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Abstract: In this study, column flotation was used to recover a high-grade concentrate from low-grade
WO3 ore. Gas dispersion properties, such as superficial gas velocity, gas holdup, bubble size, bubble
surface area flux, carrying rate, and bias, were investigated in two phases (gas–liquid) and three
phases (gas–liquid–solid) in the column, and their effects on the grade and recovery of WO3. It was
confirmed that the gas velocity significantly affected these factors, with the gas holdup, bubble size,
bubble surface area flux, and carrying rate tending to increase as the gas velocity increased. The bias
increased with an increase in the wash water velocity. The results showed that the grade and recovery
of WO3 could be controlled within a specific range of operating conditions of bias (0.27–0.48 cm/s)
and carrying rate (10.53–18.83 g/min/cm2). Correlation plots of grade/recovery versus bias and
carrying rate revealed that the optimal separation achievable for a given WO3 concentrate in a
flotation column was a 72.16% grade with a 78.3% recovery, satisfying the metallurgical requirement
of more than 50% for WO3.
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1. Introduction

Tungsten is used in various aerospace, electronics, materials, and medical fields due
to its physicochemical properties, including compressibility, elastic modulus, and high
chemical stability [1,2]. Among the various tungsten minerals, scheelite (CaWO4) is consid-
ered the most important tungsten resource, along with wolframite (FeWO4) [3]. However,
high-grade wolframite resources have been exhausted due to the rapid development of
industry and continuous consumption of mineral resources. This has led to increased
attention on low-grade scheelite as a potential tungsten resource [4].

Scheelite coexists with calcite (CaCO3) and fluorite (CaF2), which can typically be
separated through flotation. However, it is difficult to separate scheelite and calcium-
containing minerals because they have similar solubility, hardness, and point of zero charge
(PZC) [5,6]. Previous studies on the effective separation of scheelite have examined the
effects of collectors such as oleic acid, alkyl sulfonates, fatty acids, depressants such as
sodium silicate and fluorosilicate [7], and particle size [8], etc. The ore particle size is an
important factor in flotation. Mineral particles with an average diameter of 150 µm can be
effectively recovered by flotation, whereas fine (−37 µm) or ultrafine (−10 µm) particles
are difficult to separate by flotation because of their small mass, large surface charge, and
high surface energy [9,10].

In contrast, column flotation has been effective in recovering fine particles, as it has
many advantages over conventional flotation. These advantages include less turbulence in
the pulp, a deep froth bed, and the use of wash water to drain back the entrained gangue.
Huang et al. (2010) compared the efficiency of scheelite recovery using conventional and
column flotation. The WO3 grade improved from 24.52% to 43.41%, with a recovery of
70.81% [11]. Column flotation has been suggested to be more effective than conventional
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flotation under the same operating conditions with respect to grade and recovery. Sobhy
and Tao (2013) confirmed that the recovery of coal below −150 µm increased by 5~50%
using column flotation [12]. Peng and Xiong (2015) reported that column flotation is more
effective for the flotation performance of fine (−37 µm) or ultra-fine particles (−10 µm) [13].
Therefore, column flotation, which is highly brittle and generates fine particles during
crushing, is required to recover scheelite effectively.

The performance of column flotation depends on gas dispersion properties such as
gas velocity, gas holdup, bubble size, bubble surface area flux, carrying rate, and bias, a
parameter directly related to the selectivity of the flotation. Therefore, it is important to
accurately predict the effects of the operating parameters that control the flow behavior in
column flotation. The gas holdup is defined as the fraction occupied by gas bubbles in the
total volume of the mixture (gas, liquid, and solids) in a column. Finch and Dobby (1990)
reported that the gas holdup is affected by the bubble size distribution, wash water and gas
velocities, characteristics of the particles, and pulp density [14]. The bubble surface area
flux is the total surface area of the bubbles passing through a cross-sectional of the cell per
unit of time. Finch et al. (2000) found that the relationship between bubble surface area flux
and gas holdup is directly proportional and linear cross-sectional areas of the column and
cell, as well as under various experimental conditions [15]. Bhunia et al. (2015) noticed that
the bubble surface area flux increased as gas velocity and frother concentration increased
but decreased with increasing wash water velocity [16].

