodynamic equilibrium models, e.g., MINTEQA2, Visual MINTEQ,
EQ3NR, or CHESS/HYTEC. Advanced modelling approaches, such as reaction path mod-
elling (code EQ62) and kinetic modelling (code KINDIS(P)63), require the input of calcu-
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lated/estimated dissolution rate constants, which for most primary slag phases (e.g., glass)
are not available [35–38].

Another of the geochemical modelling methods is based on Eh and pH diagrams using
HSC Chemistry software version 9. The diagrams were plotted for conditions characteristic
of the soil and water environment of the landfill area where the slags are deposited.

Studies are performed within the water stability region, within the Eh range of
−0.6. . .+1.2 V and a pH consistent with that of the soil and water environment of the
site. From the average percentages of the individual main phases and their solubilities in
the soil and water environment, the concentrations of the components taken for modelling
are calculated. The concentrations of trace dopant elements in the main phases are deter-
mined as proportional averages of their concentration in a phase to the solubility of that
phase (at a set temperature) [5,39].

4. Chemical and Mineral Composition of Slags from Zn-Pb Metallurgy
4.1. Chemical Composition

Slags from Zn-Pb metallurgy contain a number of chemical constituents, of which
the dominant ones are the following: SiO2, Al2O3, FeOTotal, MgO, CaO, CuO, ZnO, and
PbO [1–5,13,14] (Table 1).

Table 1. Summary of major chemistry (in wt%) and minor chemistry (in mg kg−1) of Zn-Pb metallur-
gical slags and Pb refining slags [1,5].

Component
Zn-Pb Slags Pb Refining Slags

Min Max Average * Min Max Average **

SiO2 2.04 57.1 28.6 2.45 35.5 11.1
Al2O3 0.90 21.9 8.3 0.57 7.8 2.8

FeOTotal 0.88 59.6 16.7 8.3 31.1 20.0
MgO 0.61 15.9 5.4 0.10 0.81 1.1
CaO 0.18 32.2 17.3 0.14 5.65 2.8
CuO 0.0020 0.93 0.10 0.98 20.93 11.5
SO3 0.05 14.9 2.99 5.83 23.1 13.6

MnO 0.01 3.0 0.50 0.02 0.55 0.21
K2O 0.02 3.91 0.60 0.04 0.27 0.15
ZnO 0.03 47.2 4.93 6.6 18.07 12.2
PbO 0.0002 6.4 0.93 0.72 44.6 17.8
TiO2 0.07 1.14 0.40 0.04 0.34 0.16

Element Min Max Average Min Max Average

Ba 76 17,914 1126 336 778 508
Ni 13 240 60 76 447 311
Co 8.5 242 36 0.01 452 232
Cr 4.0 700 155 132 708 435
As 1.0 10,710 1181 147 15,558 8843
Cd 0.38 575 31 85 19,757 5595
Sb 0.16 245 43 81 9869 472
Sn 0.10 500 23 0.01 617 323

*—arithmetic average values according to [1], **—arithmetic average values of samples according to [5].

Refining slags show a different chemical composition from that of slags from the shaft
process of Zn-Pb metallurgy, as they are dominated by ZnO (average content 12.2 wt%),
PbO (average content 17.5 wt%), CuO (average content 11.5 wt%), and SO3 (average
content 13.6 wt%), while in slags from the shaft process their average content is several
times lower (Table 1). In addition to the main constituents represented in oxide form,
Zn-Pb metallurgical slags contain numerous minor constituents, including the following:
Ba, Ni, Co, Cr, As, Cd, Sb, and Sn, the concentrations of which also vary over a wide
range (Table 1).
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4.2. Mineral Composition

The phase composition of Zn-Pb metallurgical slags varies widely, with the main
phase components of slags being as follows [1–5,40–60] (Figures 2 and 3):

• Oxides and hydroxides: zincite ZnO, wüstite FeO, hematite Fe2O3, and goethite
FeO(OH);

• Sulphides: sphalerite ZnS, galena PbS, pyrite FeS2, pyrrhotite FeS, digenite (Cu,Fe)9S5,
cubanite CuFe2S3, covellite CuS, and chalcocite Cu2S;

• Sulphates and hydrated sulphates: anglesite PbSO4, goslarite ZnSO4·7H2O, gypsum
CaSO4·2H2O,rapidcreekite Ca2(SO4)(CO3)·4H2O, ktenasite ZnCu4(SO4)2(OH)6·6H2O,
posnjakite Cu4[(OH)6|SO4]·H2O, and namuwite Zn4(SO4)(OH)6 · 4H2O;

