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Abstract: Froth flotation, a widely used mineral beneficiation technique, generates substantial
volumes of data, offering the opportunity to extract valuable insights from these data for production
line analysis. The quality of flotation data is critical to designing accurate prediction models and
process optimisation. Unfortunately, industrial flotation data are often compromised by quality issues
such as outliers that can produce misleading or erroneous analytical results. A general approach is
to preprocess the data by replacing or imputing outliers with data values that have no connection
with the real state of the process. However, this does not resolve the effect of outliers, especially
those that deviate from normal trends. Outliers often occur across multiple variables, and their
values may occur in normal observation ranges, making their detection challenging. An unresolved
challenge in outlier detection is determining how far an observation must be to be considered an
outlier. Existing methods rely on domain experts’ knowledge, which is difficult to apply when experts
encounter large volumes of data with complex relationships. In this paper, we propose an approach to
conduct outlier analysis on a flotation dataset and examine the efficacy of multiple machine learning
(ML) algorithms—including k-Nearest Neighbour (kNN), Local Outlier Factor (LOF), and Isolation
Forest (ISF)—in relation to the statistical 2σ rule for identifying outliers. We introduce the concept
of “quasi-outliers” determined by the 2σ threshold as a benchmark for assessing the ML algorithms’
performance. The study also analyses the mutual coverage between quasi-outliers and outliers
from the ML algorithms to identify the most effective outlier detection algorithm. We found that
the outliers by kNN cover outliers of other methods. We use the experimental results to show that
outliers affect model prediction accuracy, and excluding outliers from training data can reduce the
average prediction errors.

Keywords: froth flotation; outlier detection; machine learning; prediction error; data quality

1. Introduction

Froth flotation is a physicochemical separation of economically valuable minerals of
interest from their gangue [1,2]. This separation process occurs in organised cells in which
the feed material (i.e., ore) is treated until the valuable minerals are sufficiently recovered.
In most industrial operations, sensors are used to measure key parameters of the flotation
process, leading to the production of large volumes of data for analysis. Recent advances
in machine learning (ML) application offer opportunities to effectively use flotation data to
design predictive and process control models for process optimisation. However, sensed
flotation data are prone to quality issues, mainly outliers that compromise the reliability of
the data and the accuracy of models derived from them. To leverage valuable insights from
flotation data analytics, it is critical to have high-quality data to enable ML models to learn
meaningful relationships to effectively monitor control systems, improve performance, and
optimise processes.
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Enhancing data quality is necessary, as outliers can interfere with experimental anal-
ysis leading to biased predictions, misleading insights, and reduced generalisation [3].
Outliers may not always be bad observations in the dataset. It is worth mentioning that out-
liers can have exceptional information, in which case further investigation may be needed
to ascertain their inclusion or removal from the dataset. As such, researchers scrutinise out-
liers to understand the factors that contributed to their generation or unique circumstances
that might have influenced their existence. This has facilitated the application of outlier
detection across several domains, including fraud detection [4], network intrusion [5],
disease diagnosis [6], and fault detection [7]. Despite its acknowledged significance in
diverse fields, outlier detection has not received adequate attention in mineral processing
data analytics, representing a relatively under-explored topic. This limited focus can be
attributed to (1) outliers often perceived as errors to be discarded rather than interesting
behaviours worth investigating, (2) the inherent complexity of data, which makes it chal-
lenging to accurately identify outliers, and (3) the lack of domain-specific methods for the
identification and interpretation of outliers.

Outliers are observations that deviate from a body of data [8,9]. They can generally be
classified into three main categories, namely point outliers, collective outliers, and contex-
tual outliers. Point outliers refer to observations that deviate extremely from the overall
distribution of a dataset [10]. Collective outliers describe a group of observations that
deviate from the distribution of the dataset [11]. Contextual outliers refer to observations
that are extremely different in a specific context [9,12]. For example, a summer tempera-
ture of 30 ◦C is normal but likely to be an outlier when recorded during winter. Within
the mineral processing industry, factors such as faulty sensors, equipment malfunction,
improper handling of missing data values, and unexpected fluctuations can produce any of
these types of outliers in the production data [13,14]. As such, outliers should be carefully
investigated using appropriate methods to effectively monitor process equipment and the
data they generate. More importantly, outliers should be properly managed before making
decisions based on analysis of the production data.

The flotation data represent dynamic relationships of key variables including feed
variables (feed mineralogy, particle size, throughput, liberation), hydrodynamic variables
(bubble size, air flow rate, froth depth, impeller speed), and chemical variables (reagent
dosages, pulp chemical conditions). The interdependence of these variables makes it ardu-
ous to justify an observation as an outlier within the intricate web of relationships it shares
with other variables. For instance, a decrease in Eh values in a flotation pulp measurement
may not be an outlier observation. Instead, it may be attributable to an elevated iron
sulphide content in the feed [15]. In addition, during comminution, changes that occur
in mineralogy and grinding media can impact significant changes in the pulp chemistry
of flotation feed [16,17]. Again, these changes may not be outliers. Furthermore, sensors
used in harsh mineral processing environments may experience a breakdowns or failures,
yet they may continue to record data from the operation, leading to compromised and
potentially inaccurate readings [18]. Such variable associations and equipment conditions
complicate the distinction between instabilities and outliers in the flotation data. To enhance
the quality of flotation data, methods for outlier detection should be critically explored
while considering the intricate relationships among multiple variables.

Studies on outlier detection spans several decades and can be broadly categorised
as (1) statistical-based, (2) distance-based, (3) density-based, and (4) prediction-based
techniques [19]. Statistical methods such as Grubb’s test [20], Doerffel’s test [21], Dixon’s
test [3], Peirce’s test [22] and Chauvenet’s test [23] are well known and efficient in detecting
point outliers, especially those that occur in univariate datasets. Other works [24–26] have
reported robust statistical methods of assessing outliers.

In recent years, a boxplot [27] technique for outlier detection has gained popularity in
engineering domains. The boxplot utilises a concept of interquartile range (IQR) to visualise
outliers. The IQR is computed as IQR = Q3 − Q1, where Q1 is the first quartile and Q3 is
the third quartile such that observations beyond the range Q1− 1.5(IQR) to Q3+ 1.5(IQR)
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are considered potential outliers [28]. Other studies have used the minimum covariance
determinant (MCD) and the minimum volume ellipsoid (MVE) to analyse multivariate
data for outliers [12]. However, both MCD and MVE have some limitations as they become
ineffective if the data dimension increases. Although statistically-based methods are easy
to implement, they are mostly sensitive to outliers, as their computation relies on the
properties of the mean, median, and standard deviation of the data. In addition, their
concept follows an underlying assumption of normally distributed data, which is often
not the case in real-world data. Furthermore, they are ineffective in detecting multivariate
outliers, especially those occurring in high-dimension datasets.