The carrying rate refers to the number of bubbles transferred to the concentrate per
unit cross-sectional area of the column per unit of time during the column flotation. The
carrying rate is related to the solid particles, gas velocity, and bubble surface area flux,
which are all factors affecting concentrate recovery. Bias is the factor affecting and is defined
as the net water flow difference between the tailing and feed flows [17]. Generally, a positive
bias is applied to fine particle flotation to prevent gangue mineral entrainment. However, a
negative bias was observed for the column flotation of coarse particles. The bias affects the
grade, concentration recovery, and residence time of ascending bubbles [18]. Few studies
have applied column flotation and gas dispersion characteristics for the recovery of fine
scheelite. Therefore, the gas dispersion properties, such as superficial gas velocity, gas
holdup, bubble size, bubble surface area flux, carrying rate, and bias, were investigated in
two phases (gas–liquid) and three phases (gas–liquid–solid) in the column, and their effects
on the grade and recovery of WO3 were examined.

2. Materials and Methods
2.1. Materials

Raw ore samples used in this study were obtained from the Sangdong mine located in
Korea. Table 1 lists the XRF results for the scheelite ore. The WO3 content of the raw ore was
0.37%; SiO2, Al2O3, and Fe2O3 contents were confirmed to be 53.44%, 2.35%, and 13.97%,
respectively; and CaO content was found to be 9.42%. The gangue minerals in the raw ore
were mostly composed of silicate and iron oxide minerals. In addition, the SO3 content
expected from the presence of sulfide mineral was 0.91%. Figure 1 shows the results of the
XRD analysis to confirm the source minerals of each element identified by the chemical
composition. The main minerals detected were Ca and Si gangues, such as quartz (SiO2),
calcite (CaCO3), and fluorite (CaF2). However, tungsten minerals below the XRD detection
limit were not identified. Figure 2 shows the source minerals of the tungsten conducted
using SEM-EDS. The source mineral of the tungsten was confirmed to be scheelite, and most
of the identified tungsten particles were found to exist as relatively small particles compared
to gangue minerals. The equipment used to determine the mineralogical characteristics
of the sample was an X-ray fluorescence (XRF; S4 PIONEER, Bruker AXS, Karlsruhe,
Germany), X-ray diffraction spectrometer (XRD; X’Pert Pro MRD, PANalytical, Almelo,
The Netherlands) and scanning electron microscopy (SEM; FE-SEM, S4800, Hitachi, Tokyo,
Japan)–energy dispersive spectroscopy (EDS; ISIS310, Jeol, Yamagata, Japan).
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Table 1. Chemical composition of raw ore.

Element SiO2 Fe2O3 Al2O3 CaO MgO K2O SO3 TiO2 WO3 Etc.

Content (%) 53.44 13.97 12.35 9.42 3.42 2.99 0.91 0.88 0.37 2.25
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Figure 2. SEM-EDS of raw WO3 ore.

2.2. Equipment and Procedures

Figure 3a illustrates the flotation process used for scheelite recovery in this study. The
scheelite ore sample was crushed and pulverized using a jaw crusher, cone crusher, and
rod mill to obtain a sample with an average particle size (D50) of 58.9 µm. Sulfide flotation
was performed to remove sulfide minerals that could decrease grade and recovery during
scheelite recovery. The sink product from sulfide flotation was then subjected to rougher
flotation to recover scheelite. Finally, the first cleaner and second cleaner flotation were
performed on a rougher flotation concentrate using a flotation column.

First, 20% pulp density was added to the flotation cell of Denver–sub A by sulfide
flotation, 150 g/t of potassium amyl xanthate (KAX) as a collector, and 50 g/t of methyl
isobutyl carbinol (MIBC) as a frother were added at an impeller speed of 1200 rpm, and
the suspension was allowed to react for 3 min. Subsequently, 4 L/min of air was injected
to separate the sulfide minerals. Rougher scheelite flotation was achieved using a sink
product for sulfide flotation. In this process, the impeller speed was set to 1200 rpm. Sodium
carbonate (Na2CO3; 2000 g/t) as a pH modifier and sodium silicate (Na2SiO3; 3000 g/t) as
a depressant were sequentially added and allowed to react for 3 min. After sequentially
adding 300 g/t of oleic acid as a collector and 70 g/t of Lancropol K-8300 as a frother,
respectively, the reaction was performed for 3 min, and then air was injected at 4 L/min to
recover the scheelite concentrate. The reagents selected for sulfide and scheelite flotation
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are currently employed in the flotation plant. Lancropol K-8300, fatty acid sulfonate used
as a frother can reduce the amount of oleic acid and has the advantage of bubble elasticity
and retention.
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Figure 3. (a) Flowsheet of the batch type scheelite flotation and (b) schematic of flotation column
apparatus.