• Silicates and aluminosilicates: willemite Zn2SiO4, olivines (Mg, Fe, Mn)SiO4, including
fayalite Fe2SiO4, kirschsteinite CaFe2 + SiO4 and forsterite Mg2SiO4, pyroxenes, and
melilites (Ca,Na)2(Al,Mg)[(Si,Al)2O7], which usually form complex conglomerates or
multiphase intergrowths;

• Carbonates: cerussite PbCO3, smithsonite ZnCO3, hydrozincite Zn5[(OH)3/CO3]2,
hydrocerussite Pb3(CO3)2(OH), and calcite CaCO3;

• Nitrates: gerhardite Cu2(NO3)(OH)3;
• Spinels, mainly magnetite. Further on: hercynite FeAl2O4, franklinite ZnFe2O4, gah-

nite ZnAl2O4, and ulvite Fe2TiO4;
• Metal alloys (Pb, Zn, Cu, Fe, As, Sb) and pure metals (Zn, Pb, Cu, Fe).

The mineral composition of Zn-Pb slags is determined by their chemical composition
and crystallization conditions (temperature, cooling rate).

For example, olivine-group phases are very common in crystalline slags; therefore,
fayalite (Fe2SiO4), kirschsteinite (CaFeSiO4), and forsterite (Mg2SiO4) were found to be
dominant in many Pb–Zn slags. Melilite-group phases crystallize mostly from the Ca-rich
slag melts [1,5].

In the Zn-Pb metallurgical slags, in addition to the crystalline components, there is
an amorphous substance—glass, the amount of which depends on the cooling rate of the
slags. Glass content in slags quickly cooled with water is much greater than in slags cooled
slowly, e.g., in an air atmosphere [60–63].

Rapidly quenched slags (e.g., granulated) have very simple phase compositions with
dominant glass, while air-cooled slags are characterized by much more complex mineral
compositions, but the formation of phases generally starts with the formation of the
crystalline components and ends with the solidification of glass.

The difficulty in quantifying glass is due to its amorphous nature and the varying
silica SiO2 content resulting in an ambiguous interpretation of the reflections related to the
corresponding dhkl interplanar spacing values in X-ray structural studies [6,63].

Glass also contains elements such as the following: Fe, Al, Ca, Pb, Zn, Cu, and As,
which occur in the form of nanometric oxide inclusions and intermetallic compounds [6].

In the phase composition of slags, in terms of genesis, the following components
are distinguished:

- Originating from the technological process (mainly silicates and aluminosilicates;
sulphate: anglesite; oxides: wüstite, zincite);

- Crystallizing in hypergenic conditions in the landfill (mainly sulphates and hydrated
sulphates: ktenasite, namuwite, posnjakite; hydroxide: goethite; nitrate: gerhardite;
carbonates: cerussite, calcite);

- Having the character of source minerals (mainly ZnS and PbS sulphides).
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5. Environmental Aspects
5.1. Slag Leaching Properties

Constituents released from slags during weathering and reactions with the surface
and groundwater can have an adverse effect on the environment. The behaviour of slags
during leachability tests is strongly dependent on their chemical and phase composition.

Studies carried out by a number of authors have shown a significant degree of ele-
mental leaching from metallurgical slags deposited in landfills located in Príbram, Czech
Republic; New Brunswick, Canada; Upper Silesia, Poland; Säo Domingos mining district,
and Portugal; Illinois, USA, with some of the elements subsequently being bound in sec-
ondary minerals formed under hypergenic environmental conditions, which significantly
reduced their mobility [65–70]. As mentioned, one of the factors determining the solubility
of the components present in slag and their mobility in the environment is their miner-
alogical and chemical composition. Silicate and spinel phases were found to be the most
resistant to weathering processes, while sulphide, glass, and intermetallic phases [66–68]
showed much higher solubility in the soil and water environment.

The elements released from slags in the greatest quantity and characterised by sig-
nificant solubility of more than 2.0 mg/L include zinc, lead, and iron. Zn leaching occurs
over a long period of time, and it was found that after 12 years the Zn concentration in
the eluate exceeded the 200 mg/kg limit for hazardous waste by 40 times [6,34,36,45,57,67]
(Figure 4). Under the pH conditions (4.5–6.0) of a hypergenic environment, zinc occurs
mainly in the form of Zn2+ and ZnCO3

+, rarely ZnSO4·7H2O. Zinc mobility in near-neutral
environments is limited as the element is readily adsorbed by oxides, hydroxides, and
aluminosilicates [4,35,38,40,49,67].
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limit values for non-hazardous waste, HW—the EU limit values for hazardous waste, based on [6].