Alternatively, distance-based methods [29,30] offer solutions to mitigate the limitations
of statistical methods. Distance-based methods use distance metrics such as the Euclidean
distance to calculate the distance between observations and identify outliers based on
these distance relationships. Knorr and Ng [29] proposed a classical distance-based outlier
detection technique. They defined a unified notion of outliers as follows. An object O in
a dataset T is a UO(p, D)-outlier if at least fraction p of the objects in T are ≥distance D
from O [29]. Ramaswamy et al. [31] improved this concept by computing the distance
from the k-Nearest Neighbour (kNN) of observations and considered potential outliers as
observations that fell beyond a specified neighbourhood. Distance-based methods have
several drawbacks, including (1) the assumption that data are uniformly distributed, which
may not hold for heterogeneous data with varying distributions, (2) algorithm complexities
which arise with high-dimension datasets, and (3) an ineffective detection of outliers
existing within dense cluster regions.

To overcome the shortfalls of distance-based methods, researchers have explored
density-based outlier detection methods [32,33]. The most widely used density-based
method is the Local Outlier Factor (LOF) [34]. It adopts the concept of comparing the local
density of an observation to the density of its neighbours. An observation is considered an
outlier if it lies in a lower-density region compared to the local density of its neighbours.
A score is computed to describe the degree of ‘outlierness’. This score is used to identify
the exceptions in the dataset whose divergence is not easily detected as well as those that
exist in high-dimensional subspaces [35,36]. Recently, several variants of the LOF have
been explored, including Local Outlier Probability (LoOP) [37], Local Correlation Integral
(LOCI) [38], Local Sparsity Coefficient (LSC) [39], and Local Distance-based Outlier Factor
(LDOF) [40]. Although density-based methods can capture local outliers, they tend to be
ineffective when low-density patterns occur in a given dataset [41,42].

The task of detecting and confirming outliers in the flotation data is not straightforward
given the complexities associated with multiple variables as well as the diverse principles
underlying various detection methods. Individual methods are effective only if their
principles of detection apply. This means different methods would detect different outliers.
As such, it is unclear what method to use and what threshold to set.

In this research, we propose an approach to conduct outlier detection in flotation
data, addressing two main challenges in complex industrial processes: (1) The first is
the presence of atypical data points that fall within the range of normal observations but
represent anomalous process conditions. These points, while numerically similar to normal
data, may indicate subtle deviations in the flotation process that are important to identify.
and (2) The second is the multidimensional nature of outliers in flotation data, where
observations may appear normal when viewed from one perspective (or in one dimension)
but exhibit anomalous behaviour when considered in the context of other variables. Our
approach consists of four parts. First, a standard deviation factor of the outlier scores is
used to determine which observations in the data are outliers. Second, we use a naive
algorithm called trend differential to identify quasi-outliers, including observations that
visually form sharp peaks on the input features. Thirdly, we use different machine learning
(ML) algorithms to identify outliers in the dataset from different perspectives. Fourthly, we
analyse the coverage of quasi-outliers by outliers from the ML algorithms to confirm valid
outliers and determine the effectiveness of the ML algorithms. The ML algorithms used in
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our work include k-Nearest Neighbour (kNN), Local Outlier Factor (LOF), and Isolation
Forest (ISF).

Our approach addresses two key questions: (1) should multiple methods be used in
detecting outliers and (2) how should the methods and their results be compared?

The contributions of this study are as follows:

1. The standard deviation factor of two (2) is verified to be a suitable value to define the
threshold for outlier detection.

2. A method called trend differential is proposed to systematically identify visual outliers
called quasi-outliers. These outliers are important as a starting point for our outlier
detection work.

3. An analysis of the coverage of outliers from different methods to examine the con-
sistency of these methods. Our results show that the outliers by the kNN algorithm
cover most of the outliers by other methods, making it the most effective.

4. An analysis of the effect of outliers on model building. The result of the analysis shows
that outliers can degrade the predictive power of predictive models by increasing
prediction errors.

The remainder of this paper is organised as follows. We present in Section 2 the
collection and preprocessing of the sensed flotation data used in this study. In Section 3,
we present the outlier detection methods used in this study. In Section 4, we present the
results and findings of this work. Finally, we draw our conclusions in Section 5.

2. Dataset and Preprocessing
2.1. Collection of Sensed Flotation Data

The dataset used in this study was obtained from a copper rougher flotation plant
in south Australia. Figure 1 illustrates a schematic flow chart of the flotation operation.
A primary rougher flotation stage receives feed input from a conditioning cell, scavenger
concentrate, and cleaner tailings. The rougher concentrate undergoes further flotation in
a cleaner stage to enhance concentrate grade, while the rougher tailings are directed to a
scavenger stage. The final concentrate and tailings are derived from the cleaner concentrate
and scavenger tailings, respectively [43].

Cell 1
Feed

Cell 2 Cell 3 Cell 4 Cell 5

Cleaners

Scavengers

Roughers

Conditioning

Grd
Thp
PSD

XT1
FT1
FD1

XT4
FD4
FT4

Final Conc.

Final Tails

Sensor data 
collection points

Figure 1. Schematic flow chart of the copper flotation operation indicating sensed data collected
observations on rougher flotation stage. Grd—feed grade, Thp—throughput, PSD—% particle size
passing 75 µm, XT1—xanthate dosage in cell 1, FT1—frother dosage in cell 1, FD1—froth depth in
cell 1, XT4—xanthate dosage in cell 4, FT4—frother dosage in cell 4, FD4 - froth depth in cell 4.

The rougher flotation is a pivotal stage in the operation that reaches approximately
50%–60% recovery. An effective analysis of outlier detection of data from this stage can sig-
nificantly help to detect operational errors early, improve process control, reduce chemical
consumption, and reduce the loss of valuable minerals to tailings [44,45]. Given that the
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output of the rougher flotation stage influences key decision making and overall process
performance, we analysed data from this stage in this study.

Table 1 shows the copper rougher flotation dataset consisting of ten input variables
recorded every minute and a corresponding outcome variable. The outcome variable
(i.e., rougher recovery) which indicates the performance of the operation was obtained
from an Online Stream Analyser (OSA) results and computed using the expression in
Equation (1). The dataset consists of 20,000 observations. Figure 2 visualises variations
in the copper rougher flotation input variables. The x-axis shows the time index of each
observation, and the y-axis represents the normalised data values from the original values
scaled to a range between [0, 1] using Equation (2).

Recovery, Rec =

(
c
f

)(
f − t
c − t

)
×100% (1)

where
c = rougher concentrate grade;
f = rougher feed grade;
t = rougher tailings grade.