Figure 3b shows a schematic of the column flotation equipment used in this study.
The flotation column had a height of 180 cm, a diameter of 4 cm, and a cross-sectional area
of 12.6 cm2. The feeder was positioned at one-third (1/3) of the column’s height from the
top. Air was injected through a porous sparger with a pore size of 0.5 µm at the bottom
of the column, and the flow rate was controlled using an airflow meter. Wash water was
introduced at the top of the column, with its flow rate was controlled using a peristaltic
pump. Two manometers for measuring gas hold-up within the column were installed at
intervals of 68 cm. The bubbles in the column were measured using a high-speed camera
(Mach-F340, Comart System, Seoul, Republic of Korea), and the bubble size was measured
using the ZEISS image analysis program to obtain the average Sauter diameter based on
measurements of over 100 bubbles.

The reagent conditions and column operating conditions for the first cleaner flota-
tion were performed as follows: (1) solid concentration 2% (2) collector oleic acid 150 g/t
(3) depressant sodium silicate 50 g/ton, (4) frother Lankropol-k8300 75 g/t, (5) gas veloc-
ity 0.37–0.61 cm/s, (6) wash water velocity 0.13–0.34 cm/s, (7) feed velocity 0.17 cm/s,
(8) frother velocity 0.25 cm/s. The second flotation was performed on the first flotation
concentrate by fixing the frother (Lankropol-k8300, 75 g/t) without adding additional
reagents. The experiments were performed in duplicate, and the results were expressed as
mean values.

2.3. Gas Dispersion Properties and Bias

The main operating conditions for the column flotation were determined based on the
gas rate, wash water rate, and bubble size. The effects on scheelite grade and recovery were
investigated. The gas holdup was measured using a manometer. Bubble size was measured
using a high-speed camera and confirmed using the ZEISS image analysis program. To
estimate the gas dispersion properties and bias of the column for scheelite recovery, the
following factors were measured and calculated: (1) gas velocity, (2) gas hold-up, (3) bubble
surface area flux, (4) carrying rate, and (5) bias.

The gas velocity (Jg) is the velocity at which the gas flows from the bottom of the
column to the top. This speed is an important factor that affects several major factors
in column flotation, such as bubble-particle collisions, bubble size, and column fluid
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dynamics. Additionally, gas velocity plays an important role in determining the efficiency
and performance of column flotation. The gas velocity in the column was calculated using
the following formula [14]:

Jg =
Qg

Ac
(1)

where Qg is the volumetric flow rate of the gas entering the column, and Ac is the cross-
sectional area of the column.

Gas holdup (εg) is defined as the ratio of the column volume occupied by gas dur-
ing column flotation. Gas hold-up affects particle-bubble attachment, the residence time
and bubble stability in column flotation. It also provides an overall indication of the
hydrodynamic conditions, as it depends on various factors such as frother type and con-
centration, sparger type, cell dimensions, operating pressure, and solid phase properties
and concentration. The gas holdup was calculated using the following formula [14]:

εg =
∆h
∆L

(2)

where ∆h is the distance between two manometers, and ∆L is the difference in water level
two manometers. In this study, the gas hold-up was installed by fixing the distance between
the two manometers on the right side of the column to 68 cm and then measuring the water
difference between the manometers according to the gas velocity.

The bubble surface area flux (Sb) is the total surface area of the bubbles passing through
the cross-section of the cell per unit of time. It is commonly used to relate flotation rates
with hydrodynamic variables. Under the conditions in which first-order flotation kinetics
were applied, the flotation rate constant was claimed to be directly proportional to Sb. The
bubble surface area flux was calculated as follows [14]:

Sb =
6Jg

db
(3)

where Jg is gas velocity, and db is the Sauter mean bubble diameter.
The carrying rate (Cr) refers to the amount of solids (usually expressed as mass or

volume) transferred to the concentrate by bubbles per unit cross-sectional area of the column
per unit of time during column flotation. It is an important parameter for evaluating the
capacity and performance of a column. The carrying rate can be calculated as follows [14]:

Cr =
π

2
dpρp Jg

db
(4)

where dp is the particle size, ρp is the particle density, Jg is the gas velocity, and db is the
Sauter mean bubble diameter.