In the case of the release of zinc into the environment, a high zinc content in the soil
negatively affects its properties. With a zinc content above 100 ppm, nitrification processes
are limited in the soil, and if its amounts exceed 1000 ppm, it negatively affects most
microbiological processes [5].

The leaching degree of lead from Zn-Pb metallurgical slags as a function of time (after
12 years), despite its considerable solubility in water (>2 mg/L), is significantly lower than
that of zinc.

This is due to the fact that the release of Pb is partly limited by the formation of new
phases, such as the following: lead carbonates and sulphates (e.g., cerusite PbCO3 and
angositite PbSO4), which are insoluble in water. Increased lead mobility is significantly
influenced by the salinity of the subsurface zone waters, which promotes the formation of
soluble PbCl2, PbCl4−2 and PbCl+ complexes [4,38,65–67,71–74].

Lead is a highly toxic metal, so when released into the environment it poses a threat to
both fauna and flora. Lead and its inorganic compounds, according to the International
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Agency for Research on Cancer (IARC—International Agency for Research on Cancer), are
classified in group 2B, i.e., substances possibly carcinogenic to humans [5]. The most com-
mon is chronic poisoning with Pb and its compounds, called lead poisoning, manifesting
itself primarily in neurological and mental disorders. Excess lead in plants disrupts the
photosynthesis process.

Environmental pH is one of the key parameters affecting the dissolution of the mineral
phases of Zn-Pb slags, thus affecting the release of elements and their stability in the
environment [4,67–69,71,72].

The pH-dependent leaching trends of selected contaminants (As, Cu, Pb, and Zn) eluted
from metallurgical slags are shown in Figure 5. Interestingly, despite considerable variability in
chemical and mineral composition, the leaching curves show marked trends [1,72–76].
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Figure 5. Dependence on pH of leaching of main elements from non-ferrous metal slags, based
on [1,6,72–74,77–79].

The leaching of arsenic (which occurs in the leachate mainly as oxyanionic species,
such as H2AsO4

−, HAsO4
2−, and AsO4

3−) is relatively flat with slightly higher medians
of leaching at a low pH and under alkaline/highly alkaline conditions (medians up to
62 mg·kg−1 and up to 16 mg·kg−1, respectively (Figure 5)) [1,6,72–74,77,78].

Arsenic in the +3 oxidation state is more toxic than in the +5 oxidation state [5]. This
element is highly toxic to living organisms, and according to IARC it is classified in the
first group of carcinogenic substances, which includes compounds with epidemiologically
proven carcinogenic effects [5].

Copper and zinc exhibit mainly cationic behaviour with the highest leaching under
strongly acidic conditions (Cu: median 921 mg·kg−1; Zn: median 494 mg·kg−1 at pH = 2),
with the lowest leaching under slightly alkaline conditions (ca. 3–4 orders of magnitude
lower than at pH = 2) (Figure 5) [1,6,72–74,77,78].

Lead shows properties typical of amphoteric compounds, with the highest level of
leaching under strongly alkaline and strongly acidic conditions and the lowest level of
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leaching under neutral conditions pH = 7 (up to 5 orders of magnitude difference between
extreme and neutral pH values) (Figure 5) [1,6,71–74,77–81].

5.2. Mobility of Metals and Metalloids from Zn-Pb Slags in Soil and Water Environment Based on
Geochemical Modelling

Due to the complexity of the mineral composition of the metallurgical wastes studied,
in which multiphase conglomerates predominate, it is difficult to determine unambiguously
the environmental mobility of the constituent elements [71,79,80].

Based on the geochemical modelling performed by the authors [6,34–39] using PHREEQC
and HSC Chemistry software, the stability in a hypergenic environment of the main components
of Zn-Pb slags was determined, taking into account the admixtures contained therein.

Figure 6A shows the key Pb-bearing phases that control the pH-dependent release of
lead into the environment based on PHREEQC; Figure 6B shows the phase distribution of
chromium as a function of environmental pH values resulting from geochemical modelling
using LeachXS™ software 3.0.0. [6].
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Table 2 shows a summary of the forms in which the elements released from the main
phases of Zn-Pb slags occur based on HSC Chemistry modelling. The following values of envi-
ronmental parameters were assumed in the modelling: average precipitation—700 mm/year
and average annual temperature +17 ◦C. The calculations were carried out within the water
durability field for the following range of pH values: 4÷8, consistent with conditions of the
soil and water environment in the research area.