The dataset consists of 20,000 observations. Figure 2 visualises variations in the copper
rougher flotation input variables. The x-axis shows the time index of each observation and
the y-axis represents the normalised data values from the original values scaled to a range
between [0, 1] using Equation (2).

xnorm
i =

xi − xmin

xmax − xmin
(2)

where xnorm
i is the normalised value of xi, xi is the original value, xmin is the minimum

value in the dataset, and xmax is the maximum value in the dataset.

Table 1. Nomenclature of flotation variables and their respective notations.

Variables Location Units Notations

Input Feed grade % Grd
Throughput t/h Thp
% Particle size
passing 75 µm % PSD

Xanthate dosage Cell 1 mL/min XT1
Xanthate dosage Cell 4 mL/min XT4
Frother dosage Cell 1 mL/min FD1
Frother dosage Cell 4 mL/min FD4
Froth depth Cell 1 mm FD1
Froth depth Cell 2/3 * mm FD2
Froth depth Cell 4/5

△ mm FD4
Outcome Recovery % Rec

* cell levels of cell 2 and 4 represent cell 3 and 5, respectively. △ Froth depth of cell 2 and 4 represents cell 3 and 5,
respectively.

2.2. Preprocessing of Sensed Flotation Data

Data from industrial operations often have quality issues stemming from improper
instrument calibrations or processes operating under quasi-stable conditions [12]. A metic-
ulous cleaning process is essential to acquire accurate operational data values for analysis.
Before conducting the outlier detection experiment, we cleaned the sensed flotation data
by removing records with missing and wrong values. For example, in a typical flotation
operation, a zero record for variables such as feed grade, throughput, and particle size
distribution implies that there is no feed material (ore) in the plant. This scenario is highly
implausible, since operating an empty plant serves no purpose. Therefore, records with
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zero data values that are indicative of operational instabilities such as shutdown and
maintenance periods were excluded from the dataset.

Figure 2. Visualisation of variations in the copper rougher flotation input variables. Grd—feed grade,
Thp—throughput, PSD—% particle size passing 75 µm, XT1—xanthate dosage in cell 1, FT1—frother
dosage in cell 1, FD1—froth depth in cell 1, FD2—froth depth in cell 2, XT4—xanthate dosage in cell
4, FT4—frother dosage in cell 4, FD4—froth depth in cell 4.

We illustrate this phenomenon using one of the input variables from the sensed
flotation dataset: throughput. Throughput is a measure of the quantity of ore processed
within a given time. When the throughput is zero, it indicates several possibilities: either
there is no feed in the plant or the plant is not operational. However, the effect extends
beyond the absence of feed, such that when the throughput is turned back on, there is a
period during which the plant is settling into operation. For example, when the throughput
drops to zero and remains off for 60 min, all observations within this period for all input
variables should be excluded from the dataset during experimental analysis. Further, when
the feed is turned back on, there is a period (usually three residence times, about 90 min)
where circulating loads, reagent additions, air and level controls are slowly returning to
equilibrium [2]. Observations within this period should be excluded from the experimental
analysis, as they do not accurately reflect the flotation behaviour. Figure 3 shows the
visualisation of the throughput variable in the copper rougher flotation data analysed in
this study. Instances of zero throughput data values, indicated by orange-coloured dots,
can be observed continuously over a long period of time in the dataset. Simply removing
these observations would disrupt the continuity of the time sequence. Therefore, we tag
these observations and exclude them from further analysis in this study.
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Figure 3. Visualisation of throughput of the copper rougher flotation data highlighting observations
with zero data values.

Table 2 shows the descriptive statistics of the dataset excluding the tagged observations.

Table 2. Basic descriptive statistics.

Variable Mean Std Min Max

Grd 0.501713 0.103416 0.214286 0.738095
Thp 0.762795 0.10295 0.400435 0.974973
PSD 0.017179 0.009804 0.001816 0.050147
XT1 0.270034 0.083872 0.000000 1.000000
XT4 0.246805 0.111945 0.000000 0.457447
FT1 0.036745 0.01972 0.000000 1.000000
FT4 0.566525 0.207371 0.000000 1.000000
FD1 0.425439 0.186854 0.075309 0.998814
FD2 0.721567 0.123625 0.298425 0.996372
FD4 0.73869 0.115472 0.345048 1.000000
Rec 0.828509 0.062056 0.695473 0.944154

Std = standard deviation, Min = minimum, Max = maximum. Grd—feed grade, Thp—throughput, PSD—particle
size distribution, XT1—xanthate dosage in cell 1, FT1—frother dosage in cell 1, FD1—froth depth in cell 1,
XT4—xanthate dosage in cell 4, FT4—frother dosage in cell 4, FD4—froth depth in cell 4.

3. Methodology

In this section, we present the outlier detection methods used in this study in
Sections 3.1–3.3. We formerly describe our method of identifying quasi-outliers and vali-
dating them in Sections 3.4 and 3.5. The selected machine learning (ML) methods include
k-Nearest Neighbour (kNN), Local Outlier Factor (LOF), and Isolation Forest (ISF). The
kNN method leverages the distances between an observation and its neighbours to detect
outliers. LOF assesses outliers by comparing the local densities of observations with that
of their neighbours. ISF identifies outliers by analysing the number of steps required to
isolate observations from others using an ensemble of decision trees.

3.1. kNN

kNN [46] is a widely used technique for outlier detection in data mining. It determines
outliers based on the distance of an observation to its nearest neighbours (k-distance).
Distances are computed using metrics such as Euclidean, Manhattan, and Mahalanobis. A
score is computed for each observation as the ratio of the sum of the distances to its nearest
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neighbours and the k value (Equation (3)). Observations with scores beyond a specified
(user-defined) threshold are flagged as outliers.

Si =
1
k

Σk
j=1dist

(
xi, x(j)

)
(3)

where
Si = score;
xi = observation;
x(j) = the nearest neighbour jth of xi;
k = number of nearest neighbours of xi.

