Monchegorsk Mafic–Ultramafic Layered PGE-Bearing Complex (2.5 Ga, Kola Region, Russia): On the Problem of Relationships between Magmatic Phases Based on the Study of Cr-Spinels
Abstract
:1. Introduction
2. Geological Structure of the MC
2.1. General Information
2.2. The Pentlandite Gorge Site
2.3. The South Sopcha Site
2.4. The Ore Layer 330 and North-East Sopcha Sites
2.5. The Mine No. 5 Site
3. Previous Studies of the MC Cr-Spinel Mineralization
4. Materials and Methods
5. Results
5.1. Morphology and Mineral Composition of the MC Cr-Spinels
5.2. Geochemistry of the MC Cr-Spinels
6. Discussion
6.1. Mineralogical and Geochemical Features of MC Cr-Spinels
6.2. Relationship with the Geological Structure of Various MC Units
6.3. On the Problem of Relationships between Magmatic Phases of the MC
7. Conclusions
- The composition of Cr-spinels of the MC varies widely from aluminochromite to chrome-magnetite, generally corresponding to the evolutionary trend characteristic of layered mafic–ultramafic intrusions: the most magnesian and chromium-bearing Cr-spinels were formed from the most primitive melts, and ferruginous varieties are associated with evolved portions of magmatic melts.
- Findings of xenoliths of rocks of the Dunite Block in outcrops of the Sopcha and, possibly, NKT massifs allow us to conclude that the Dunite Block (hosting the Sopcheozero chromite deposit) was formed earlier than the NKT and Sopcha massifs. This is confirmed by data on the morphology and composition of Cr-spinels: in the Dunite Body of the Sopcha massif, they are almost identical to those in the rocks of the Dunite Block and are close to those from the harzburgite of the NKT massif. This observation may cast doubt on the scheme for the formation of MC units outlined in Smol’kin and Mokrushin (2022), where the formation of the NKT massif is associated with the first stage of MC formation.
- Zoning of Cr-spinels from rocks of Ore Layer 330 of the Sopcha massif probably indicates changing conditions for crystallization of an additional portion of the melt (for example, mixing of two magmas of different compositions). We have shown for the first time that in the satellite bodies of Ore Layer 330 (above and below it in the section), Cr-spinels are also zoned. The similarity of the composition and internal structure (zoning) of the Cr-spinels of Ore Layer 330 and its satellite bodies confirms their origin from a single portion of the melt, the injection of which probably had a pulsating character.
- The composition of Cr-spinels, and, in particular, the high Zn content, allows us to support the point of view that the layered complex of rocks of the South Sopcha massif was formed from the most evolved portion of magmatic melt, genetically related to the Monchetundra intrusion, and, probably, significantly contaminated with the substance of the host rocks. The South Sopcha vein complex (containing sulfide and PGE mineralization) can be considered to have arisen in the final stages of the evolution of the magmatic system.
- Tectonic factors played a significant role in the formation of the MC in its modern form. For example, the composition of Cr-spinels in the rocks of the Pentlandite Gorge clearly indicates that individual tectonic blocks are fragments of the NKT massif and not the Monchetundra intrusion, as previously thought.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kozlov, E.K.; Yudin, B.A.; Dokuchaeva, V.S. The Mafic and Ultramafic Complex of the Monche-Volche-Loseva Tundras; Nauka: Leningrad, Russia, 1967. [Google Scholar]