The bias (JB) refers to the volumetric flow rate difference between the wash water
added at the top of the column and the tailings from the bottom. Bias can be positive or
negative depending on whether the wash water flow rate is higher or lower than the tailing
flow rate, respectively. Positive bias can improve the grade of concentrate by reducing the
entrainment of the gangue minerals into froth. Negative bias can increase recovery but
often lead to lower concentrate grades due to increased entrainment. Bias was calculated
using the following formula [14]:

JB = JCS + JT − JF (5)

where Jcs is the volumetric flow rate of solid reporting to the concentrate per unit column
cross-sectional area, JT is the superficial flow rate of tailing, and JF is the superficial flow
rate of feed. The bias factor is the parameter that is directly related to the selectivity of the
flotation performance.
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3. Results
3.1. Gas Dispersion Properties and Bias
3.1.1. Gas Holdup

Figure 4 shows the variation in gas holdup in two phases and three phases as a function
of the gas velocity (0.37–0.61 cm/s). The data show that the gas holdup increased as the gas
velocity increased. The gas holdup in two phases and three phases were confirmed to be
7.50%–18.97% and 6.62%–15.29%, respectively, with three phases tending to be lower than
two phases. Banisi et al. (1995) reported that solids onto bubbles in three phases decreased
the gas holdup in the collection zone of the column [19]. Shukla et al. (2010) and Qiu et al.
(1993) noted that hydrophobic particles influenced the gas holdup in the column, namely
the presence of coal increased gas holdup with an increase in the frother concentration.
However, the opposite effect was observed with an addition in the collector [20,21]. The
decreasing gas holdup in three phases significantly may be due to the enhanced coalescence
of small bubbles and the formation of larger bubbles by solid particles [22,23]. Thus, the
gas holdup was directly proportional to the gas velocity, and the difference between the
two phases and three phases is believed to be due to the presence of solid particles.
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3.1.2. Bubble Size

Figure 5 shows the Sauter mean diameter (db) as a function of the gas velocity, showing
that the diameter increases as gas velocity increases, which is expected. The increase in
bubble size with increasing gas velocity may be due to the higher collision frequency, in-
creased kinetic energy, and enhanced bubble coalescence owing to the effects of turbulence
and shear forces [24]. Therefore, gas velocity is very important in the flotation process
to balance the bubble size and ensure optimal separation efficiency. As the gas velocity
increased, the bubble sizes of the two phases and three phases increased from 0.31 mm to
0.36 mm and from 0.32 mm to 0.41 mm, respectively. Additionally, the bubble size was
larger in three phases than in two phases. It may be because the viscosity of the pulp
increased as solid particles were added, resulting in bubble coalescence between the large
and small bubbles [25,26]. Hence, bubble size as a function of gas velocity is considered an
important factor in controlling the stability and efficiency of column flotation.
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3.1.3. Bubble Surface Area Flux

The bubble surface area flux, which combines the effects of bubble size and gas velocity,
is a key variable in flotation. It is related to the collision frequency between bubbles and
particles and, consequently, to flotation performance [27]. Figure 6 shows the bubble surface
area flux as a function of gas velocity in two phases and three phases. As the gas velocity
increases, the bubble surface area flux increases linearly. The maximum bubble surface
area flux was found to be 101.68 cm2/s/cm2 and 88.36 cm2/s/cm2 in two phases and three
phases, respectively. In addition, when the gas velocity was constant, the bubble surface
area flux decreased more in three phases than in two phases. It seems that the larger bubble
size with increasing bubble coalescence and the slurry viscosity by solid particles led to an
increase in the bubble surface area flux in three phases. Increasing gas velocity can lead
to an increase in the number of bubbles and a decrease in bubble size due to a stronger
bubble break-up [28,29]. Consequently, the bubble surface area flux tends to increase with
increasing gas velocity.
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3.1.4. Carrying Rate

Figure 7 shows the carrying rate as a function of the bubble surface area flux. The
carrying rate affects the recovery of particles in the gas dispersion properties of column
flotation [30]. As the bubble surface area flux increases, the carrying rate increases linearly
from 10.53 g/min/cm2 to 18.83 g/min/cm2. The carrying rate is an important factor in
improving the recovery of valuable minerals because a larger bubble surface area adheres
to more particles and allows for better flotation dynamics. However, an excessively high
carrying rate can reduce the selectivity of valuable minerals, potentially lowering the
concentrate grade [31,32]. Davis et al. (1994) reported that the carrying rate has a strong
positive correlation with the bubble surface area flux and affects the operating variables
of flotation column efficiency [33]. The correlation between the bubble surface area flux
and carrying rate can increase the transport capacity of valuable minerals and concentrate
production efficiency in column flotation [34]. Therefore, controlling the optimal carrying
rate for concentrate recovery efficiency and bubble stability is considered an important
factor in column operation.
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3.1.5. Bias Rate