3.2. LOF

The Local Outlier Factor (LOF) method [34] is a density-based approach for detect-
ing outliers. It compares the local density of an observation to the local densities of its
neighbours. The primary idea is that outliers will have significantly lower local densities
compared to their neighbours. Consider a dataset in n-dimensional space. For any point
p in this space, we define k-dist(O) as the distance from O to its k-th nearest neighbour and
Nk(p) as the set of k-nearest neighbours of O. For points p and O, the Euclidean distance
expressed in Equation (4) is typically used:

d(p, O) =

√
n

∑
i=1

(pi − Oi)2 (4)

The reachability distance between points p and O is defined in Equation (5) as

RDk(p, O) = max{k-dist(O), d(p, O)} (5)

This ensures that points within the same neighbourhood have similar reachability
distances. For a point p, its Local Reachability Density (LRD) is defined as the inverse of
the average reachability distance to its k-nearest neighbours given by Equation (6):

LRDk(p) =
(

1
|Nk(p)| ∑ O ∈ Nk(p)RDk(p, O)

)−1
(6)

The Local Outlier Factor (LOF) of a point p is calculated as the average ratio of the
LRD of p’s neighbours to the LRD of p itself expressed in Equation (7):

LOFk(p) =
1

|Nk(p)| ∑ O ∈ Nk(p)
LRDk(O)

LRDk(p)
(7)

In interpreting LOF values, if LOFk(p) ≈ 1, p has a similar density to its neighbours.
If LOFk(p) > 1, p has a lower density than its neighbours, indicating it might be an outlier.
The higher the LOF value, the more likely p is an outlier. In Figure 4, point O represents the
observation being evaluated. Points p1, p2, p3, and p4 are potential k-nearest neighbours
of O. The dashed circle represents the k-distance(O), which is the distance to the k-th
nearest neighbour. d(p, O) shows the distance between O and one of its neighbours (in this
case, p2). The LOF method provides a robust way to identify outliers by considering the
local context of each data point. It is particularly useful in datasets with varying densities,
where global density-based methods might fail to detect local outliers. The method’s ability
to provide a degree of outlierness, rather than a binary classification, allows for more
careful analysis and decision making in outlier detection tasks.
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Figure 4. Illustration of LOF concepts.

3.3. ISF

The Isolation Forest (IF) [47] is a method for detecting anomalies based on the principle
of isolating observations. This approach is founded on the idea that anomalies are both rare
and distinct, making them more susceptible to isolation than normal points in a dataset.
Consider a dataset X ∈ Rn×d, where xi ∈ Rd represents the i-th observation, and X is the
matrix containing all n observations. The IF algorithm constructs a forest of isolation trees
(iTrees), which are each built using a subsample of size n from X. The construction of
an iTree proceeds as follows: at each node, an attribute q is randomly selected from the
d available features. A split value p is then randomly chosen between max(xq) and min(xq)
for the selected attribute. This process creates an internal node with the test condition
xq < p. The algorithm recursively applies this procedure to build left and right subtrees
using the resulting subsets. The recursion terminates when one of three conditions is met:
(i) the tree reaches a specified height limit, (ii) the node contains only one instance, or
(iii) all instances at the node have identical attribute values. The anomaly score for a point
x is derived from its average path length E[h(x)] across the forest of t iTrees. The score is
formally defined as

s(x, n) = 2−
E[h(x)]

c(n) (8)

where c(n) is a normalisation factor given by:

c(n) = 2H(n − 1)− 2(n − 1)
n

(9)

In this equation, H(i) represents the harmonic number, which can be approximated by
ln(i) + 0.578 (Euler’s constant) [48]. The score s(x, n) exhibits several important properties.
As s(x, n) approaches 1, the likelihood of x being an anomaly increases. Conversely,
when s(x, n) is significantly less than 0.5, x is more likely to be a normal instance. Scores
around 0.5 indicate instances that are neither clearly anomalous nor clearly normal. To
employ IF for anomaly detection, a threshold s0 ∈ [0, 1] is established. Instances for which
s(x, n) > s0 are classified as anomalies. The selection of s0 is crucial and depends on the
specific requirements of the application, balancing the need to detect true anomalies against
the risk of false positives.

3.4. The 2σ Rule

True outliers are important for the evaluation of the effectiveness of the above algo-
rithms and the impact of outliers on predictive models. However, true outliers are generally
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not available in real applications unless the experts in the applications label them based on
application contexts. For this reason, in research, synthetic true outliers are often implanted
into the dataset for detection [49].

True outliers are unknown in the dataset from our study. Generated synthetic outliers
may not be suitable for the application context. We utilise a statistical distribution principle
to establish a metric tr (to be elaborated upon shortly) for outlier identification. Specifically,
within the distribution of all observations with respect to the metric, any observation lying
beyond 2 standard deviations from the mean of the metric tr is designated as an outlier.
The outliers identified by this method are referred to as quasi-outliers in this study. Based on
a normal distribution guideline, observations that are 2σ away from the mean count as 5%
of total observations. We note that if true outliers are known for example from experts, they
should be used to replace quasi-outliers. Quasi-outliers are not the same as true outliers,
and this will be demonstrated later in the experimental section. Nevertheless, we use
quasi-outliers as a baseline to compare ML outlier detection algorithms.

3.5. Trend Differential tr(i,j) and Quasi-Outliers

Determining thresholds for identifying outliers is vital. In this section, we introduce
our proposed approach based on the trend differential, denoted as tr(i, j), which is com-
puted for every element in the dataset. The trend differential is used to identify observations
that significantly deviate from the expected trend, potentially marking them as outliers.

3.5.1. Standard Deviation Factor

Given a score vector s = [s1, s2, . . . , sn]T ∈ Rn, with mean µs and standard deviation
σs, the standard deviation factor for the i-th element si is denoted as s f (i, s). It is defined as

s f (i, s) =
|si − µs|

σs
, i = 1, 2, . . . , n (10)

This factor s f (i, s) quantifies the deviation of si from the mean µs in terms of the
standard deviation σs. The factor indicates the rarity of the value si within the vector s.
Conventionally, if s f (i, s) > 2, the observation si is considered to be in the 5th percentile
and is flagged as a potential outlier. For a large sample size, we assume the estimated scores
are close to a normal distribution and adopt 2σ for thresholding the score column. Scaling
to 1.5σ or 1σ would capture many normal observations as outliers leading to false detection.
Adopting higher thresholds, for example, 2.7σ or 3σ would capture less observations,
missing outlier observations in the data.

3.5.2. Trend Differential Calculation

For a given dataset X = [x1, x2, . . . , xn] ∈ Rn×d, where xi = [xi1, xi2, . . . , xid]
T , the

trend differential tr(i, j) for each element xij is computed to detect significant deviations in
trends across the dataset. The trend differential tr(i, j) is defined as the maximum of two
absolute differences:

tr(i, j) = max
(
|xij − x(i−1)j|, |xij − x(i+1)j|

)
(11)

This differential tr(i, j) captures the most significant local change in the data trend at
the specific point (i, j) relative to its neighbouring points.

3.5.3. Total Score Factor

After computing the trend differentials tr(i, j) for all elements, the standard deviation
factor s f is applied to each column of the matrix tr (comprising the trend differentials). The
total score factor ttls f (i) for the i-th row is then computed by aggregating the standard
deviation factors across all columns.
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The total score factor is defined as:

ttls f (i) =

√√√√1
d

d

∑
j=1

(s f (i, tr(∗, j)))2 (12)

Here, ttls f (i) represents the root mean square of the standard deviation factors for
the trend differentials across all dimensions j for the i-th observation. This provides a
comprehensive measure of the overall deviation from the expected trend in the entire row.