- Kozlov, E.K. Natural Series of Rocks of the Nickel-Bearing Intrusions and Their Metallogeny; Nauka: Leningrad, Russia, 1973. [Google Scholar]
- Chashchin, V.V.; Savchenko, E.E. Ophitic Gabbronorites of the Base of the Kumuzhya Massif, Monchepluton: Mineralogy, Petro-Geochemistry and U-Pb Age. Proc. Fersman Sci. Sess. GI KSC RAS. 2021, 18, 392–396. [Google Scholar] [CrossRef]
- Smol’kin, V.F.; Fedotov, Z.A.; Orsoev, D.A.; Ohnenstetter, D. Ore-Bearing Layered Monchepluton. In Layered intrusions of the Monchegorsk ore Region: Petrology, Mineralization, Isotopy, Deep Structure. Part 1; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 36–75. [Google Scholar]
- Chashchin, V.V.; Bayanova, T.B. Sopcheozero Chrome Deposit of Monchepluton: Geochemistry and U-Pb Age. Proc. Fersman Sci. Sess. GI KSC RAS. 2021, 18, 403–408. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Bayanova, T.B.; Mitrofanov, F.P.; Serov, P.A. Low-Sulfide PGE Ores in Paleoproterozoic Monchegorsk Pluton and Massifs of Its Southern Framing, Kola Peninsula, Russia: Geological Characteristic and Isotopic Geochronological Evidence of Polychronous Ore–Magmatic Systems. Geol. Ore Depos. 2016, 58, 37–57. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Ivanchenko, V.N. Sulfide PGE-Cu-Ni and Low-Sulfide Pt-Pd Ores of the Monchegorsk Ore Region (Western Sector of the Arctic): Geological Characteristics, Mineralogical, Geochemical and Genetic Features. Geol. Geophys. 2022, 63, 622–650. [Google Scholar]
- Amelin, Y.V.; Heaman, L.M.; Semenov, V.S. U-Pb Geochronology of Layered Mafic Intrusions in the Eastern Baltic Shield: Implications for the Timing and Duration of Paleoproterozoic Continental Rifting. Precambrian Res. 1995, 75, 31–46. [Google Scholar] [CrossRef]
- Smol’kin, V.F.; Bayanova, T.B. Monchepluton—a Polygon for studying the Petrology, Isotopy and Mineralization of Layered Intrusions of the Paleoproterozoic of the Baltic Shield. In Proceedings of the Scientific Conference of IGEM RAS, New Horizons in the Study of Magma and Ore Formation Processes, Moscow, Russia, 8–11 November 2010; pp. 375–376. [Google Scholar]
- Chashchin, V.; Sergeev, S. The Olivine Horizon of the Layered Monchegorsk Pluton (Kola Region, Russia): Additional Magma Injection Based on Integrated Geological and Geochronological Data. Geosciences 2023, 13, 344. [Google Scholar] [CrossRef]
- Balashov, Y.A.; Bayanova, T.B.; Mitrofanov, F.P. Isotope Data on the Age and Genesis of Layered Basic-Ultrabasic Intrusions in the Kola Peninsula and Northern Karelia, Northeastern Baltic Shield. Precambrian Res. 1993, 64, 197–205. [Google Scholar] [CrossRef]
- Rundkvist, T.V.; Bayanova, T.B.; Sergeev, S.A.; Pripachkin, P.V.; Grebnev, R.A. The Paleoproterozoic Vurechuaivench Layered Pt-Bearing Pluton, Kola Peninsula: New Results of the U-Pb (ID-TIMS, SHRIMP) Dating of Baddeleytte and Zircon. Dokl. Earth Sci. 2014, 454, 1–6. [Google Scholar] [CrossRef]
- Groshev, N.Y.; Pripachkin, P.V.; Karykowski, B.T.; Malygina, A.V.; Rodionov, N.V.; Belyatsky, B.V. Genesis of a Magnetite Layer in the Gabbro-10 Intrusion, Monchegorsk Complex, Kola Region: U-Pb SHRIMP-II Dating of Metadiorites. Geol. Ore Depos. 2018, 60, 486–496. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Bayanova, T.B.; Savchenko, Y.E.; Kiseleva, D.V.; Serov, P.A. Petrogenesis and Age of Rocks from the Lower Zone of the Monchetundra Mafic Platinum-Bearing Massif, Kola Peninsula. Petrology 2020, 28, 151–182. [Google Scholar] [CrossRef]