The most mobile of the analysed slag constituents in the hypergenic environment
studied is anglesite, which decomposes and forms mainly the ionic forms PbCl42−, Pb2+,
and PbOH+, the exceptions being the stable molecular forms PbS under reducing conditions
and PbO2 under a narrow range of oxidising conditions in an alkaline environment (Table 2,
Figure 7) according to the following reactions [81–85]:

Pb+2 + SO4
−2 ⇌ PbSO4 (3)

4Cl− + Pb+2 ⇌ PbCl4−2 (4)

Pb+2 + H2O ⇌ PbOH+ + H+ (5)

Pb+2 + HS− ⇌ PbS + H+ (6)

Pb+2 + 0.5O2 + H2O ⇌ PbO2 + 2H+ (7)
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Table 2. Forms of occurrence of main elements Pb and Zn released from the main phases of Zn-Pb
slags into groundwater environment [5].

Main Phase in Zn-Pb Slag
Form of Occurrence

Environment (pH Value) Reducing Conditions Oxidizing Conditions

PbSO4

acidic PbS, Cd2+ PbCl42−, Pb2+

neutral PbS, Cd2+ PbCl42−, PbOH+

alkaline PbS, PbOH+ PbCl42−, PbOH+, PbO2

PbS
acidic Pb2+, PbS, PbCl42−, Pb2+, PbS

neutral PbCO3, PbS PbCl42−, PbS
alkaline PbS, PbCO3 PbCl42−, PbO2

ZnS
acidic ZnS Zn2+

neutral ZnS Zn2+

alkaline ZnS Zn5(OH)6(CO3)2

Zn2SiO4

acidic Zn2+ Zn2+

neutral Zn2+ Zn2+

alkaline Zn2+ Zn2+
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Figure 7. Sample Eh-pH diagrams for PbSO4, taking into account the presence of CO2 and Cl− ions
in the environment (temperature T = 17 ◦C) [5].

These findings are corroborated by studies by other authors [4,5,8,9,61,71,79].
Arsenic, which is released into the environment with the anglesite, occurs throughout

the Eh-pH range in ionic forms, with the less toxic ions predominating, where the oxidation
state of As is +5 [5,39].

Cadmium, over almost the entire Eh-pH range, occurs in Cd2+ ionic forms, except for
a narrow range in acidic environment (pH < 7.0) under oxidising conditions (Eh > 0.40),
where it forms the stable molecular form Cd(OH)2 [5,39].
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Cadmium is a highly toxic element that enters the environment in its ionic form. Cd,
among others, negatively affects the metabolism of other elements, such as zinc, copper,
magnesium, iron, and others, changing the morphology and functions of specific organs.
For example, by replacing zinc in biological reactions, it disrupts the synthesis of DNA,
RNA, and proteins, as well as the enzymatic activity of enzymes containing Zn [5].

Tin that is present in anglesite, in the hypergenic environment studied, occurs both in
mobile ionic forms characteristic of strongly acidic (pH < 5.0) and slightly basic
(pH > 6.5) environments and in stable molecular forms characteristic of acidic environments
(pH = 5.0. . .6.5), except for reducing conditions in the range Eh = 0.00. . .0.20 V. Sb released
with PbSO4 into the environment is stable in the environment, and its exclusive forms of
occurrence are oxides [39,83].

The dissolution of anglesite may result in the formation of acidic wastewater that
affects the chemistry of surface waters or infiltrates into soils, causing their acidification
and thus increasing the mobility of the pollutants contained in them [5].

The PbS present in the slags decomposes in the environment studied, forming both
mobile (ionic) and stable (molecular) forms of lead. The ionic forms Pb2+ are characteristic
of oxidising and weakly reducing conditions in acidic environments (pH < 5.8), while
PbCl42− is characteristic of strongly oxidising conditions (Table 2, Figure 8).
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Stable PbCO3, co-occurring with the PbOH+ ion (Equation (9)), is the predominant
form of Pb in environments with pH > 5.8, while PbS and PbO2, as in the case of anglesite,
occur under reducing conditions and in alkaline environments under oxidising conditions,
respectively [37,85–88]:

HCO3
− + Pb+2 ⇌ PbCO3 + H+ (8)

Pb+2 + H2O ⇌ PbOH+ + H+ (9)
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Cadmium, released into the environment with galena, is present only in mobile ionic
form, while in the case of tin, a reduction in the Sn(OH)4 and SnSO4 stability regions can
be observed compared to Eh-pH diagrams compiled for PbSO4 [5,39,83].

Antimony released into the environment with PbS, as is the case with PbSO4, is stable
in the environment, and its exclusive forms of occurrence are oxides.