3.5.4. Quasi-Outliers

Observations are identified as quasi-outliers if their total score factor exceeds a specified
threshold. Typically, a standard deviation factor s f (i) > 2 is used as a threshold to identify
quasi-outliers. These are data points that exhibit significant but not extreme deviations from
the norm, which makes them candidates for further analysis as potential anomalies.

3.6. Cover Rate (CR)

To assess the effectiveness of the algorithms, we obtained a ranking of the quasi-
outliers and determined their coverage by the detection algorithms. By coverage, we
mean a quasi-outlier is considered covered by an algorithm g if the record index i of the
quasi-outlier is found among the outliers O of g or a sequential neighbour i’ of i is in O.
The concept of sequential neighbours refers to observations that are close to each other
in a sequential or ordered dataset. In this context, they must be within [i−∆, i+∆] where
∆ is a time range to reflect the fact that the flotation response to an event may take up to
20–30 min. We investigated various ∆ values from 3, 5, 10, and 15 min to determine the best
coverage by the detection algorithm. We calculate the cover rate of the detection algorithms
using Equation (13) as

CR =
Ncu

Nqo
(13)

where
Ncu is the number of quasi-outliers covered.
Nqo is the total number of quasi-outliers.

3.7. Assessing the Impact of Outliers on Prediction Performance

The predictive model utilised in this study is Extreme Gradient Boosting (XGBoost),
which is a highly efficient and scalable implementation of gradient boosted decision trees.
We developed XGBoost models to predict the output variable (Rec) using the ten (10) input
variables previous described in Table 1. The XGBoost models were tuned using the optimal
hyperparameters described in Table 3.

Table 3. XGBoost model hyperparameter settings.

Description Parameter

Base learner Gradient boosted trees
Learning objective Regression with squared error
Regularisation lambda 2.0
Maximum depth of trees 2

The performance metrics used for evaluation were the root mean square error (RMSE),
the mean absolute percentage error (MAPE), and the coefficient of determination (R2)
defined as

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (14)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (15)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (16)

where n is the total number of observations, yi is the actual output for the i-th observation,
and ŷi is the predicted output for the i-th observation, and ȳ is the mean of the actual output
variables. Higher R2 values indicate better model performance, while lower RMSE and
MAPE values indicate better performance.

3.7.1. Quasi-Outlier Removal Analysis

We first investigated model performance by systematically removing different levels
of quasi-outliers from the dataset. The dataset was split into training (80%) and testing
(20%) subsets. Models were trained with varying degrees of quasi-outlier removal and then
evaluated on test datasets.

3.7.2. Outlier-Inclusive vs. Outlier-Exclusive Model Comparison

In the second approach, we employed the following methodology: we applied the
kNN outlier score to rank the dataset, employing a 2σ threshold to differentiate between
outliers and normal observations. We then randomly selected and reserved 1000 samples
as an independent test set. The remaining data were partitioned into training (80%)
and validation (20%) subsets with the latter serving to assess the model’s generalisation
capacity and mitigate potential underfitting or overfitting. We developed two distinct
models: Model 1, trained on the complete dataset including outliers, and Model 2, trained
exclusively on data with outliers removed. Both models were subsequently evaluated
using the reserved test set with performance quantified through root mean square error
(RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R2)
metrics. This systematic approach, illustrated in Figure 5, enabled a rigorous comparison
of model performance with and without the influence of outlier observations.

All experiments were conducted on a personal computer with Intel(R) Core (TM) i5-
10210U CPU @ 4 GHz and 8 GB memory with a Windows 10 operating system. The outlier
detection algorithms were sourced from Scikit-learn open source libraries, except for the
trend differential, and implemented using Python programming software, version 3.12.0
for data preprocessing, experiments, and result analysis.

kNN
 ranked 

observations
Normal

observations

Outliers
observations

cut-off

Test data
1000 observations

Model 1

Normal
observations

Outliers
observations

Normal
observations

Model 2

Randomly
sampled

observations

Model Assessment
RMSE, MAPE, R2 

Training

Training
Remaining

observations

Dataset

Figure 5. Flow diagram illustrating model performance calculation with and without outliers.
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4. Results

In this section, we present the outcomes of our experiments for the outlier detection
algorithms presented in the previous section. Our objective is to analyse the effectiveness
of these algorithms in detecting true outliers in the flotation data. In the following, we
first present the results of neighbourhood size for kNN in Section 4.1. Next, we present in
Section 4.2 the quasi-outliers detected by the trend differential method and their properties
through visualisation. Then, we compare the effectiveness of the outlier detection algo-
rithms in Section 4.3. Sections 4.4–4.6 highlights covered and uncovered quasi-outliers as
well as non-covering outliers from the detection algorithms. Finally, we present the results
demonstrating the impact of outliers on prediction performance in Section 4.7

4.1. Nearest Neighbourhood Size

The neighbourhood size k is a user-defined parameter representing the number of
nearest neighbours to be considered in calculating the outlier score. It is an important
parameter in the identification of outliers. If k = 1, all observations receive the same outlier
score of 0, and if k equals the total number of records of the dataset, all observations are
from the same distance. The appropriate k value can help differentiate rare observations
from other observations [50,51]. By leveraging Euclidean distances, we use the elbow graph
method [52] to optimise the parameter k using weighted averaging.

For each k from 3 to 100, the average error that predicts the outcome is calculated for
all observations following the prediction of k nearest neighbour. From k and its average
error, a graph is plotted. The elbow point is the inflexion point at which the down-trend of
the line is changing to the horizontal trend.

Equations (17) and (18) are based on the following definitions:

• disti[j, 0]: Euclidean distance for the j-th nearest neighbour of the i-th observation.
• disti[j, 1]: Corresponding target value y[j] for the j-th nearest neighbour.

We define

Yi =
k

∑
j=0

disti[j, 0] · disti[j, 1] (17)

Si =
k

∑
j=0

disti[j, 0] (18)

where Yi and Si represent the weighted sum and sum of distances for the i-th observation.
The error for each observation i is computed as the absolute difference between the

actual target value y[i] and the weighted average:

errori =

∣∣∣∣y[i]− Yi
Si · (k + 1)

∣∣∣∣ (19)

This error is then accumulated to obtain a total error for the current k:

TotalError = ∑
i

errori (20)

By deriving the total errors for each k, we can identify the optimal k that minimises the
total error. The results are visualised by plotting the corresponding total errors against k, fa-
cilitating a clear identification of the optimal k. This approach provides a robust framework
for determining the optimal k for the flotation data used in this study.

Figure 6 shows an elbow graph of error measures against k-distance values. The curve
takes a bend for k values greater than 20 and plateaus as the neighbourhood size increases.
According to the graph, we adapt a neighbourhood size of k = 20 in this study for the
detection of outliers in the sensed flotation dataset.
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Figure 6. Selection of nearest neighbourhood size (k) for the copper rougher flotation dataset.