- Bayanova, T.B.; Smolkin, V.F.; Fedotov, Z.A.; Delenitsyn, A.A. U-Pb and Sm-Nd Isotope Investigation of Intrusive and Dike Rocks. In Layered Intrusions of Monchegorsk Ore Region: Petrology, Mineralization, Isotopes, and Deep Structure. Part 2; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 5–45. [Google Scholar]
- Nerovich, L.I.; Bayanova, T.B.; Savchenko, E.E.; Serov, P.A. Monchetundra Massif: Geology, Petrography, Geochronology, Geochemistry, PGE Mineralization (New Data). In Interreg-Tacis Project: The Strategic Mineral Resourses of Lapland are the Basis for the Sustainable Development of the North. Collection of Project Materials; Geological Institute KSC RAS: Apatity, Russia, 2009; pp. 97–112. [Google Scholar]
- Bayanova, T.B.; Nerovich, L.I.; Mitrofanov, F.P.; Zhavkov, V.A.; Serov, P.A. The Monchetundra Basic Massif of the Kola Region: New Geological and Isotope Geochronological Data. Dokl. Earth Sci. 2010, 431, 288–293. [Google Scholar] [CrossRef]
- Rundkvist, T.V.; Mokrushin, A.V.; Bazai, A.V.; Miroshnikova, Y.A.; Pripachkin, P.V. Xenolith of Chromite-Bearing Dunites from the Sopcha Massif (Monchegorsk Complex, Kola Peninsula). Notes Russ. Mineral. Soc. 2011, 3, 99–109. [Google Scholar]
- Rundqvist, T.V.; Pripachkin, P.V.; Grebnev, R.A.; Sevostyanov, A.Y.; Miroshnikova, Y.A. Geological Structure and Localization Features of PGE-Mineralization in the Eastern Part of the South Sopcha Mafic-Ultramafic Massif, Kola Peninsula. Ores Met. 2011, 5, 58–68. [Google Scholar]
- Rundqvist, T.V.; Pripachkin, P.V.; Grebnev, R.A. Features of the Relationship between Intrusive Bodies in the Contact Zone of the Ultramafic-Mafic Complexes of the Monchegorsk and the Main Range (South Sopcha Site, Kola Peninsula). Litosphere 2012, 3, 65–79. [Google Scholar]
- Grebnev, R.A.; Rundkvist, T.V.; Pripachkin, P.V. Geochemistry of Mafic Rocks of the PGE-Bearing Vurechuaivench Massif (Monchegorsk Complex, Kola Region). Geochem. Int. 2014, 52, 726–739. [Google Scholar] [CrossRef]
- Smol’kin, V.F.; Mokrushin, A.V. Paleoproterozoic Layered Intrusions of the Monchegorsk Ore District: Geochemistry and U-Pb, Sm-Nd, Re-Os Isotope Analysis. Minerals 2022, 12, 1432. [Google Scholar] [CrossRef]
- Sharkov, E.V. On the Formational Characteristics of the Gabbro-Norite-Labradorite Intrusion of the Moncha Main Ridge and the Monchegorsk Pluton (Kola Peninsula). In Problems of Magmatism of the Baltic Shield. Region Materials. Petrograph Meetings; Nauka: Leningrad, Russia, 1971; pp. 153–158. [Google Scholar]
- Sharkov, E.V. Petrology of Layered Intrusions; Nauka: Leningrad, Russia, 1980. [Google Scholar]
- Sharkov, E.V.; Chistyakov, A.V. Geological and Petrological Aspects of Ni-Cu-PGE Mineralization in the Early Paleoproterozoic Monchegorsk Layered Mafic-Ultramafic Complex, Kola Peninsula. Geol. Ore Depos. 2014, 56, 147–168. [Google Scholar] [CrossRef]
- Grokhovskaya, T.L.; Lapina, M.I.; Muravitskaya, G.N.; Bakaev, G.F.; Sholokhnev, V.V.; Voitekhovich, V.S. The PGE Ore Mineralization in the Monchegorsk Magmatic Layered Complex (Kola Peninsula, Russia). Geol. Ore Depos. 2003, 45, 329–352. [Google Scholar]
- Grokhovskaya, T.L.; Ivanchenko, V.N.; Karimova, O.V.; Griboedova, I.G.; Samoshnikova, L.A. Geology, Mineralogy, and Genesis of PGE Mineralization in the South Sopcha Massif, Monchegorsk Complex, Russia. Geol. Ore Depos. 2012, 54, 347–369. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Mitrofanov, F.P. The Paleoproterozoic Imandra-Varzuga Rifting Structure (Kola Peninsula): Intrusive Magmatism and Minerageny. Geodyn. Tectonophys. 2014, 5, 231–256. [Google Scholar] [CrossRef]