Sphalerite, upon entering the environment under study from slags deposited in the
landfill, is decomposed, and the predominant form of zinc in the oxidising conditions of
this environment for pH < 7.2 is the mobile Zn2+ ion (Equation (10)), and the stable forms
are as follows: ZnS characteristic for reducing conditions and Zn5(OH)6(CO3)2 (Equation
(11)) for oxidising conditions when pH > 7.2 (Table 2, Figure 9) [5,8,38,86,88–90]:

ZnS + H+ ⇌ HS− + Zn+2 (10)

Zn5(OH)6(CO3)2 + 8H+ ⇌ 2HCO3
− + 5Zn+2 + 6H2O (11)
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environment (temperature T = 17 ◦C) [5].

Cd and As, released with ZnS into the environment, are present, as in the case of PbS,
only in ionic forms, while Sb is present in the molecular forms SbO2 and Sb2O3.

Analysis of the Eh-pH diagrams reveals an increase in the areas of Sn(OH)4 and SnSO4
stability regions at the expense of the corrosion regions, i.e., Sn(OH)3

+ and Sn(OH)5
−

mobility, compared to diagrams produced for PbSO4 and PbS [39].
Willemite decomposes in the soil and water environment of the smelter plant, and the

only form of zinc present in this environment is the mobile ionic form Zn2+ (Table 2, Figure 10).
Willemite, despite belonging to the group of weathering-resistant minerals [5,38,90–100], is
under hypergenic environment conditions a relatively mobile constituent of the landfilled
refining slag (Equations (12)–(14)) [73,97]:

Zn2SiO4 + 4H+ ⇌ 2Zn2+ + H4SiO4 (12)
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H4SiO4 ⇌ SiO2 + 2H2O (13)

H2Si2O5 ⇌ 2SiO2 + H2O (14)
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The predominant forms of arsenic present with Zn2SiO4, which decomposes in the
environment under study, are a variety of ions, where the only oxidation state of As is +5.
The stable forms of As found under oxidising conditions within narrow pH ranges are
mainly copper arsenates, less frequently hydrated arsenic oxides. [5,6,39,90–94,97–100].

The copper present in willemite in an oxidising environment is in the form of stable
Cu6Si6O18·6H2O, while in weakly oxidising and reducing environments, the following
forms are characteristic: stable Cu(AsO2)2 and mobile forms Cu2+ and CuH2AsO3

+.
In a hypergenic environment, the predominant forms of lead present in willemite are

the following ions: Pb2+, PbCl4−, and PbOH+, while lead in the form of silicate PbSiO3
occurs only in a narrow region of stability under reducing conditions in an alkaline envi-
ronment [5,6,37,79,88,96–98].

Antimony, unlike PbSO4, PbS, and ZnS, released from Zn2SiO4 into the environment,
occurs there not only in a stable oxide form but also in a mobile ionic form characteristic of
oxidising conditions at pH < 6.0 [5,6,39,98,99].

6. Summary and Conclusions

The most important factors that determine the mobility of elements released from
refining slags include the following: the chemical and mineral composition of the waste
and the environmental conditions.

Refining slags from Zn-Pb metallurgy have varied chemical and mineral compositions.
The chemical composition of slags and the conditions of crystallisation of the phase con-
stituents (temperature, cooling rate) determine their mineralogical composition. The phase
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composition of slags is dominated by multiphase crystalline conglomerates formed with
high-temperature processes. Typical mineral constituents in these slags include Zn and Fe
oxides, Fe hydroxides, Zn, Pb, Fe and Cu sulphides, Pb sulphates, and hydrated Zn, Ca,
Cu sulphates, Zn silicates, olivine group silicates, melilites (Ca,Na)2(Al,Mg)[(Si,Al)2O7], Pb
and Zn carbonates, spinels, and multicomponent metal alloys of Pb, Zn, Cu, Fe, As, and Sb.

The most mobile constituents of the slags in the hypergenic environment studied
are lead phases (anglesite and galena) and, to a lesser extent, zinc phases (sphalerite
and willemite).

Anglesite and galena, together with dopant elements, decompose into ionic forms al-
most across the entire Eh-pH range. Sphalerite in the soil and water environment (oxidising
and acidic conditions) decomposes into the mobile ionic form Zn2+. The weathering-
resistant willemite will undergo similar decomposition, but Zn2+ may be accompanied by
silicate forms of the dopant elements (Cu and Pb) released from it. The dopant elements As
and Cd released from the main phases into the environment occur mainly in mobile, toxic
ionic forms, while Cu and Sb pose much less of a threat due to the stability of their forms
of occurrence.

The bottom line is that slags from zinc and lead metallurgy, due to their chemical and
phase composition, pose a potential threat to the environment, e.g., through the release of
toxic elements into the environment.
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