Bias is a factor that affects the net water flow difference between the tailings and feed
flow [14]. It is directly related to the selectivity of flotation due to froth zone formation [35].
A positive bias factor is generally applied to fine-particle flotation to prevent gangue
mineral entrainment. However, a negative bias has been suggested for the column flotation
of coarse particles [36]. Figure 8 shows the relationship between bias versus wash water
velocity (0.13 cm/s–0.34 cm/s) in two phases and three phases. Overall, the bias was
positive and tended to increase with the wash water velocity. As shown in Figure 8, the bias
of the two phases increased from 0.17 cm/s to 0.28 cm/s, while in the three-phase systems,
it increased from 0.27 cm/s to 0.42 cm/s. There may be complexity in the interactions
between solid particles and gas, bubbles, and liquid in the three phases. The reason
for the increase in bias with the wash water in three phases is believed to be that the
suspended gangue particles were removed owing to the increase in the amount of wash
water. However, excessive wash water can cause bubble instability, leading to reduced
grade and recovery [37]. Therefore, determining the appropriate level of bias is crucial for
optimizing both grade and recovery in column flotation.
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3.2. Performance of Column Flotation
3.2.1. Effect of Bias and Carrying Rate on Grade and Recovery

Figures 9 and 10 show the relationship between grade and recovery as a function of
bias and carrying rate. As the bias increased, the WO3 grade increased from 33.94% to
46.27%; conversely, the recovery decreased from 93.99% to 81.15%. The increase in grade
with increasing bias is likely due to a reduction in the entrainment of gangue minerals
through the washing action. Also, the decrease in recovery with increasing bias may be
attributed to the removal of relatively coarse, valuable mineral particles from the froth zone
during the washing process [36]. In addition to its effect on washing, bias also affects other
aspects of column operation. For example, increasing the bias can extend the residence
time of the bubbles in the collection zone, thereby adjusting the recovery [37]. Uçar et al.
(2015) reported that although bias is advantageous for obtaining high-grade concentrates,
an excessively high bias can actually decrease the concentrate grade owing to the dropback
of relatively coarse particles [38]. The carrying rate increased the recovery of WO3 but
significantly reduced the grade. As the carrying rate increased, the WO3 recovery increased
from 81.15% to 94.04%, but the grade decreased from 46.27% to 33.94%. The optimal
WO3 grade and recovery in this stage were 46.27% and 81.15%, respectively. The carrying
rate primarily affects the flotation recovery. The optimal carrying rate depends on factors
such as particle size and mineral hydrophobicity, which are influenced by gas velocity,
gas holdup, bubble size, and bubble surface area flux. Also, it can lead to reduced water
consumption. Therefore, it demonstrates that controlling the carrying rate and bias within
the column has a substantial impact on the recovery and grade of WO3.
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3.2.2. Grade and Recovery of WO3

Figure 11 shows the grade and recovery of the WO3 based on the flotation process. A
conventional flotation process was used for the sink product from which sulfide minerals
were removed. The rougher flotation stage achieved a WO3 grade of 10.63% and a recovery
of 92.1%. The recovered rougher concentrate was then subjected to the first and second
cleaner flotations using column flotation. The first cleaner stage achieved a WO3 grade of
46.27% and a recovery of 81.15%. In the second cleaner, the grade and recovery of WO3 were
72.16% and 78.4%, respectively. A high-grade WO3 concentrate could be obtained from
low-grade WO3 ore through column flotation, which met the metallurgical requirement of
more than 50% for WO3.
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4. Conclusions

In this study, gas dispersion properties such as the gas holdup, bubble size, bubble
surface area flux, carrying rate, and bias for two phases (gas–liquid) and three phases
(gas–liquid–solid) systems in a column were investigated. As the gas velocity increased,
the gas dispersion properties also improved. It was confirmed that gas velocity and these
factors are interrelated. The bias increased with the wash water velocity. In relation to
the recovery and grade of WO3 on the carrying rate and bias, the recovery and grade
increased as the carrying rate and bias increased. Therefore, controlling the carrying rate
and bias in the column considerably affected the recovery and grade of WO3. Cleaning
tests were conducted under the following conditions: pulp density 2%, collector 150 g/t,
frother 75 g/t, gas velocity 0.49 cm/s, and wash water 0.34 cm/s. The results of these tests
showed that the first cleaner flotation achieved a WO3 grade of 46.27% and a recovery of
81.15%. The second cleaner flotation achieved a WO3 grade of 72.16% and recovery of
78.4%, satisfying the metallurgical requirement of more than 50% for WO3.
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