- Pripachkin, P.; Rundkvist, T.; Groshev, N.; Bazai, A.; Serov, P. Archean Rocks of the Diorite Window Block in the Southern Framing of the Monchegorsk (2.5 Ga) Layered Mafic-Ultramafic Complex (Kola Peninsula, Russia). Minerals 2020, 10, 848. [Google Scholar] [CrossRef]
- Rundkvist, T.; Pripachkin, P. Accessory Cr-Spinels in the Section of the Nude-Poaz Massif in the Monchegorsk (2.5 Ga) Mafic-Ultramafic Layered Complex (Kola Peninsula, Russia): Comparison with Ore-Forming Chromites. Minerals 2021, 11, 602. [Google Scholar] [CrossRef]
- Grokhovskaya, T.L.; Lapina, M.I.; Mokhov, A.V. Assemblages and Genesis of Platinum-Group Minerals in Low-Sulfide Ores of the Monchetundra Deposit, Kola Peninsula, Russia. Geol. Ore Depos. 2009, 51, 467–485. [Google Scholar] [CrossRef]
- Sharkov, E.V.; Smol’kin, V.F.; Belyatskii, V.B.; Chistyakov, A.V.; Fedotov, Z.A. Age of the Moncha Tundra Fault, Kola Peninsula: Evidence from the Sm-Nd and Rb-Sr Isotopic Systematics of Metamorphic Assemblages. Geochemistry Int. 2006, 44, 317–326. [Google Scholar] [CrossRef]
- Pripachkin, P.V.; Rundkvist, T.V.; Miroshnikova, Y.A.; Chernyavsky, A.V.; Borisenko, E.S. Geological Structure and Ore Mineralization of the South Sopchinsky and Gabbro-10 Massifs and the Moroshkovoe Lake Target, Monchegorsk Area, Kola Peninsula, Russia. Mineral. Depos. 2016, 51, 973–992. [Google Scholar] [CrossRef]
- Karykowski, B.; Maier, W.; McDonald, I.; Groshev, N.; Pripachkin, P.; Barnes, S. Origin of Reef-Style Pge Mineralization in the Paleoproterozoic Monchegorsk Complex, Kola Region, Russia. Econ. Geol. 2018, 113, 1333–1358. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part 1. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- BARNES, S.J.; ROEDER, P.L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Bayanova, T. Age of Reference Geological Complexes of the Kola Region and the Duration of Magmatic Processes; Nauka: St. Petersburg, Russia, 2004. [Google Scholar]
- Nazimova, Y.V.; Raian, G.J. PGE Projects of the “Eurasia Mining” Company on the Kola Peninsula. In Interreg-Tacis Project: The Strategic Mineral Resources of Lapland Are the Basis for the Sustainable Development of the North. Collection of Project Materials; Geological Institute KSC RAS: Apatity, Russia, 2009; pp. 79–88. [Google Scholar]
- Dokuchaeva, V.S. Dunites from Intrusions of the Peridotite-Gabbronorite Formation Type in the Monchegorsk Region. In Mafic-Ultramafic Magmatism of the Kola Peninsula; Kola Branch of the USSR Ac. Science: Apatity, Russia, 1978; pp. 109–130. [Google Scholar]
- Neradovsky, Y.N.; Borisova, V.V.; Sholokhnev, V.V. The Monchegorsk Layered Complex and Related Mineralization. Ore Deposits of the Kola Peninsula, North¬western Russia. In Research and Exploration—Where Do They Meet? 4th Biennial SGA Meeting, August 11-13, 1997. Turku, Finland. Excursion Guidebook B4 Geological Survey of Finland. Gueide 45; SGA: Turku, Finland, 1997; pp. 27–31. [Google Scholar]
- Smolkin, V.F.; Neradovsky, Y.N.; Fedotov, Z.A.; Dedyukhin, A.N.; Mokrushin, A.V. The Sopcheozero Chromite Deposit Confined to the Monchepluton. In Layered Intrusions of the Monchegorsk ore Region: Petrology, Mineralization, Isotopy, Deep Structure. Part 2; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 102–152. [Google Scholar]