4.2. Quasi-Outliers

Based on the definition of quasi-outliers in Equation (12), 150 quasi-outliers were
obtained from the dataset. Figure 7 shows a plot of the first 50 quasi-outliers on every
feature variable where the y-axis is the normalised feature value and the x-axis is the time
when the observation was taken. The feature values are plotted in blue and the quasi-
outliers are plotted in red-coloured vertical lines, which indicate the time dimension when
the outlier occurs. It can be seen that the outliers exist mostly in regions where the data
peaks or drops and reflect across some input variables.

For easier reading, we use Figure 8 to show a few quasi-outlier observations among
their 20 nearest neighbours. The intuition is that a normal observation would follow the
clusters of their nearest neighbours, whereas an outlier observation would deviate from the
cluster of it’s nearest neighbours. In Figure 8, the red line is the quasi-outlier observation,
and the blue lines are the 20 nearest neighbours to the quasi-outlier observation. The
x-axis displays the input variables labelled Grd, Thp, PSD, XT1, XT4, FT1, FT4, FD1, FD2,
and FD4, and the y-axis shows the normalised data values of the observations across the
input variables.

It can be seen that the quasi-outlier observations deviate from the clusters of their
neighbours, which are captured within some of the input variables. Significant deviations
can be seen in the input variables XT1, XT4, FT1, FT4, Grd, and FD4. In our application,
the variable(s) where the deviation occurs can be inspected by operators or experts to
determine what may be causing the production of the erroneous observations.

4.3. Effectiveness of the Outlier Detection Algorithms

We now assess the effectiveness of the outlier detection algorithms to detect quasi-
outliers in the dataset. Although the individual outlier algorithms detect quasi-outliers,
they do not rank them equally. This means that top-ranked quasi-outliers may not be
ranked among the top outliers by other algorithms. This makes sense, as each algorithm
follows a different principle in its detection. However, it can be expected that the algorithms
would rank quasi-outliers in the topmost outliers and non-outliers at the bottom [53]. We
refer to observations that are ranked as the topmost outliers by the detection algorithms as
the ‘worst outliers’. We analyse the effectiveness of the outlier detection algorithms using
the cover rate presented in the following section.
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Figure 7. Visualisation of first 50 quasi-outliers on each input variable along the time dimension.
Note: Grd—feed grade, Thp—throughput, PSD—% particle size passing 75 µm, XT1—xanthate
dosage in cell 1, FT1—frother dosage in cell 1, FD1—froth depth in cell 1, FD2—froth depth in cell 2,
XT4—xanthate dosage in cell 4, FT4—frother dosage in cell 4, FD4—froth depth in cell 4.

Cover Rate (CR)

We use Figure 9 to show the coverage of the first 50 quasi-outliers by the detection
algorithms. Quasi-outliers only are plotted in Figure 9a, and algorithm coverage is plotted
for kNN in Figure 9b, LOF in Figure 9c, and ISF in Figure 9d. The plots show the observation
indexes on the y-axis and their ranking on the x-axis. The red circles (‘o’) represent the quasi-
outliers and the blue markers (‘x’) represent the outliers from the detection algorithms.
It can be seen that several outliers from the detection algorithm completely cover the
quasi-outliers around index 8000. In addition, few sequential neighbours can be observed
around this index. Quasi-outliers around index 2000 and below show sequential neighbour
coverage with the majority of them observed in kNN and ISF coverage. LOF coverage had
the least sequential neighbours around this index. It is worth mentioning that around index
2000, most of the sequential neighbours from kNN coverage achieved the best ranking
of the three algorithms. Similarly, quasi-outliers above index 10,000 realised only three
sequential neighbours coverage from each algorithm. The three sequential neighbours
of kNN coverage above 10,000 index rank the quasi-outliers as top outliers (with smaller
ranking value), which is followed by LOF and then ISF. This means that the kNN covers
most of the quasi-outliers best, which indicates a better detection compared to LOF and ISF.

We present in Table 4 the ranking of the first 50 quasi-outliers. The first column
represents the quasi-outlier observations with their corresponding ranking in the second
column. The next three columns show their rank coverage positions for kNN, LOF, and
ISF. Quasi-outliers that are not covered within ∆[−10,+10] of a detection algorithm are
assigned an ∗ for the rank position.

In Table 5, we present the CR of the detection algorithms for different cover ranges.
From the results, we observe the following:
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1. kNN obtained the highest CR, which was followed by LOF and then ISF across all the
ranges investigated with maximum CR values of 0.84, 0.65, 0.64 for kNN, LOF, and
ISF, respectively,

2. When the time range ∆ reaches 10, the coverage stabilises and does not improve
any further.

Figure 8. Feature plots of quasi-outliers identified by the various outlier detection algorithms. Note:
The red line represents an observation under consideration, blue lines represent the 20 nearest
neighbours of the observation. Grd—feed grade, Thp—throughput, PSD—% particle size passing
75 µm, XT1—xanthate dosage in cell 1, FT1—frother dosage in cell 1, FD1—froth depth in cell 1,
FD2—froth depth in cell 2, XT4—xanthate dosage in cell 4, FT4—frother dosage in cell 4, FD4—froth
depth in cell 4.
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(a) Quasi-outlier (b) kNN coverage

(c) LOF coverage (d) ISF coverage

Figure 9. Coverage plot. The red circles (‘o’) represent the quasi-outliers and the blue markers (‘x’)
represent the outliers from the detection algorithms.

Table 4. Quasi-outlier ranking within ∆[−10,+10] by the detection algorithms.

Quasi-Outlier Ranking
Ranking Positions

kNN Position LOF Position ISF Position

8320 1 3 1 1
11,790 2 1 2 38
11,789 3 1 2 38
13,911 4 208 * 398
14,571 5 315 1220 *
8321 6 3 1 1

11,691 7 * * *
8811 8 * 223 *
2146 9 15 50 10
186 10 2 17 54
187 11 2 17 54

11,970 12 102 546 102
8355 13 19 3 11

10,971 14 431 148 938
14,320 15 25 16 18
15,285 16 7 18 48
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Table 4. Cont.

Quasi-Outlier Ranking
Ranking Positions

kNN Position LOF Position ISF Position

1879 17 * * *
1159 18 271 218 *
8468 19 57 15 47
8467 20 57 15 47

11,031 21 943 * *
2259 22 235 880 266

15,286 23 7 18 48
2679 24 369 314 *
4839 25 455 473 662
1519 26 * * *
8511 27 92 54 81
420 28 233 * *

10,251 29 957 266 *
5139 30 * * *
1099 31 438 * *

11,391 32 * * *
2319 33 141 * 494

13,131 34 * * *
15,291 35 2 18 48
2575 36 7 41 75
2147 37 15 50 10
8327 38 3 1 1
8382 39 59 21 45

15,293 40 7 18 48
249 41 164 365 459

14,454 42 278 534 346
2574 43 74 41 75
206 44 132 320 199

13,191 45 * * 142
177 46 2 17 54

5529 47 80 70 77
8322 48 2 1 1
5859 49 1041 * *
6279 50 * * *

Note: A lower number means an algorithm considers an observation the worst outlier, whereas a higher number
means an algorithm considers the observation as less suspicious of being an outlier. * denotes quasi-outliers not
covered by the corresponding algorithm.

Table 5. Cover rate of quasi-outliers by detection methods.

Algorithms
Cover Range and Rate of Outlier Detection Algorithms

∆[−3, 3] ∆[−5, 5] ∆[−10, 10] ∆[−15, 15]

kNN 0.77 0.79 0.84 0.84
LOF 0.59 0.61 0.65 0.65
ISF 0.57 0.61 0.63 0.64

Note: Bold text represent highest values which indicate better cover rate (CR) and effective detection.

4.4. Covered Quasi-Outliers

We show in Figure 10 quasi-outliers that are covered by the detection algorithms. We
note that these outliers represent true or confirmed outliers and should not be ignored.
Figure 10a shows all outliers covered by the detection algorithms (plotted in red). The out-
liers mark the time dimensions where significant deviations occur, which are characterised
by peaks and jumps across all the input variables. We present in Figure 10b the worst
covered outlier observation showing jumps across the input features. This means that they
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cause rippling effects across multiple variables, leading to an extensive compromise of the
observation and the outcome it generates.

(a) Quasi-outliers covered by the detection algorithms
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(b) Worst covered quasi-outlier observation

Figure 10. Time series plot of quasi-outliers (a) covered by the detection algorithms and (b) worst
covered quasi-outlier observation. The red lines represent the outlier observations at the specific time
index, and the blue lines represent normalised data values.

4.5. Uncovered Quasi-Outliers

Now, we analyse the quasi-outliers uncovered by the detection algorithms. We plot all
uncovered quasi-outliers in Figure 11a. We found that all these uncovered quasi-outliers
have the property of a one-sided trend jump. A one-sided trend means that before the
time of the outlier observation, variables take similar values; at the time of the outlier, the
values of some variables have either jumped up or down. After the outlier time index, the
variables take similar values again (but maybe at new value levels for some of them). This
phenomenon can be observed in Figure 11b with a one-sided jump before the observation in
variable Grd and a one-sided drop before the observation in variable PSD. A normal outlier
has a two-sided trend change to make the observation different from others, making the
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observation detected by other algorithms. The observation at the one-sided trend change is
either similar to its neighbours before the observation or similar to its neighbours after the
observation, and this similarity indicates that the outliers at the one-sided trend change are
falsely identified by the trend differential algorithm. As a result, quasi-outliers uncovered
by kNN can be ignored.

(a) Quasi-outliers uncovered by all the outlier algorithms

(b) Worst uncovered quasi-outlier observation

Figure 11. Time series plot of (a) all uncovered quasi-outliers, and (b) worst quasi-outlier not covered
by the detection algorithms.The red lines represent the outlier observations at specific time index and
the blue lines represent normalised data values.

4.6. Non-Covering kNN, LOF, and ISF Outliers

The following question is whether outliers detected by kNN, LOF, and ISF which do
not cover any quasi-outlier, are important, or should they be ignored? We analyse the
outliers from the detection algorithms and present in Table 6 the number of non-covering
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outliers. We represent non-covering outliers from kNN, LOF, and ISF by kNNnco, LOFnco,
and ISFnco, respectively. We found 80 outliers as kNNnco, 11 as LOFnco, and 2 as ISFnco. The
analysis also revealed that all ISFnco ∈ kNNnco and the majority of the LOFnco ∈ kNNnco.
As such, we considered only kNNnco and LOFnco in further analysis.

Table 6. Non-covering outliers from the detection algorithms.

Algorithms Number of Outliers (2σ Threshold) Number of Non-Covering Outliers

kNN 300 80
LOF 74 11
ISF 28 2

Figure 12 visualises kNNnco in the time dimension for all variables. Figure 12a shows
all the kNNnco, whereas Figure 12b shows the worst kNNnco observations.

We use Figure 12b to show how these outliers are validated. Considering the group
A of outliers near time = 15,000 in Figure 12b, their sequential neighbours are coloured
yellow in the Thp and FD1 subplots. Then, 2.5 h before the outlier (near time = 14,800), the
subplots reflecting inputs (Grd, PSD, XT1, XT4, FD2, and FD4) are stable except for Thp
and FT4, which have deep dives and less dive for FT1. These dives can be associated with
disturbances in the flotation system such as the throughput being turned off, instability of the
froth due to high depth, resulting in the froth collapse; or just a change in the air feeding. As
is well known, the impact of a change in inputs to the flotation fades away within 0.5–1.5 h,
and the system should be stable. However after about 2 h (near time = 15,000), most of
the input variables come back to stable values, and we expect that the variable FD1 should
remain stable as well. However, FD1 shows a sudden drop as shown near time = 15,000. The
sudden drop in FD1 for this group of observations represents an unexpected change. All
the non-covering kNN outliers (in Figure 12a) demonstrate a similar ‘unexpected change’
property. We capture these suspicious observations as outliers.

Similarly, we visualise LOFnco in Figure 13. Figure 13a shows all LOFnco values,
whereas Figure 13b shows the worst LOFnco observations. In Figure 13b, the yellow rect-
angle shows the time dimension and variable (XT1) where the worst LOFnco occurs. The
observations in this region have a density relatively lower than that of their neighbours. As
such, the LOF algorithm rightly detects them as outliers.

(a) All kNNnco observations

Figure 12. Cont.
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(b) Worst kNNnco observations

Figure 12. Time series plot of non-covering kNN outliers. The red lines represent the outlier
observations at a specific time index and the blue lines represent normalised data values.

We conclude that both kNNnco and LOFnco observations should not be ignored. In our
application, we recommend that such outliers should be carefully inspected in consultation
with the domain knowledge of operation.

(a) All LOFnco observations

Figure 13. Cont.
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(b) Worst LOFnco observations

Figure 13. Time series plot of LOFnco observations. The red lines represent the outlier observations at
the specific time index, and the blue lines represent normalised data values.

We summarise the experimental results as follows:

1. The common outliers by kNN and trend differential method are obvious outliers, and
the trend differential method helps validate these.

2. The kNN non-covering outliers exhibit variations that correspond to system instabili-
ties that could be linked to several complex interactions in the flotation system.