- Konnikov, E.G.; Orsoev, D.A. On the Nature of the Rhythmically Layered Horizon of the Sopcha Massif in the Monchegorsk Pluton. Rep. USSR Acad. Sci. 1991, 3, 696–699. [Google Scholar]
- Sharkov, E.V.; Bogatikov, O.A. Concentration Mechanisms of the Platinum-Group Elements in Layered Intrusions of the Kola-Karelia Region. Geol. Ore Depos. 1998, 40, 419–439. [Google Scholar]
- Chashchin, V.V.; Petrov, S.V. Platinum-Group Minerals and the Genesis of the Sulfide PGE-Cu-Ni Deposit “Ore Horizon 330” of the Monchegorsk Pluton, Kola Region, Russia. J. Geochemical Explor. 2023, 255, 1–14. [Google Scholar] [CrossRef]
- Ivanchenko, V.N.; Davydov, P.S. PGM Deposits and Prospects in the Southern Part of the Monchegorsk Mineral Area: General Features of the Geological Structure. In Strategic Mineral Resources of Lapland—Base for the Sustainable Development of the North. An Interreg-Tacis Project N KA-0197 Vol. 2; Mitrofanov, F.P., Iljina, M., Zhirov, D., Eds.; KSC RAS: Apatity, Russia, 2009; pp. 70–78. ISBN 978-5-91137-094-7. [Google Scholar]
- Voitekhovich, V.S.; Stanyulis, A.L.; Erokhov, S.P.; Grokhovskaya, T.L.; Ozeryanskaya, E.V.; Pripachkin, P.V.; Efimov, A.A.; Zhadritsky, V.L.; Rozhkova, N.T.; Rundkvist, T.V.; et al. Information Report on the Results of Prospecting for PGE in the Monchegorsk Region (Monchegorsk and Monchetundra Massifs) in 1999–2002. Book 1; Central Kola Expedition: Monchegorsk, Russia, 2002. [Google Scholar]
- Rundqvist, T.V.; Pripachkin, P.V.; Groshev, N.Y.; Miroshnikova, Y.A. Magmatic Megabreccia in the Early Proterozoic Mafic-Ultramafic Monchegorsk Complex (Kola Region). In Proceedings of the Geodynamics of the Early Precambrian: Similarities and Differences with the Phanerozoic, Petrozavodsk, Russia, 29–31 May 2017; pp. 200–203. [Google Scholar]
- Rundkvist, T.V.; Mokrushin, A.V.; Huber, M.; Pripachkin, P.V.; Bazai, A.V.; Miroshnikova, Y.A. New Data on the Composition of Cr-Spinels in the Rocks of the Southeastern Part of the Early Proterozoic Monchegorsk Complex (Kola Region). Bull. Kola Sci. Cent. Russ. Acad. Sci. 2018, 1, 50–62. [Google Scholar] [CrossRef]
- Neradovsky, Y.N.; Rundkvist, T.V.; Galkin, A.S.; Klimentiev, V.N. On the Problem of PGE Content of the Ore Layer-330 of the Sopcha Massif and Its Industrial Use (Monchepluton). Bull. Murm. State Univ. 2002, 5, 85–91. [Google Scholar]
- Kozlov, E.K. On Some Controversial Issues of the Geological Structure of the Sopchuaivench Massif in the Monche-Tundra. In Questions of Geology and Mineralogy of the Kola Peninsula; Kola Branch of the USSR Academy of Sciences: Apatity, Russia, 1958; pp. 7–24. [Google Scholar]
- Pripachkin, P.V.; Rundkvist, T.V. Geological Structure and PGE Content of the Eastern Part of the Sopcha Layer ‘330’ (Monchegorsk Pluton, Kola Peninsula). Ores Met. 2007, 1, 44–50. [Google Scholar]
- Orsoev, D.A. Chrome Spinels from Disseminated Sulfide Ores of Layered Massifs. Notes USSR Mineral. Soc. 1988, 2, 175–181. [Google Scholar]
- Distler, V.V.; Grokhovskaya, T.L.; Evstegneeva, T.L.; Sluzhenikin, S.F.; Filimonova, A.A.; Dyuzhikov, O.A.; Laputina, I.P. Petrology of Sulfide Magmatic Ore Formation; Bondarenko, V.I., Ed.; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Pripachkin, P.V.; Neradovsky, Y.N.; Fedotov, Z.A.; Nerovich, L.I. The Cu-Ni-PGE and Cr Deposits of the Monchegorsk Area, Kola Peninsula, Russia. In: Ni-Cr-RGE Deposits of Finland and the Kola Peninsula (Excursion Guidebook FINRUS). In Proceedings of the 12th Biennial SGA Meeting “Mineral Deposit Research for High-Tech World”, Uppsala, Sweden, 12–15 August 2013; Hanski, E., Maier, W., Eds.; Elanders Sverige AB: Uppsala, Sweden, 2013; pp. 41–80. [Google Scholar]
- Mokrushin, A.V.; Smol’kin, V.F. Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield). Minerals 2021, 11, 772. [Google Scholar] [CrossRef]
- Chistyakova, S.; Latypov, R.; Zaccarini, F. Chromitite Dykes in the Monchegorsk Layered Intrusion, Russia: In Situ Crystallization from Chromite-Saturated Magma Flowing in Conduits. J. Petrol. 2015, 56, 2395–2424. [Google Scholar] [CrossRef]
- Orsoev, D.A.; Konnikov, E.G.; Zaguzin, G.N. Mineralization of the Peridotite Layer of Mount Sopcha in the Monchegorsk Region. Notes Russ. Mineral. Soc. 1994, 3, 26–40. [Google Scholar]
- Chashchin, V.V.; Savchenko, Y.E. Cumulus and Post-Cumulus Evolution of Chrome-Spinel Compositions in the “Ore Horizon 330” Rocks from the Sopcha Massif of the Paleoproterozoic Layered Monchegorsk Pluton, Kola Peninsula, Russia. Mineral. Petrol. 2021, 115, 557–575. [Google Scholar] [CrossRef]
- Mokrushin, A.V.; Miroshnikova, Y.A.; Savchenko, E.E. Association of Cr-Fe-Ti Minerals in Plagioclase-Amphibole Veins of the Moroshkovoe Lake Area (Monchegorsk Pluton). In Abstracts XXII Conference KO Kratc Memory; KSC RAS: Apatiy, Russia, 2011; pp. 134–135. [Google Scholar]
- Dokuchaeva, V.S.; Polezhaeva, L.I. Chromium Spinels of Layered Intrusions of the Monchegorsk Region (Kola Peninsula). In New in Mineralogy of the Karelo-Kola Region; Yakovlev, Y.N., Ed.; Karelian Science Centre of the USSR Academy of Sciences: Petrozavodsk, Russia, 1990; pp. 5–24. [Google Scholar]
- Lyulko, M.S. Geological Structure of the Loipishnyun Site of the Monchetundra Massif. Proc. Fersman Sci. Sess. GI KSC RAS 2009, 6, 180–183. [Google Scholar]
- Barkov, A.Y.; Nikiforov, A.A.; Martin, R.F. A Novel Mechanism of Spheroidal Weathering: A Case Study from the Monchepluton Layered Complex, Kola Peninsula, Russia. Bull. Geol. Soc. Finl. 2015, 87, 79–85. [Google Scholar] [CrossRef]
- Dedyukhin, A.N.; Ilyin, A.A.; Ozeryansky, V.V.; Sholokhnev, V.V.; Semashko, S.V.; Rakaev, A.I.; Reshetnyak, S.P.; Kulakov, A.N.; Chepkalenko, N.A.; Bilin, A.L.; et al. Report on the Results of Prospecting Work for Chrome Ores and Other Minerals at the Sopcheozero Ore Occurrence in 1995-2000. Book 3; Severonickel Plant: Monchegorsk, Russia, 2000. [Google Scholar]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2019, 31, 183–192. [Google Scholar] [CrossRef]
- Rundqvist, T.V.; Pripachkin, P.V.; Mokrushin, A.V.; Bazai, A.V. Chrome Spinels in Rocks of the Pentlandite Gorge Site (Monchegorsk District, Kola Region). In Proceedings of the Ultramafic-Mafic Complexes: Geology, Structure, Ore Potential, Apatity, Russia, 29 August–3 September 2022; pp. 85–87. [Google Scholar]
- Rybnikova, Y.A.; Rundqvist, T.V. Low-Sulfide Platinum–Metal Deposits in the Kola Region: A Comparative Analysis of the South Sopcha Ore Occurrence and the Fedorova Tundra Deposit. Lithosphere 2024, 24, 147–172. [Google Scholar] [CrossRef]
- Sushchenko, A.M.; Sidelnikov, M.V.; Groshev, N.Y. Petrography of Xenoliths of Chromite-Bearing Rocks from Mount Kumuzhiya, Monchegorsk Complex, Russia. Proc. Kola Sci. Cent. Russ. Acad. Sci. Geol. Geochem. 2019, 6, 248–254. [Google Scholar]