3. kNN identifies almost all outliers, while LOF adds a few subtle ones. In our applica-
tion, we recommend that such outliers should not be ignored; rather, they should be
carefully inspected.

4.7. Impact of Outliers on Prediction Performance

So far, we have argued that the method of deriving quasi-outliers is effective in
identifying suspicious observations, and the outlier algorithms have confirmed worst quasi-
outliers in the dataset. We present in Table 7 the impact of quasi-outliers on prediction
performance. The results show different levels of quasi-outlier removal on the model
performance assessment for both training and testing datasets. Overall, increasing quasi-
outlier removal leads to a reduction in prediction errors and more accurate predictions. In
this case, a mean absolute percentage error (MAPE; Equation (15)) of 0.62 % was achieved
for predictions on test data containing quasi-outliers. After removing the top quasi-outliers,
the prediction error for the test data decreased to about 0.23 %, which is approximately one
third of the error when the quasi-outliers were included. This indicates that outliers can
impact predictive model performance and must be carefully treated.
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Table 7. Summary of the impact of removing quasi-outliers on prediction.

Quasi-Outliers
Removed

Training Testing

RMSE MAPE (%) RMSE MAPE (%)

0 * 0.0083 0.6146 0.0079 0.6153
93 0.0028 0.2124 0.0036 0.2393

150 0.0026 0.1976 0.0031 0.2252
* Dataset in which no quasi-outlier observations have been removed.

The performances of Model 1 and Model 2 are presented in Tables 8 and 9, respectively.
The performance of a model trained without outliers (Model 2) was better than the model
with outliers (Model 1) for training, validation and testing. Model 1 achieved an RMSE
(Equation (14)) of 0.0050, MAPE of 0.4715 %, and R2 (Equation (16)) of 0.98, whereas Model
2 had an RMSE of 0.0040, MAPE of 0.4072 %, and R2 of 0.99 when tested on the ‘unseen’
test data. This indicates that the outliers cause higher prediction errors and negatively
impact the prediction performance.

Table 8. Model (Model 1) performance assessment with outliers.

Metrics Training Validation Testing

RMSE 0.1125 0.1128 0.0050
MAPE (%) 0.8462 0.8711 0.4715

R2 0.96 0.96 0.98

Table 9. Model (Model 2) performance assessment without outliers.

Metrics Training Validation Testing

RMSE 0.0105 0.0111 0.0040
MAPE (%) 0.8193 0.8231 0.4072

R2 0.97 0.97 0.99

5. Conclusions

This study introduced a novel ‘trend differential’ approach combined with a 2σ stan-
dard deviation factor to identify quasi-outliers in industrial flotation data. The effectiveness
of this method was then validated using established outlier detection algorithms (kNN,
LOF, and ISF). While our approach successfully captured a majority of the most significant
outliers in the dataset, it is important to critically examine the implications and limitations
of these findings. The visualisation of quasi-outliers revealed significant trend breaks across
multiple variables, suggesting that our method can detect complex, multivariate anoma-
lies. This aligns with previous research by Hodge and Austin [54], who emphasised the
importance of considering multiple dimensions in outlier detection for industrial processes.
However, the precise nature of these trend breaks and their root causes in the flotation
process warrant further investigation.

Our introduction of a 5 % control limit to capture rare observations proved effective
in identifying outliers, but it is crucial to consider the potential trade-offs. As pointed
out by Aggarwal [55], there is always a risk of misclassifying legitimate rare events as
outliers, which could lead to a loss of valuable information in process optimisation. Future
work should explore adaptive thresholding techniques that can adjust to varying process
conditions, as suggested by Liu et al. [56]. The observation that outliers occur in diverse
directions within the dataset underscores the complexity of flotation processes and the
challenges in outlier detection. This multidimensional nature of outliers aligns with findings
by Markou and Singh [57], who highlighted the need for sophisticated, context-aware
outlier detection methods in complex industrial settings.

Our evaluation of model prediction performance with and without outliers demonstrated
their significant impact on prediction accuracy. While this supports the importance of outlier
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detection and removal for accurate modelling, it also raises questions about the potential
loss of important process information. As cautioned by Rousseeuw and Hubert [58], an in-
discriminate removal of outliers can lead to model overfitting and reduced generalisability.

The limitation of this study to three outlier detection algorithms, while providing
valuable insights, also highlights the need for a more comprehensive comparison of meth-
ods. Future work could explore the application of deep learning techniques, such as
autoencoders [59], which have shown promise in handling high-dimensional data typical
in industrial processes. Moreover, the potential for real-time outlier detection and its in-
tegration into process control systems remains an exciting avenue for future research. As
suggested by Ge et al. [60], the development of adaptive, online outlier detection methods
could significantly enhance process monitoring and control in mineral processing opera-
tions. While our ‘Trend differential’ approach shows promise in identifying complex outliers
in flotation data, its practical implementation requires a careful consideration of process-
specific factors and potential information loss. Future research should focus on developing
more adaptive, context-aware outlier detection methods and exploring their integration
with robust modelling techniques to enhance both the accuracy and interpretability of
flotation process models.

The following conclusions can be drawn from this study:

• The outlier detection algorithms are effective in enhancing data quality, and their
performance was assessed. The kNN algorithm performed best compared to LOF
and ISF in terms of the number of quasi-outliers detected and covered, as kNN ranks
the majority of the worst outliers as top outliers. The effectiveness of the detection
algorithms can be ordered as kNN > LOF > ISF.

• Training data containing outliers can cause predictive models to make larger errors on
non-outlier input records. The study showed that outliers have detrimental effects on
prediction performance compared to ‘normal’ observations. This negative impact of
outliers should not be overlooked as they produce inaccurate performance outcomes,
especially in high-dimensional data.

• The dynamic nature of flotation processes makes distinguishing ‘normal’ observa-
tions from outliers complex. Analysts should avoid rigidly applying predetermined
thresholds for outlier detection without thorough investigations and consultation with
industry experts. It is essential to assess the degree of outlier behaviour in flotation
data using both analytical methods and domain knowledge to enhance data quality.

This research is highly significant to both the research community and the mineral
processing industry. It demonstrates that unsupervised ML algorithms are effective in
analysing data from flotation operations. These algorithms can detect outliers, enhance
data quality for predictive analysis, and improve process optimisation for future planning
and decision making.
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Abbreviations

The following abbreviations are used in this manuscript:

ML machine learning
kNN k-Nearest Neighbour
LOF Local Outlier Factor
ISF Isolation Forest
XGBoost Extreme Gradient Boosting
LRD local reachability distance
RMSE root mean square error
MAPE mean absolute percentage error
tr trend differential
CR Cover rate
kNNnco kNN non-covering outliers
LOFnco LOF non-covering outliers
ISFnco ISF non-covering outliers
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