- Sidel’nikov, M.V.; Sushchenko, A.M.; Groshev, N.Y. Chromite from Xenoliths of Chromite-Bearing Rocks of Mount Kumuzhya, Monchegorsk Complex, Russia. In Proceedings of the 9th Russian Youth Scientific School Institute Geology of Ore Deposits RAS; Institute Geology of Ore Deposits RAS, Moscow, Russia, 25–29 November 2019; pp. 361–364. [Google Scholar]
- Melezhik, V.A.; Sturt, B.A. General Geology and Evolutionary History of the Early Proterozoic Polmak-Pasvik-Pechenga-Imandra/Varzuga-Ust’Ponoy Greenstone Belt in the Northeastern Baltic Shield. Earth Sci. Rev. 1994, 36, 205–241. [Google Scholar] [CrossRef]
- Korja, A.; Lahtinen, R.; Nironen, M. The Svecofennian Orogen: A Collage of Microcontinents and Island Arcs. Geol. Soc. Mem. 2006, 32, 561–578. [Google Scholar] [CrossRef]
Massif (Site) | Rock | Age (Ma) | Method/Mineral | Reference |
---|---|---|---|---|
Monchepluton | ||||
NKT | Ophitic gabbronorite | 2484.5 ± 7.9 | U-Pb/zrn | [3] |
NKT | Quartz norite, marginal zone | 2507 ± 9 | U-Pb/zrn | [4] |
Dunite Block | Dunite | 2500 ± 10 | U-Pb/zrn | [5] |
Dunite Block | Chrome ore | 2500 ± 2 | U-Pb/zrn | [5] |
Sopcha (Ore Layer 330) | Harzburgite | 2451 ± 64 | Sm-Nd/rfm | [6] |
Sopcha (Ore Layer 330) | Orthopyroxenite | 2492.5 ± 4.1 | U-Pb/zrn | [7] |
Nude-Poaz | Gabbro-pegmatite | 2504.4 ± 1.5 | U-Pb/zrn | [8] |
Nude-Poaz | Gabbro-pegmatite | 2500 ± 5 | U-Pb/zrn | [4] |
Nude-Poaz | Gabbronorite-pegmatite | 2503 ± 4.6 | U-Pb/zrn | [9] |
Nude-Poaz | Olivine orthopyroxenite | 2484.3 ± 5.6 | U-Pb/zrn | [10] |
Nude-Poaz | Norite | 2493 ± 7 | U-Pb/zrn | [11] |
Nude-Poaz | Gabbronorite | 2493 ± 5 | U-Pb/zrn | [5] |
Nude-Poaz (Nude-2) | Norite ore-bearing | 2503 ± 8 | U-Pb/zrn | [6] |
Nude-Poaz (Nude-2) | Orthopyroxenite | 2506 ± 3 | U-Pb/zrn | [6] |
Verkhniy Nude Block (Moroshkovoe Lake) | Metanorite | 2463.1 ± 2.7 | U-Pb/zrn | [6] |
Vurechuaivench | Metagabbronorite | 2497 ± 21 | U-Pb/zrn | [4] |
Vurechuaivench | Metagabbronorite | 2498.2 ± 6.7 | U-Pb/bdy | [4] |
Vurechuaivench | Metagabbronorite | 2504.2 ± 8.4 | U-Pb/zrn | [12] |
Vurechuaivench | Metaanorthosite | 2507.9 ± 6.6 | U-Pb/zrn | [12] |
Vurechuaivench | Metagabbronorite | 2504.3 ± 2.2 | U-Pb/zrn | [6] |
Vurechuaivench | Metaplagioclasite | 2494 ± 4 | U-Pb/zrn | [6] |
Gabbro-10 | Metadiorite | 2498 ± 6 | U-Pb/bdy | [13] |
Monchetundra intrusion | ||||
Loipishnyun | Orthopyroxenite | 2496.3 ± 2.7 | U-Pb/zrn | [14] |
Loipishnyun | Norite | 2500 ± 2 | U-Pb/zrn | [14] |
Loipishnyun | Trachytoid gabbronorite | 2501 ± 8 | U-Pb/zrn | [15] |
Hipiknurchor | Trachytoid gabbronorite | 2505 ± 6 | U-Pb/zrn | [15] |
Hipiknurchor | Trachytoid gabbronorite | 2504 ± 7.4 | U-Pb/zrn | [9] |
South Sopcha | Metagabbro | 2478 ± 20 | U-Pb/zrn | [6] |
South Sopcha | Metanorite ore-bearing | 2504 ± 1 | U-Pb/zrn | [6] |
South Sopcha (Upper zone) | Gabbro-anorthosite | 2456 ± 5 | U-Pb/bdy | [16] |
South Sopcha (Upper zone) | Gabbro-anorthosite | 2453 ± 4 | U-Pb/zrn | [16] |
South Sopcha (Upper zone) | Metagabbronorite | 2471 ± 9 | U-Pb/zrn | [17] |
South Sopcha (Upper zone) | Metagabbronorite | 2476 ± 17 | U-Pb/zrn | [17] |
No. | Location | Sample No. | Rock |
---|---|---|---|
1 | Pentlandite Gorge site | 9427-1700 | Harzburgite |
2 | Pentlandite Gorge site | Pen 4 * | Mesocratic norite |
3 | South Sopcha massif, Lower layered zone | AYu-1 | Melanocratic amphibolized norite |
4 | South Sopcha massif, Lower layered zone | 1826-21.2 | Harzburgite |
5 | South Sopcha massif, Lower layered zone | 1826-144.9 | Melanocratic norite |
6 | South Sopcha massif, Lower layered zone | Host-US-3 | Melanocratic norite |
7 | South Sopcha massif, Lower layered zone | Jus-8 | Harzburgite |
8 | South Sopcha massif, Lower layered zone | V-SS-1 * | Plagioclase-amphibole vein |
9 | South Sopcha site, Verkniy Nude block | 1-160611 | Chromite vein |
10 | South Sopcha site, Verkniy Nude block | 2-160611 | Chromite vein |
11 | South Sopcha site, Verkniy Nude block | 1a | Chromite vein |
12 | South Sopcha site, Verkniy Nude block | 2a | Chromite vein |
13 | South Sopcha site, Verkniy Nude block | 2b | Chromite vein |
14 | Sopcha massif (17 m upper from the bottom of Ore Layer 330). Satellite of Ore Layer 330. Ore Layer 330 site | S-2-2 | Orthopyroxenite |
15 | Sopcha massif (16 m upper from the bottom of Ore Layer 330). Satellite of Ore Layer 330. Ore Layer 330 site | S-3-1 | Olivine orthopyroxenite |
16 | Sopcha massif (10 m upper from the bottom of Ore Layer 330). Satellite of Ore Layer 330. Ore Layer 330 site | S-7b-2 | Olivine orthopyroxenite |
17 | Sopcha massif (~ 6 m upper from the bottom of Ore Layer 330). Satellite of Ore Layer 330. Ore Layer 330 site | S-Up * | Orthopyroxenite |
18 | Sopcha massif (~ 6 m upper from the bottom of Ore Layer 330). Satellite of Ore Layer 330. Ore Layer 330 site | Sop-Up | Orthopyroxenite |
19 | Sopcha massif (central part of Ore Layer 330). Ore Layer 330 site | Sop-330 | Olivine orthopyroxenite |
20 | Sopcha massif (1 m lower from the bottom of Ore Layer 330). Ore Layer 330 site | S-Low * | Orthopyroxenite |
21 | Sopcha massif (1 m lower from the bottom of Ore Layer 330). Ore Layer 330 site | Sop-Low | Orthopyroxenite |
22 | Dunite Body, North-East Sopcha site | M-8 ** | Dunite |
23 | Dunite Body, North-East Sopcha site | M-9 | Dunite |
24 | NKT massif, Mount Travyanaya, Mine No. 5 site | 1-1-21 | Plagiopyroxenite |
25 | NKT massif, Mount Travyanaya, Mine No. 5 site | 1-2-21 | Plagiopyroxenite |
26 | NKT massif, Mount Travyanaya, Mine No. 5 site | 1-3-21 | Plagiopyroxenite |
27 | NKT massif, Mount Travyanaya, Mine No. 5 site | 2-1-21 | Harzburgite |
28 | NKT massif, Mount Travyanaya, Mine No. 5 site | 2-2-21 | Harzburgite |
29 | NKT massif, Mount Travyanaya, Mine No. 5 site | 3-1-21 | Harzburgite |
30 | NKT massif, Mount Travyanaya, Mine No. 5 site | 3-2-21 | Harzburgite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pripachkin, P.; Rundkvist, T.; Mokrushin, A.; Bazai, A. Monchegorsk Mafic–Ultramafic Layered PGE-Bearing Complex (2.5 Ga, Kola Region, Russia): On the Problem of Relationships between Magmatic Phases Based on the Study of Cr-Spinels. Minerals 2024, 14, 856. https://doi.org/10.3390/min14090856
Pripachkin P, Rundkvist T, Mokrushin A, Bazai A. Monchegorsk Mafic–Ultramafic Layered PGE-Bearing Complex (2.5 Ga, Kola Region, Russia): On the Problem of Relationships between Magmatic Phases Based on the Study of Cr-Spinels. Minerals. 2024; 14(9):856. https://doi.org/10.3390/min14090856
Chicago/Turabian StylePripachkin, Pavel, Tatiana Rundkvist, Artem Mokrushin, and Aiya Bazai. 2024. "Monchegorsk Mafic–Ultramafic Layered PGE-Bearing Complex (2.5 Ga, Kola Region, Russia): On the Problem of Relationships between Magmatic Phases Based on the Study of Cr-Spinels" Minerals 14, no. 9: 856. https://doi.org/10.3390/min14090856
APA StylePripachkin, P., Rundkvist, T., Mokrushin, A., & Bazai, A. (2024). Monchegorsk Mafic–Ultramafic Layered PGE-Bearing Complex (2.5 Ga, Kola Region, Russia): On the Problem of Relationships between Magmatic Phases Based on the Study of Cr-Spinels. Minerals, 14(9), 856. https://doi.org/10.3390/min14090856